
Training with synthetic images for object detection
and segmentation in real machinery images
Alonso J. Cerpa Salas

Department of Computer Science
Universidad Católica San Pablo

Arequipa, Peru
e-mail: alonso.cerpa@ucsp.edu.pe

Graciela Meza-Lovon
Department of Computer Science
Universidad Católica San Pablo

Arequipa, Peru
e-mail: gmezal@ucsp.edu.pe

Manuel E. Loaiza Fernández
Department of Computer Science
Universidad Católica San Pablo

Arequipa, Peru
e-mail: meloaiza@ucsp.edu.pe

Alberto Raposo
Tecgraf Institute

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro, Brazil

e-mail: abraposo@tecgraf.puc-rio.br

Abstract—Over the last years, Convolutional Neural Networks
have been extensively used for solving problems such as image
classification, object segmentation, and object detection. However,
deep neural networks require a great deal of data correctly
labeled in order to perform properly. Generally, generation and
labeling processes are carried out by recruiting people to label the
data manually. To overcome this problem, many researchers have
studied the use of data generated automatically by a renderer. To
the best of our knowledge, most of this research was conducted
for general-purpose domains but not for specific ones. This paper
presents a methodology to generate synthetic data and train a
deep learning model for the segmentation of pieces of machinery.
For doing so, we built a computer graphics synthetic 3D scenery
with the 3D models of real pieces of machinery for rendering and
capturing virtual photos from this 3D scenery. Subsequently, we
train a Mask R-CNN using the pre-trained weights of COCO
dataset. Finally, we obtained our best averages of 85.7% mAP
for object detection and 84.8% mAP for object segmentation,
over our real test dataset and training only with synthetic images
filtered with Gaussian Blur.

I. INTRODUCTION

During the last decade, great progress has been made on
deep learning techniques such as Convolutional Neural Net-
works (CNN). However, for a successful generalization, these
techniques require many training examples. To speed up the
creation of a dataset, some researchers and enterprises contract
services such as Google Cloud or Amazon WebServices, by
which people are paid for labeling the data. However, this
causes research projects to increase their costs.

Alternatively, the creation of synthetic data by using a
renderer has been applied to speed up both data collection
and labeling of examples in some domains, such as object
segmentation. For this purpose, a renderer needs a 3D model
of the object, along with several backgrounds. Both the object
and the background are appropriately located in a scene,
generating a synthetic image. In addition to the created image,
a learning algorithm requires the output attribute. For image
segmentation, that attribute is obtained by rendering the model
of the object, without the background. In this way, the renderer

generates an image with the silhouette or mask of the object.
The process of generating and labeling data as described
above has advantages over the manual one: 1) It is less time-
consuming. 2) Human errors are avoided.

On the other hand, the synthetic generation also has a
disadvantage: The generated synthetic data will not look 100%
like the real data. Hence, training a model with synthetic
data would not give the same results as training the same
model with real data, i.e., the model trained with synthetic
data will not adequately predict when tested with real data.
This problem is known as the reality gap [1] [2]. There are
two ways to deal with the reality gap problem in the domain
of object segmentation when deep neural networks are used.
The first way consists in increasing the similarity between the
synthetic data and the real data, which can be carried out by
creating a virtual scene similar to the image background of the
real scene by using a photorealistic renderer [3]. The second
way to overcome the reality gap is to use Domain Random-
ization (DR) [1], which creates new images by introducing
and randomizing parameters in the scene. Examples of forms
of DR include varying the lighting parameters, varying the
textures of the objects, varying the backgrounds of the scene,
applying different types of noises, applying different types of
filters such as Gaussian blur, introducing distracting objects
into the scene. Thus, DR makes the model exposed to many
variations of the synthetic data, in this way when the model is
exposed to real data, the model will assume that real data is
only a version of the synthetic data with particular parameters,
such as real textures, real illumination, or real filters. That is
how the model will be able to bridge the reality gap, thanks
to Domain Randomization (DR).

This work aims to generate a set of synthetic data of
machinery pieces to evaluate if the training with this data
overcomes the reality gap problem. We take aspects from both
approaches above mentioned. So, we built a renderer based on
the Phong Reflection Model [4] using OpenGL, and then we
used the Mask R-CNN model [5] to perform the segmentation



task. The experiments were carried out to evaluate whether
applying Gaussian Blur to the synthetic images during the
training stage achieves a precision similar to that using real
data. The model was trained with three types of distinct pieces
of machinery. Besides, tests were carried out by mixing the
real data with the synthetic one to measure the importance of
real data in the increase of the model’s precision.

This paper is organized as follows. We describe the related
work in Section II by examining the techniques that generate
and label synthetic data for various tasks including object
detection and segmentation. In Section III, we present the
proposed methodology. First, we describe the Phong reflection
model used to build the renderer and to obtain the synthetic
data. Second, we introduce the Mask R-CNN network used
for the segmentation of the images contained in the dataset.
The experiments and results to assess whether the generated
synthetic dataset, along with the training of Mask R-CNN
network, allows us to overcome the reality gap are given in
Section IV. Finally, the conclusions are drawn in Section V.

II. RELATED WORK

This section describes the latest techniques for generating
and labeling synthetic data, and shows, in Table I, a summary
of the research jobs described below.

Ruiz et al. [6] proposed to generate labeled data of general-
purpose objects (e.g., hairdryers, chairs) and objects of the
self-driving domain (e.g., roads, trees, cars). The tasks they
focused on were object detection, pose estimation, semantic
segmentation, object segmentation, depth estimation, camera
pose estimation, and 3D box estimation. Ruiz et al. used the
Blender renderer to generate their data, and they also created
their Python scripts to manage the camera, lighting, models,
model positions, and orientations.

Another multi-tasking technique is called Falling Things,
which was proposed by Tremblay et al. [7]. They used the
NVIDIA Deep learning Dataset Synthesizer (NDDS) [12]
tool to create a synthetic dataset for object pose estimation
tasks with six degrees of freedom, object detection, and object
segmentation. Falling Things generates synthetic data for YCB
objects [13], which are general-purpose objects such as small
boxes and cans of food. The difference between Falling
Things [7] and the previous work by Ruiz et al. [6] is that
Falling Things use a two-fold approach to generate the data.
A part of their synthetic dataset was obtained by applying
domain randomization, and the other part by photorealism.
This two-fold approach helps to take advantage of the best of
two worlds, to achieve state-of-the-art performance in object
pose estimation with six degrees of freedom, as observed in a
study of Falling Things by Tremblay et al. [2]. In the study,
they demonstrated the effectiveness of Falling Things, testing
the model on a robot capable of picking up and placing the
YCB objects [13] with which it was synthetically trained.

Continuing the work of Falling Things [7], Tremblay et
al. [8] used NVIDIA Deep learning Dataset Synthesizer to
create a new synthetic dataset, which included cuboid objects,
such as cars or toy cubes. The synthetic objects were employed

for the network to learn to identify their poses. Besides, the
authors made the program observe through a camera a human
demonstration of a task which consisted in stacking several
colored cubes vertically. Then, they used the recognition of
the cubes the program learned and generated a plan (readable
by a human being) from the recognized demonstration. Finally,
the program executed the generated plan, and thus it learned
to stack the cubes from the human demonstration captured by
a camera. Tremblay et al. also demonstrate the effectiveness
of their technique by testing it with a robot and real cuboid
objects, as done in Falling Things [2].

Gaidon et al. [3] presented a technique called Virtual
KITTI, which employs photorealism as the primary approach
to close the reality gap. The tasks that can be performed with
Virtual KITTI are object detection, tracking, scene, instance
segmentation, depth image, and optical flow. The dataset
contains models of cars, track, trees, houses, among others,
necessary to train the models useful for self-driving cars.
Another advantage of synthetic data in this work is that it
allows data to be generated with particular climates such as
fog or rain on demand, not as in reality, where these climates
are less likely to occur.

There are particular scenarios for the generation of these
synthetic datasets. In the first one, the objects are shiny and
do not have texture. Chen et al. [9] addressed this problem
by generating synthetic data of metal components using a
renderer that estimates the 6D pose of an object. For doing so,
they divided the 6D pose estimation task into three subtasks,
namely, object segmentation, keypoint detection, and finally,
6D pose estimation. For object segmentation, they trained a
Mask R-CNN [5] model with the help of synthetic data and
its annotations, and by doing so, they detected the bounding
box and obtained object segmentation. For keypoint detection
subtasks, they used a Stacked Hourglass Network [14] to
detect key points in the segmented objects obtained previously.
For the last subtask, 6D pose estimation, they used the key
points of the object and the 3D model to find the 6D pose of
the object.

The second scenario happens when the objects are reflective,
i.e., when their texture is the same as some region of the scene.
Hartwig et al. [10] dealt with this type of scenario by using
a technique in which a dataset is built with reflective objects
from bathroom furniture (sinks, taps, urinals, toilets, etc.) to
perform object detection. The authors carried out three exper-
iments that include domain randomization and photorealism.
In the first one, the authors rendered the models with a Blinn-
Phong [15] reflection model; in the second experiment, they
added domain randomization to the previous experiment; and
in the third one, they used a physics-based renderer, in order to
capture photorealism, along with domain randomization. The
last experiment provided the best results for predicting real
data.

Similarly, Hinterstoisser et al. [11] generated synthetic data
from general-purpose objects (toys and tableware) and also
from industrial objects, for the task of object detection and seg-
mentation. Furthermore, Hinterstoisser et al. froze the layers



TABLE I
TECHNIQUES FOR SYNTHETIC DATASET GENERATION AND LABELING

Dataset Objects 2D Box 3D Box Mask Depth
Image

Optical
Flow

Ruiz et al. [6] General-purpose Objects and
Objects for Self-Driving Cars X X X X

Falling Things [7] General-purpose Object (YCB Objects) X X X X
Trembay et al. [8] Cuboid Objects X X X X
Virtual KITTI [3] Objects for Self-Driving Cars X X X X X

Chen et al. [9] Shiny Metallic Objects without Texture (Metallic Parts) X X
Hartwig et al. [10] Reflective Objects (Bath Furniture) X

Hinterstoisser et al. [11] General-purpose Objects (Toys and Tableware) and Industrial Objects X X
Ours Metallic Objects with Shiny Parts (Machinery Objects) X X

of the feature extractor and only modified the remaining ones.
Finally, they applied Gaussian Blur to the synthetic images,
which helped considerably to improve the results.

Our work is similar to that of Hinterstoisser et al. [11],
since we also perform object detection and segmentation with
a trained model with synthetic images obtained from a renderer
with Phong Illumination [4]. However, our work differs in
two aspects. The first one is that we apply our method on
metal pieces of mining machinery (with shiny parts). The
second is that Hinterstoisser et al. [11] focus both on training
a Faster-CNN network and on changing the parameters such
as light color, illumination, noise, pose, background and blur,
during the creation of the synthetic images. Notwithstanding,
in our work, we train a different model, called Mask R-
CNN [5] network, varying the pose, the background, and
blur parameters. However, we noticed that applying the blur
is very significant in our dataset, so we experimented with
this parameter extensively by varying its kernel size. We work
with objects (pieces and components) of heavy machinery. The
3D models we used correspond to perfect versions of these
objects, i.e., objects that have not been used in real life and are
not wasted or deteriorated. However, the images used in real
tests correspond to used objects, probably wasted deteriorated,
and therefore they differ from the synthetic models of images.
Hence, applying Gaussian Blur helps to reduce the gap or
difference between the synthetic and real images used in our
work. This fact can be corroborated by our experiments.

III. PROPOSED METHODOLOGY

Our methodology, explained in detail in the next section,
comprises two modules: Generation of synthetic data and
labels; and Training of Mask R-CNN network.
• The first module aims at obtaining synthetic data for three

types of pieces of mining machinery. For doing so, we im-
plement a renderer based on the Phong Reflection Model
[4] using OpenGL. In addition, we apply Gaussian Blur,
and vary parameters such as the number of backgrounds.
We apply translation and rotation transformations to the
objects (3D models) to create the synthetic dataset. Both
the translation and the rotation are performed randomly
with a uniform distribution, and within an angle range in
order to the object not to be rendered outside the viewing
area of the virtual camera that generates the synthetic

images. Furthermore, it is important to mention that the
synthetic images’ backgrounds are different from those
of the real test images.

• The second module aims at detecting pieces of machin-
ery and subsequently at obtaining the segmentation of
these pieces. For this purpose, we use Mask Region-
based Convolutional Neural Network (Mask R-CNN) [5],
which carries out two procedures. The first one provides
proposals about the regions where there might be an
object. These regions are framed in bounding boxes. The
second procedure performs three tasks: it a) predicts the
objects’ classes, b) it improves the bounding boxes, and
c) it generates masks of the objects.

A. Generation of Synthetic Data and Labels

Synthetic images and mask images were generated by using
a renderer (implemented in C++ with OpenGL) that uses the
Phong Reflection or Illumination Model [4]. The following
subsections discuss the Phong Reflection Model, the mask
image generation, the synthetic image generation, and the
mask image-to-label conversion process.

1) Phong Reflection Model: This renderer implements the
Phong Reflection Model [4], which is a model of local
illumination of points on a surface that is grounded on the
observation that shiny surfaces have small intense specular
highlights, in opposition to, opaque surfaces which have great
highlights. Based on that observation, the model combines the
diffuse reflection of rough surfaces and the specular reflection
of shiny surfaces in order to simulate the form in which lights
are reflected on a surface. The model also includes an ambient
component to take into account the amount of light that is
scattered throughout the whole scene.

The illumination of each surface point Ip is estimated in
(1).

Ip = kaia +
∑
l∈L

(kd(L̂l · N̂)il,d + ks(R̂l · V̂)αil,s), (1)

where, ka is a specular reflection constant; kd is a diffuse
reflection constant; ks is an ambient reflection constant; α is
a shininess constant of the surface material; ia is the intensity
of the ambient (a) light; il,d is the intensity of the diffuse
(d) component of the light source l; il,s is the intensity of the



Fig. 1. Architecture of the synthetic dataset generation

Fig. 2. Marching Squares Method [16].

specular (s) component of the light source l; L is the set of all
light sources; L̂l is the direction vector from the point p on the
surface toward the light source l; N̂ is the normal at point p on
the surface; R̂l is the direction vector of a perfectly reflected
ray of light from point p on the surface, which is computed
via R̂l = 2(L̂l · N̂)N̂ − L̂l, V̂ is the direction vector from
point p on the surface to the virtual camera.

2) Mask Image Generation: Our renderer generates mask
images, which are made up of single objects. For this purpose,
the object model is located at a random position and rotation
in the scene (as seen in Fig. 1). Also, the renderer converts
the background of the mask image into transparent, updating
the color buffer for R, G, B, and A (alpha) channels to zero,
i.e., it sets R=0, G=0, B=0, A=0.

Also, when the renderer generates a mask image, the
following process occurs. The vertex shader processes each
vertex of the object’s 3D model and returns a set of valid
vertices. Then a fragment shader updates the values of the
color buffer of the valid vertices by modifying the illumination
value Ip via (1) for channels R, G, B, and setting the value
of channel A to 255.

In this way, those pixels that are modified by the interaction
between the shaders and the model of the object differentiate

from the unmodified pixels in the fact that the first ones have
their alpha channel equal to 255, and the others have their
alpha equal to 0.

3) Label Generation: From Image Mask to Label: The
generation of synthetic data includes the creation of the labels,
which are used during training of the object segmentation
network explained in the next module. In our proposal, the
label is a polygon, with x and y coordinates from the image,
which covers the object contained both in the mask image and
its corresponding synthetic image. To find this polygon, we use
the mask image and apply the Marching Squares algorithm, a
particular case of the Marching Cubes algorithm [16]. Fig. 2
illustrates the Marching Squares algorithm. The entire mask
image is divided into rectangular regions, which are processed
one at a time. The changes from 0 to 255 in channel A
(alpha) determine what is inside or outside the polygon. The
output of every rectangular region contributes with a segment
of the polygon. Those segments are put together, obtaining the
complete polygon and hence also the label.

4) Synthetic Image Generation: Another task that the ren-
derer carries out is the generation of synthetic images. A
synthetic image is made up of an object and a background.
We provide the renderer with a set of background images,
which, as mentioned before, are different from the real test
set backgrounds; subsequently, the renderer randomly selects
a background and adds it to the scene immediately after
generating the mask image. In the end, we obtain pairs of
mask-synthetic images as illustrated in Fig. 3, where the mask
image provides the label for the model training, i.e., the output
attribute, and the synthetic image works as the training image,
i.e., the input attribute.

B. Training of the Mask R-CNN Network

In this module, we used Mask R-CNN [5] in order to
deal with the problem of instance segmentation, which is the
process of detecting and delineating each distinct object of an
image. For doing so, Mask R-CNN performs two procedures.



Object 0 Object 1 Object 2

Fig. 3. In the first row there are samples of mask images corresponding to objects 0, 1 and 2, while in the second row there are samples of synthetic images
with a random background.

The first one deals with object detection by generating
proposals about the regions that have a high probability of
containing an object. In this procedure, Mask R-CNN creates
several Regions of Interest (RoIs) and incorporates an attention
mechanism using a Region Proposal Network (RPN). The
input for RPN is a feature map provided by a ResNet [17]
or ResNeXt [18] optionally combined with Feature Pyramid
Network (FPN) [19]. The output of this procedure is a set of
candidate object bounding boxes.

The second procedure copes with semantic segmentation.
RoI proposals are combined with the feature map obtaining
RoIs of feature map. This result is fed into RoI align, which
evolves from RoI pooling (used in Faster R-CNN [20]) and
provides higher accuracy by avoiding quantization and hence
the loss of information. From applying RoI Align, we obtain
warped RoIs, which follows two paths. In the first one, warped
RoIs are passed to Fully Connected Layers (FC) to obtain a
class vector and a bounding box for each RoIs. In the second
one, warped RoIs are fed into a set of sequential convolutions,
whose structure is similar to Fully Convolutional Network
(FCN) [21]. As a result, we obtain a binary mask in pixel
level for each warped RoI. Fig. 4 illustrates the procedure
described above. The training process is performed over the
synthetic data and the testing over real data, as shown in Fig.
5.

IV. EXPERIMENTS AND RESULTS

Our segmentation problem is restricted to three distinct
metal pieces of machinery. Each of these three pieces (objects)
has 108 real images; thus, our real dataset contains 324 real
images, whose size is 1024 × 576. For the generation of
synthetic data and their labels, we collected a set of 93 distinct
backgrounds, which are different from the those of the real
images, with which we generated 11 random 6D poses for
each piece-background pair. Then, 3 pieces × 93 backgrounds
× 11 poses results in 3069 synthetic images. For each of them,
we generate its corresponding mask image, as well.

For object segmentation, we used the Mask R-CNN network
of Detectron2 Model Zoo [22]. This network employs a 50-
layer ResNet [17], along with a Feature Pyramid Network [19],
as feature extractor or backbone. In Detectron2, the authors
pre-trained the network with 37 epochs using COCO dataset
[23]. For conducting our experiments, we trained the network
with the synthetic images of machinery pieces and their labels
over the pre-trained network provided by Detectron2.

In particular, we executed eight experiments: 1) the first one
consists in training the network with synthetic images without
Gaussian Blur; 2-7) from the second to the seventh experiment,
we trained the network with synthetic images using Gaussian
Blur with kernel sizes of 51, 31, 23, 15, 7, and 3, respectively;
8) in the last experiment, we only used real data images for
training. We used 108 real images out of 324 real images for
testing for all the experiments from 1 to 8; likewise, we used
the remaining 216 images for training, only in Experiment 8.

Besides, in all experiments (1 - 8), we tested over real
data without Gaussian Blur and over real data with Gaussian
Blur with a kernel size of 3, since this size gave the best
results. The results of the experiments in the detection of
objects are observed in Table II (for testing with real data
without Gaussian Blur) and III (for testing with real data with
Gaussian Blur), while the results of the segmentation of objects
are presented in Table IV (for testing with real data without
Gaussian Blur) and V (for testing with real data with Gaussian
Blur). In Fig. 6 we can see some predictions of detection
and segmentation with Mask R-CNN trained over synthetic
data with Gaussian Blur of 7, and tested/predicted over real
data without blur. These experiments were carried out on an
Intel Core i7-8700, 3.2GHz computer. The network model was
trained using a NVIDIA GeForce RTX 2060 GPU.

As observed in Table II, which shows the results of object
detection tested over real data without Gaussian Blur, the
training with real data without blur provides a mAP of 91.7%,
while training with synthetic data with a blur of 7 gives the



Fig. 4. Architecture of Mask R-CNN.

Fig. 5. Module: Training of the Mask R-CNN Network.

best results, i.e., we get a mAP of 85.7%. Between these
two mAPs, there is a difference of only 6.0%. Moreover,
comparing the mAP of training over synthetic data without
blur (28.8%) and the best mAP of training over synthetic data
with a kernel size of 7 (85.7%), we gain a mAP of 56.9% by
applying Gaussian Blur.

Analyzing Table III, which shows the results of object
detection tested over real data with Gaussian Blur, the training
with real data without blur provides a mAP of 91.7%, but
training over synthetic data using a kernel size of 7 gives the
best results, i.e., a mAP of 85.6%. The difference between
these two mAPs is 6.1%. Besides, comparing the mAP of
training over synthetic data without blur (i.e., 0.0%) and the
best mAP of training over synthetic data with a kernel of 7
(85.6%), we gain a mAP of 85.6% when we apply blurring.

Table IV, which presents the results of object segmentation
tested over real data without Gaussian Blur, shows that the
training over real data without blur provides a mAP of 92.6%,
while training over synthetic data with a kernel size of 7 gives
the best results, i.e., a mAP of 83.8%. Between these two
mAPs, there is a difference of 8.8%. In addition, comparing the
mAP of training using synthetic data without blur (26.7%) and
the best mAP of training using synthetic data with a kernel size
of 7 (83.8%), we gain a mAP of 57.1% by applying Gaussian
Blur.

Note in Table V, which shows the results of object seg-
mentation tested over real data with Gaussian Blur, that the
training over real data without blur provides a mAP of 92.7%,
while training over synthetic data with a kernel size of 7
provides the best synthetic results, i.e., we get a mAP of
84.8%. The difference between both mAPs reaches 7.9%. On

the other side, comparing the mAP of training over synthetic
data without blur (0.0%) and the best mAP of training over
synthetic data with a kernel size of 7 (84.8%), we gain a mAP
of 84.8% when we apply blurring.

From Tables II, III, IV, and V, we observe that training
with synthetic data gives similar results to training over real
data since the difference (in terms of mAP) between the
best synthetic training and real training is on average 7.2%.
Also, observe that the average gain of the best case of
training using synthetic data with blur compared to training
using synthetic data without blur is 71.1%. This observation
demonstrates that, for our dataset, applying Gaussian Blur to
the synthetic training data is significant. Furthermore, we note
that our dataset’s best synthetic result is achieved training with
synthetic data with a kernel of size 7. In the ”Average” column
of all the tables, it is shown that the mAP gets the highest
values using a kernel size of 7, and when the kernel grows
to 15, 23, 31 and 51, the mAP decays. The same behavior is
observed when the kernel shrinks to a size of 3; i.e., the mAP
decreases. We think this happens not only because the objects
inside the images are medium-sized compared to the size of
the images that contain them, but also because the images’
resolution is the same for all images of the dataset (i.e., 1024
× 576).

Comparing Tables II and III, which show object detection
results, we noted that the best mAP in Table II is 85.7%, and
the best mAP in Table III is 85.6%. Note that both mAPs
correspond to a kernel size of 7. So, testing over real images
without Gaussian Blur (Table II) yields better results for object
detection over our dataset. Similarly, comparing Tables IV and
V, which present segmentation results, we note that the best
mAP without blur is 83.8%, while the best mAP with blur
is 84.8%. Similar to object detection, both mAPs correspond
to a kernel size of 7. Therefore, testing with real images
over Gaussian Blur (Table V) gives better results for object
segmentation over our dataset.

Finally, the time required for labeling the 324 real images
used was 0.5 minutes per image, for a total of 162 minutes (2.7
hours). In contrast, the synthetic generation of 3,069 synthetic
images used for training, along with their corresponding mask
images, took a total of 20 minutes. We do not consider the time
to generate a model since we obtain the 3D CAD models from
manufacturers, like carried out in Hinterstoisser et al. [11].



TABLE II
OBJECT DETECTION MAP (PERCENTAGE) TESTED IN THE REAL DATASET

WITHOUT GAUSSIAN BLUR

Trained with Object 0 Object 1 Object 2 Average
Synth. w/o blur 48.7 26.4 11.2 28.8

Synth. w blur 51 x 51 51.4 2.0 76.3 43.2
Synth. w blur 31 x 31 83.4 27.5 81.0 64.0
Synth. w blur 23 x 23 74.5 14.6 78.4 55.8
Synth. w blur 15 x 15 89.1 76.4 60.6 75.4

Synth. w blur 7 x 7 92.0 87.6 77.5 85.7
Synth. w blur 3 x 3 86.4 82.9 48.3 72.5

Real w/o blur 92.0 95.1 88.1 91.7

TABLE III
OBJECT DETECTION MAP (PERCENTAGE) TESTED IN THE REAL DATASET

WITH GAUSSIAN BLUR

Trained with Object 0 Object 1 Object 2 Average
Synth. w/o blur 0.0 0.0 0.0 0.0

Synth. w blur 51 x 51 56.6 2.7 81.0 46.8
Synth. w blur 31 x 31 84.1 30.2 80.4 64.9
Synth. w blur 23 x 23 77.9 19.7 73.9 57.2
Synth. w blur 15 x 15 87.2 76.7 45.1 69.6

Synth. w blur 7 x 7 92.3 88.8 75.7 85.6
Synth. w blur 3 x 3 76.7 75.4 38.1 63.4

Real w/o blur 91.6 94.9 88.5 91.7
The blur of the test real data for all experiments has a kernel size of 3.

V. CONCLUSIONS

We propose a methodology to generate synthetic data, which
is used for the training of Mask R-CNN model specialized
in object detection and segmentation tasks. In our work, the
objects used are pieces of mining machinery. The experiments
confirmed our hypothesis that training with synthetic data
allows us to obtain similar results to training with few real
data. Furthermore, we show that for the images employed in
this research, the generation of synthetic data and its labels
requires less time than obtaining and manually labeling real
images. Finally, for our dataset, the best results were obtained
by training over synthetic data and applying a kernel size of
7 for blurring the images. More precisely, we got a mAP of
85.7% in object detection and a mAP of 84.8% for object
segmentation. Those results lead us to affirm our method for
generating synthetic data reduces the reality gap both in object
detection and in the segmentation task when applied in our
dataset.

ACKNOWLEDGMENT

M. E. Loaiza acknowledges the financial support of the
”Proyecto Concytec - Banco Mundial”, through its executing
unit ”Fondo Nacional de Desarrollo Cientı́fico, Tecnológico y
de Innovación Tecnológica (Fondecyt)”, for his research work
entitled ”Reconstrucción y modelado 3D de las superficies de
componentes y piezas de maquinaria pesada usada en Minerı́a,
con nivel de precisión milimétrica, para su aplicación en un
nuevo proceso optimizado de manutención especializada”.

TABLE IV
OBJECT SEGMENTATION MAP (PERCENTAGE) TESTED IN THE REAL

DATASET WITHOUT GAUSSIAN BLUR

Trained with Object 0 Object 1 Object 2 Average
Synth. w/o blur 48.9 26.7 4.6 26.7

Synth. w blur 51 x 51 54.6 1.9 57.8 38.1
Synth. w blur 31 x 31 93.2 30.1 66.8 63.3
Synth. w blur 23 x 23 80.3 15.2 65.0 53.5
Synth. w blur 15 x 15 98.3 79.2 49.7 75.7
Synth. w blur 7 x 7 98.7 89.1 63.5 83.8
Synth. w blur 3 x 3 93.3 87.2 39.0 73.2

Real w/o blur 98.1 96.7 83.1 92.6

TABLE V
OBJECT SEGMENTATION MAP (PERCENTAGE) TESTED IN THE REAL

DATASET WITH GAUSSIAN BLUR

Trained with Object 0 Object 1 Object 2 Average
Synth. w/o blur 0.0 0.0 0.0 0.0

Synth. w blur 51 x 51 60.3 2.6 59.9 41.0
Synth. w blur 31 x 31 93.7 32.8 68.1 64.9
Synth. w blur 23 x 23 82.3 21.1 63.6 55.7
Synth. w blur 15 x 15 95.7 78.9 37.0 70.5
Synth. w blur 7 x 7 98.7 92.1 63.6 84.8
Synth. w blur 3 x 3 81.7 78.9 29.5 63.4

Real w/o blur 98.3 97.4 82.5 92.7
The blur of the test real data for all experiments has a kernel size of 3.

REFERENCES

[1] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international conference
on intelligent robots and systems (IROS). IEEE, 2017, pp. 23–30.

[2] J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and S. Birch-
field, “Deep object pose estimation for semantic robotic grasping of
household objects,” arXiv preprint arXiv:1809.10790, 2018.

[3] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as proxy for
multi-object tracking analysis,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 4340–4349.

[4] B. T. Phong, “Illumination for computer generated pictures,” Communi-
cations of the ACM, vol. 18, no. 6, pp. 311–317, 1975.

[5] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2961–2969.

[6] M. Ruiz, J. Fontinele, R. Perrone, M. Santos, and L. Oliveira, “A
tool for building multi-purpose and multi-pose synthetic data sets,” in
ECCOMAS Thematic Conference on Computational Vision and Medical
Image Processing. Springer, 2019, pp. 401–410.

[7] J. Tremblay, T. To, and S. Birchfield, “Falling things: A synthetic dataset
for 3d object detection and pose estimation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2018, pp. 2038–2041.

[8] J. Tremblay, T. To, A. Molchanov, S. Tyree, J. Kautz, and S. Birchfield,
“Synthetically trained neural networks for learning human-readable
plans from real-world demonstrations,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
1–5.

[9] C. Chen, X. Jiang, W. Zhou, and Y.-H. Liu, “Pose estimation for texture-
less shiny objects in a single rgb image using synthetic training data,”
arXiv preprint arXiv:1909.10270, 2019.

[10] S. Hartwig and T. Ropinski, “Training object detectors on synthetic im-
ages containing reflecting materials,” arXiv preprint arXiv:1904.00824,
2019.

[11] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige, “On pre-
trained image features and synthetic images for deep learning,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 0–0.



Predictions on Predictions on Predictions on
Object 0 Object 1 Object 2

Fig. 6. Predictions on real data without Gaussian Blur of a model trained with synthetic data with Gaussian Blur (7 x 7). The last 2 rows of predictions on
object 2 show some cases where the detection and segmentation fail.

[12] T. To, J. Tremblay, D. McKay, Y. Yamaguchi, K. Leung, A. Bal-
anon, J. Cheng, W. Hodge, and S. Birchfield, “NDDS: NVIDIA deep
learning dataset synthesizer,” 2018, https://github.com/NVIDIA/Dataset
Synthesizer.

[13] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel, and A. M. Dol-
lar, “Benchmarking in manipulation research: The ycb object and model
set and benchmarking protocols,” arXiv preprint arXiv:1502.03143,
2015.

[14] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in European conference on computer vision.
Springer, 2016, pp. 483–499.

[15] J. F. Blinn, “Models of light reflection for computer synthesized
pictures,” in Proceedings of the 4th annual conference on Computer
graphics and interactive techniques, 1977, pp. 192–198.

[16] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution
3d surface construction algorithm,” ACM siggraph computer graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[18] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492–
1500.

[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[20] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[22] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

[23] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.


