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Abstract—Unsupervised metric learning consists in building
data-specific similarity measures without information of the class
labels. Dimensionality reduction (DR) methods have shown to
be a powerful mathematical tool for uncovering the underlying
geometric structure of data. Manifold learning algorithms are
capable of finding a more compact representation for data in
the presence of non-linearities. However, one limitation is that
most of them are pointwise methods, in the sense that they
are not robust to the presence of outliers and noise in data. In
this paper, we present ISOMAP-KL, a parametric patch-based
algorithm that uses the KL-divergence between local Gaussian
distributions learned from neighborhood systems along the KNN
graph. We use this non-Euclidean measure to compute the
weights and define the entropic KNN graph, whose shortest paths
approximate the geodesic distances between patches of points in
a parametric feature space. Results obtained in several datasets
show that the proposed method is capable of improving the
classification accuracy in comparison to other DR methods.

I. INTRODUCTION

Dimensionality reduction (DR) methods have been suc-
cessfully applied for unsupervised metric learning in high-
dimensional data analysis. Besides, DR also avoids the curse
of the dimensionality, a set of negative side-effects introduced
by an arbitrary increase in the number of features in a small
sample size problem [1].

The intuition behind these algorithms is that, often, the
observed data samples lie along a low-dimensional struc-
ture embedded in a high-dimensional input space. The low-
dimensional space encodes unknown underlying parameters
(i.e., local coordinates) in the original feature space. Trying
to recover this hidden structure is the main goal of DR
algorithms. These methods are deeply connected to unsuper-
vised metric learning, since besides learning a more compact
and meaningful representation for a given dataset, they also
learn a distance function that is geometrically better suited
to represent a similarity measure between a pair of objects
in the collection [2], [3]. In other words, by learning the
hidden structure, in general, we earn a more powerful metric
for granted.

Recently, deep learning neural networks have been pointed
by many machine learning researchers as the state-of-the-
art in feature extraction, especially from image data [4].
These models comprise a class of neural networks that uses
multiple layers to progressively extract higher level features

from the raw input [5]. A requirement for deep learning is to
have a large sample size, that is, huge amounts of data are
necessary to properly adjust millions of parameters in these
mathematical models, which is not always possible in real
world problems. DR algorithms on the other hand are able to
learn good features from a few samples, producing reliable
results even when the number of samples n is less than or
equal the number of original features m [6]. Hence, it does
not seem reasonable to assume that, eventually, deep learning
will replace traditional DR methods and manifold learning.
Furthermore, most deep learning models require some degree
of supervision, since they are generalizations of multilayer
perceptrons, meaning that we have to know the class labels,
which is not always possible in pattern recognition tasks.

The study of manifold learning techniques for dimension-
ality reduction has begun in early 2000’s, with the pioneering
Isometric Feature Mapping (ISOMAP) algorithm [7]. Hence,
this year we celebrate the 20th anniversary of this remarkable
research field. A limitation of high-dimensional data analysis
concerns the weak discrimination power of the Euclidean
metric. It has been shown that, as the number of features
increases, the degree of contrast provided by the usual Eu-
clidean distance becomes poor [8]. In this paper, we propose
a non-Euclidean parametric patch-based ISOMAP defined in
terms of an information-theoretic measure: the relative entropy
or KL-divergence [9]. The main goal is to replace the matrix
of pairwise geodesic distances D, which is obtained from the
KNN graph whose edges are weighted by Euclidean distances,
by the entropic distance matrix E, which is obtained from the
KNN graph whose edges are weighted by the symmetrized
KL-divergence between multivariate Gaussians estimated from
local neighborhood patches. Overall, the obtained results show
that the proposed method is capable of improving two major
aspects of traditional DR methods: 1) in general, the obtained
clusters show a lower intra-class scattering, which is interest-
ing for unsupervised classification; 2) ISOMAP-KL is a patch-
based method, which makes it less sensitive to the presence of
outliers and noise in data, in a way that the learned features
show more discriminant power in supervised classification,
making it a promising alternative for unsupervised metric
learning.

The remaining of the paper is organized as: Section 2



describes the traditional ISOMAP algorithm for manifold
learning. Section 3 presents the KL-divergence or relative
entropy, and shows its calculation in the multivariate Gaussian
case. Section 4 describes the proposed ISOMAP-KL method
in details and Section 5 shows the experiments and obtained
results. Finally, Section 6 brings the conclusions, final remarks
and future directions in unsupervised metric learning.

II. ISOMETRIC FEATURE MAPPING (ISOMAP)

ISOMAP was the first manifold learning algorithm for
dimensionality reduction. This method combines the main
algorithmic features of PCA and Multidimensional Scaling
[10], [11] (MDS) - computational efficiency, global optimality,
and asymptotic convergence guarantees - with the flexibility to
learn a broad class of non-linear manifolds [7]. The basic idea
is to build a graph by linking the k-nearest neighbors (KNN) in
the input space, then compute the shortest paths between each
pair of vertices in the graph and, knowing the approximate
geodesic distances between the points, find a mapping to an
Euclidean subspace of Rd that preserves those distances. The
hypothesis assumed by the ISOMAP algorithm is that the
shortest paths in the KNN graph are good approximations
for the true geodesic distances in the manifold. In summary,
ISOMAP can be divided in three main steps:

1) From the input data ~x1, ~x2, ..., ~xn ∈ Rm build an
undirected proximity graph using the KNN rule [12];

2) Compute the pairwise distance matrix D using n exe-
cutions of the Dijkstra’s algorithm or one execution of
the Floyd-Warshall algorithm [13];

3) Estimate the new coordinates of the points in an Eu-
clidean subspace of Rd by preserving the distances
through the Multidimensional Scaling (MDS) method.

A. Multidimensional Scaling

Basically, the main goal of MDS is, given an n× n matrix
of pairwise distances, recover the coordinates of the n points
~xr ∈ Rd for r = 1, 2, ..., n in an Euclidean subspace, where
d, the target dimensionality, is a parameter of the algorithm
[10], [11].

We begin by noting that the pairwise distance matrix is
given by D = {d2rs}, for r, s = 1, 2, ..., n where the distance
between two arbitrary points ~xr and ~xs is:

d2rs = ‖~xr − ~xs‖2 = (~xr − ~xs)T (~xr − ~xs) (1)

Let B denote Gram matrix of inner products, that is B =
{brs}, where brs = ~xTr ~xs. To find the embedding, MDS needs
the matrix B, not D. First, we need to assume a hypothesis
that the data has zero mean, otherwise there would be infinitely
many different solutions, since the application of any arbitrary
translation in the set of points, would preserve the pairwise
distances. From equation (1), applying the distributive law we
have:

d2rs = ~xTr ~xr + ~xTs ~xs − 2~xTr ~xs (2)

From the matrix D, we can calculate the mean of an
arbitrary column s by:

1

n

n∑
r=1

d2rs =
1

n

n∑
r=1

~xTr ~xr + ~xTs ~xs (3)

Similarly, we compute the mean of an arbitrary row r as:

1

n

n∑
s=1

d2rs = ~xTr ~xr +
1

n

n∑
s=1

~xTs ~xs (4)

Finally, we can compute the mean of all elements of D as:

1

n2

n∑
r=1

n∑
s=1

d2rs =
2

n

n∑
r=1

~xTr ~xr (5)

Note that from equation (2), it is possible to define brs as:

brs = ~xTr ~xs = −1

2
(d2rs − ~xTr ~xr − ~xTs ~xs) (6)

Combining equations (3), (4) and (5) we have:

brs = −1

2

(
d2rs −

1

n

n∑
r=1

d2rs −
1

n

n∑
s=1

d2rs +
1

n2

n∑
r=1

n∑
s=1

d2rs

)
(7)

Making ars = − 1
2drs we can write:

ar. =
1

n

n∑
s=1

ars a.s =
1

n

n∑
r=1

ars a.. =
1

n

n∑
r=1

n∑
s=1

ars (8)

leading to:

brs = ars − ar. − a.s + a.. (9)

which in matrix notation becomes B = HAH , where:

H = I − 1

n
~1~1T (10)

is the centring matrix. To find the embedding, that is, the
coordinates of the points in Rd, we have to perform an
eigendecomposition of the matrix B, that is:

B = V ΛV T (11)

where Λ = diag(λ1, λ2, ..., λn) is the diagonal matrix with the
eigenvalues of B and V is the matrix whose columns are the
eigenvectors of B. Algorithm 1 summarizes the whole process
in a sequence of logical and objective steps.



Algorithm 1 Isometric Feature Mapping
1: function ISOMAP(X)
2: From the input data Xm×n build a KNN graph.
3: Compute the pairwise distances matrix Dn×n.
4: Compute A = − 1

2
D.

5: Compute H = I − 1
n
U , where U is a n× n matrix of 1’s.

6: Compute B = HAH .
7: Find the eigenvalues and eigenvectors of the matrix B.
8: Select the top d < m eigenvalues and eigenvalues of B and

define:

Ṽ =


| | ... ... |
| | ... ... |
~v1 ~v2 ... ... ~vd
| | ... ... |
| | ... ... |


n×d

(12)

Λ̃ = diag(λ1, λ2, ..., λd) (13)

9: Compute X̃ = Λ̃1/2Ṽ T

10: return X̃
11: end function

III. KULLBACK-LEIBLER DIVERGENCE

The problem of quantifying a suitable similarity measure
between different objects in a dataset is a challenging task in
many pattern recognition and machine learning applications
[14]. Finding alternative similarity measures is crucial for
modern data analysis, especially in situations where the stan-
dard Euclidean distance becomes an unreasonable choice [15].
Among feature selection methods it is usual to adopt stochastic
divergences to build the set of features that maximize class
separability [16]. Information-theoretic measures have been
successfully applied in statistics to quantify the degree of
similarity between random variables [17]. In this context, the
concepts of entropy and relative entropy can be used as a solid
mathematical background for metric learning. First, we define
the entropy of a random variable x as the expected value of
the self-information, that is, the average of the negative of the
logarithm of the probabilities:

H(p) = −
∫
p(x)[log p(x)]dx = −E [log p(x)] (14)

where p(x) is the probability density function (pdf) of x. When
~x ∈ Rm is a random vector following a multivariate Gaussian
distribution N(~µ,Σ), the pdf p(~x) is expressed by:

p(~x) =
1

(2π)m/2|Σ|1/2
exp
{
−1

2
(~x− ~µ)T Σ−1(~x− ~µ)

}
(15)

where ~µ is the location parameter (mean) and Σ is the
covariance matrix of the random vector ~x. By taking the
logarithm and computing the expected value we have:

H(p) =
1

2
log |Σ|+ d

2
(1 + log 2π) (16)

In a similar way, we can define the cross-entropy between
two probability density functions as:

H(p, q) = −
∫
p(x)[log q(x)]dx (17)

The Kullback-Leibler divergence, or simply relative entropy,
is the difference between the cross-entropy of p(x) and q(x)
and the entropy of p(x), that is:

DKL(p, q) = H(p, q)−H(p) =

∫
p(x)log

(
p(x)

q(x)

)
dx

= Ep

[
log

(
p(x)

q(x)

)]
(18)

It should be mentioned that the relative entropy is always
non-negative, that is, DKL(p, q) ≥ 0, being equal to zero
if, and only if, p(x) = q(x). Now suppose that we want to
compute the KL-divergence between two multivariate Gaus-
sian densities: N(~µ1,Σ1) and N(~µ2,Σ2). Let the parameter
vector ~θ = {~µ,Σ}. Then, we have:

DKL(p, q) = Ep

[
log p(~x; ~θ)− log q(~x; ~θ)

]
= Ep

[
−1

2
log|Σ1| −

1

2
(~x− ~µ1)T Σ−11 (~x− ~µ1) +

1

2
log|Σ2|+

1

2
(~x− ~µ2)T Σ−12 (~x− ~µ2)

]
=

1

2
log

(
|Σ2|
|Σ1|

)
− 1

2
Ep

[
(~x− ~µ1)T Σ−11 (~x− ~µ1)

]
+

1

2
Ep

[
(~x− ~µ2)T Σ−12 (~x− ~µ2)

]
=

1

2
log

(
|Σ2|
|Σ1|

)
− 1

2
Ep

[
Tr
[
Σ−11 (~x− ~µ1)(~x− ~µ1)T

]]
+

1

2
Ep

[
Tr
[
Σ−12 (~x− ~µ2)(~x− ~µ2)T

]]
=

1

2
log

(
|Σ2|
|Σ1|

)
− 1

2
Tr
[
Σ−11 Σ1

]
+

1

2
Ep

[
Tr
[
Σ−12 (~x~xT − 2~x~µT

2 + ~µ2~µ
T
2 )
]]

=
1

2
log

(
|Σ2|
|Σ1|

)
− m

2
+

1

2
Tr
[
Σ−12

(
Σ1 + ~µ1~µ

T
1 − 2~µ1~µ

T
2 + ~µ2~µ

T
2

)]
=

1

2
log

(
|Σ2|
|Σ1|

)
− m

2
+

1

2
Tr
[
Σ−12 Σ1

]
+

1

2

(
~µT
1 Σ−12 ~µ1 − 2~µT

1 Σ−12 ~µ2 + ~µT
2 Σ−12 ~µ2

)
=

1

2

[
log

(
|Σ2|
|Σ1|

)
−m+ Tr

[
Σ−12 Σ1

]
+ (~µ2 − ~µ1)T Σ−12 (~µ2 − ~µ1)

]
(19)



Note that the KL-divergence is not symmetric. Similarly, it
can be shown that the KL-divergence DKL(q, p) is given by:

DKL(q, p) =
1

2

[
log

(
|Σ1|
|Σ2|

)
−m+ Tr

[
Σ−11 Σ2

]
+(~µ1 − ~µ2)T Σ−11 (~µ1 − ~µ2)

]
(20)

The symmetrized KL-divergence can be computed by:

Dsym
KL (p, q) =

1

2
[DKL(p, q) +DKL(q, p)] (21)

which has a closed-form expression:

Dsym
KL (p, q) =

1

2

[
1

2
Tr
(
Σ−11 Σ2 + Σ−12 Σ1

)
+

1

2
(~µ1 − ~µ2)T Σ−11 (~µ1 − ~µ2)

+
1

2
(~µ2 − ~µ1)T Σ−12 (~µ2 − ~µ1)−m

]
(22)

In this paper, we use equation (22) as a parametric similarity
measure between patches, that is, the Euclidean distance
between two points in the KNN graph will be replaced by
the symmetrized KL-divergence between two local neighbor-
hoods, under the hypothesis that, locally, these points are
normally distributed.

IV. PROPOSED METHOD

The main motivation of the proposed parametric method
is the investigation of a surrogate for the usual KNN graph,
by replacing the pointwise Euclidean distance in the feature
space by KL-divergences between Gaussian models estimated
in local patches. We denote by X = {~x1, ~x2, ..., ~xn}, with
~xi ∈ Rm the input data matrix. We can build a KNN graph
G = (V,E), with |V | = n, by connecting each sample ~xi with
its k nearest neighbors. Since the neighborhood can be well
approximated by a linear patch, we use the Euclidean distance
as similarity measure in this step. Let a patch Pi be the set
{~xi} ∪ {~xj ∈ N(i)}, where N(i) is the neighborhood set of
~xi. Then, we can define the patch matrix Pi as:

Pi = [~xi, ~xi1, ~xi2, ..., ~xik] (23)

to denote the m × (k + 1) data matrix that compose the i-th
patch. We assume Pi is a random sample of a multivariate
Gaussian distribution of size k. Hence, we can compute the
maximum-likelihood estimators of the model parameters as:

~µi =
1

(k + 1)

k+1∑
j=1

~xij (24)

Σi =
1

k

k+1∑
j=1

(~xij − ~µi)(~xij − ~µi)
T (25)

Figure 1 illustrates the mapping of local patches in the KNN
graph to a parametric representation. In this parametric feature

space, the relative entropy is a more meaningful measure of
similarity than the usual Euclidean distance.

Fig. 1. Mapping from a patch Pi on the graph to a parametric feature vector.

The next step consists in building the entropic KNN graph
(or KL-KNN graph), as a replacement for the traditional
KNN graph used in ISOMAP. Basically, this is done by
updating the edge weights in the KNN graph. Instead of
using the Euclidean distance between the vectors ~xi and ~xj ,
we compute the symmetrized KL-divergence Dsym

KL between
the respective patches Pi and Pj using equation (22). Note
that Dsym

KL (Pi, Pj) is a patch-based similarity measure, which
means that it is less sensitive to the presence of outliers and
random noise in data than the pointwise Euclidean distance,
employed by the traditional ISOMAP algorithm.

Given the entropic KNN graph, we proceed to the computa-
tion of the geodesic distances by finding the pairwise shortest
paths. At the end of this procedure, ISOMAP-KL produces
the so called entropic distance matrix E, which is a surrogate
for the pairwise distance matrix of ISOMAP. The next steps
are identical to those in ISOMAP, that is, from the entropic
distance matrix E, we compute the Gram matrix of the inner
products B and through spectral decomposition we find the
leading eigenvectors.

V. EXPERIMENTS AND RESULTS

In order to test and evaluate the proposed method for
unsupervised metric learning in classification tasks, we com-
pared its performance against the usual PCA, Kernel PCA,
ISOMAP, LLE and Laplacian Eigenmaps in several public
datasets available at www.openml.org. It is worth mentioning
that the selected datasets have significant variations in the
number of samples and features, as well as different number
of classes.

In the first set of experiments, we used an internal index
to assess the quality of the clusters obtained after the unsu-
pervised metric learning provided by different dimensionality
reduction methods. Our choice was the Silhouette coefficient,
which is a method of interpretation and validation of con-
sistency within clusters of data [18]. Let Ci denote the i-th
cluster, then for each data point i ∈ Ci let a(i) be the mean
distance between i and all other points in the same cluster Ci:

a(i) =
1

|Ci| − 1

∑
j∈Ci,j 6=i

d(i, j) (26)



TABLE I
SILHOUETTE COEFFICIENTS FOR CLUSTERS PRODUCED BY PCA, KERNEL
PCA, ISOMAP, ISOMAP-KL, LLE AND LAPLACIAN EIGENMAPS FOR

SEVERAL DATASETS FROM OPENML.ORG (2D CASE).

PCA KPCA ISO ISO-KL LLE LAP

iris 0.401 0.469 0.423 0.576 0.297 0.539
wine 0.526 0.610 0.533 0.656 0.140 0.728

mfeat-four. 0.000 0.011 0.016 0.145 -0.073 -0.006
texture -0.058 -0.050 0.086 0.348 0.068 0.245

satimage 0.219 0.247 0.232 0.349 0.037 0.233
theorem -0.168 -0.105 -0.099 -0.156 -0.113 -0.466
synthetic 0.346 0.459 0.361 0.512 0.146 0.501

car -0.110 -0.129 -0.075 -0.034 0.000 -0.111
tae -0.059 -0.004 -0.069 -0.118 -0.017 -0.019

transplant 0.485 0.436 0.483 0.582 0.407 0.439
hayes -0.023 0.038 -0.020 0.234 0.085 -0.012

SPECTF -0.018 0.093 -0.028 0.106 -0.083 0.046
servo 0.121 0.105 0.102 0.034 0.097 0.085

mu284 0.301 0.338 0.288 0.306 0.346 0.306
triazines 0.009 0.064 0.017 0.023 0.001 0.017

pageblock 0.419 0.218 0.534 0.450 0.402 0.299
male-lung 0.563 -0.182 0.676 0.988 0.629 0.019

retinol -0.008 0.004 0.004 0.038 0.001 0.015
diggle 0.406 0.409 0.412 0.430 0.272 0.363
rmftsa 0.228 0.242 0.235 0.258 0.188 0.231

Average 0.179 0.164 0.206 0.286 0.142 0.173
Std. Dev. 0.236 0.229 0.243 0.292 0.196 0.271

where d(i, j) is the distance between data points i and j in
the cluster Ci. In other words, we can interpret a(i) as a
measure of how well the data point i is assigned to its cluster
(the smaller the value, the better). Then, we define the mean
dissimilarity of a data point i to a cluster C as the mean of
the distances from i to all points in C. For each data point i,
let b(i) be the smallest mean distance of i to all points in any
other cluster which i is not a member:

b(i) = min
k 6=i

1

|Ck|
∑
j∈Ck

d(i, j) (27)

The cluster with the smallest mean dissimilarity is the
neighboring cluster of i because it is the next best fit cluster
for point i. Let:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
, if |Ci| > 1 (28)

be the silhouette value of the data point i and

s(i) = 0. if |Ci| = 1 (29)

Combining both definitions we have:

s(i) =


1− a(i)

b(i)
if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i)
− 1 if a(i) > b(i)

(30)

Note that −1 ≤ s(i) ≤ 1. An s(i) close to one means that
the data is appropriately clustered. If s(i) tends to negative
one, then i should be clustered in its neighboring cluster. An

s(i) near zero means that the data point i is on the border
of two natural clusters. The mean s(i) over all points of a
cluster is a measure of how tightly grouped all the points in
the cluster are. Therefore, the mean s(i) over all data of the
entire dataset, known as the Silhouette coefficient is a measure
of how appropriately the data have been clustered.

Table I shows the obtained results for 20 different datasets,
where column ISO-KL denotes the proposed parametric
method under multivariate Gaussian hypothesis. It is worth
mentioning that the definition of the parameter K (patch size)
plays an important role in the proposed ISOMAP-KL. Our
method is sensitive to variations on this parameter, which
essentially controls the patch size. Different values of K
can lead to significantly different classification results. In all
experiments, we performed a simple heuristic: to evaluate the
classification accuracy for the all values of K ranging from
10 to 200. using an increment of 10 units. In other words,
we considered as candidates the values of K belonging to
the interval S = [10.20.30.40...., 100...., 200]. The best result
was then selected for each dataset. An intuition behind this
choice is that a low K is usually preferred in small datasets, to
preserve the locality of the patches. Ideally, one should keep in
mind the tradeoff between locality preservation, which means
choosing a small K, and having a large enough sample size
for suitable parameter estimation. The value of K is global,
but our goal in future works is to investigate adaptive ways to
set the patch size based on local properties of the data.

The results suggest that, in average, the proposed ISOMAP-
KL is more efficient in building a meaningful representation
in terms of the consistency within clusters of data than the
other methods for these datasets. Moreover, note that in 12
of 20 datasets, ISOMAP-KL obtained the highest Silhouette
coefficient, that is, in 60% of the cases the proposed method
produced better defined clusters. To test if the differences
are significant, we performed a statistical test to compare the
different groups. According to a non-parametric Friedman test,
there is strong evidences against the null hypothesis that there
are no significant differences between the groups (p-value =
7.49 × 10−5) for a significance level α = 0.05. According
to a post-hoc Nemenyi test, for the same significance level,
ISOMAP-KL produced significantly better clusters (in terms
of Silhouette coefficient) than PCA (p-value = 4.15 × 10−5),
Kernel PCA (p-value = 0.0425), ISOMAP (p-value = 0.0201),
LLE (p-value = 2.87 × 10−5) and Laplacian Eigenmaps (p-
value = 0.0046).

In the second set of experiments, we compared the per-
formance of the proposed method against PCA, Kernel PCA,
ISOMAP, LLE and Laplacian Eigenmaps in supervised clas-
sification. For this purpose, eight different parametric and
non-parametric classifiers were selected: K-Nearest Neighbors
(KNN) with K = 7, Support Vector Machine (SVM) (linear),
Naive Bayes (NB), Decision Trees (DT), Quadratic Discrim-
inant Analysis (QDA) under Gaussian hypothesis, Multilayer
Perceptron (MPL), Gaussian Process Classifier (GPC) and
Random Forest Classifier (RFC). In all experiments, we
selected 50% of the samples for training and 50% of the



TABLE II
SUPERVISED CLASSIFICATION ACCURACY OBTAINED BY DIFFERENT

CLASSIFIERS AFTER PCA, KERNEL PCA, ISOMAP, ISOMAP-KL, LLE
AND LAPLACIAN EIGENMAPS FOR SEVERAL DATASETS FROM

OPENML.ORG (2D CASE).

PCA KPCA ISO ISO-KL LLE LAP

iris dataset (k = 20)

KNN 0.960 0.866 0.866 0.960 0.960 0.826
SVM 0.946 0.800 0.880 0.946 0.413 0.440
NB 0.906 0.826 0.826 1.000 0.906 0.866
DT 0.933 0.800 0.760 0.960 0.933 0.800

QDA 0.946 0.800 0.866 0.946 0.946 0.813
MPL 0.946 0.826 0.866 0.946 0.960 0.306
GPC 0.906 0.826 0.853 0.946 0.613 0.440
RFC 0.920 0.880 0.840 0.946 0.960 0.813

wine dataset (k = 40)

KNN 0.966 0.977 0.988 0.966 0.752 0.988
SVM 0.955 0.977 0.943 0.966 0.382 0.382
NB 0.943 0.955 0.955 0.943 0.730 0.955
DT 0.943 0.932 0.943 0.977 0.629 0.966

QDA 0.966 0.966 0.966 0.977 0.808 0.955
MPL 0.955 0.988 0.966 0.977 0.382 0.382
GPC 0.966 0.966 0.966 0.988 0.404 0.382
RFC 0.966 0.955 0.932 0.988 0.685 0.977

mfeat-fourier dataset (k = 40)

KNN 0.415 0.435 0.398 0.626 0.454 0.451
SVM 0.424 0.382 0.401 0.450 0.088 0.088
NB 0.415 0.431 0.428 0.576 0.469 0.409
DT 0.366 0.400 0.351 0.542 0.405 0.405

QDA 0.436 0.459 0.439 0.595 0.482 0.428
MPL 0.433 0.450 0.430 0.637 0.370 0.088
GPC 0.428 0.410 0.406 0.547 0.179 0.088
RFC 0.389 0.430 0.370 0.580 0.427 0.448

texture dataset (k = 40)

KNN 0.583 0.543 0.712 0.846 0.460 0.622
SVM 0.579 0.469 0.730 0.732 0.083 0.083
NB 0.491 0.460 0.594 0.800 0.485 0.621
DT 0.485 0.470 0.646 0.810 0.408 0.545

QDA 0.541 0.461 0.661 0.819 0.705 0.760
MPL 0.568 0.419 0.714 0.840 0.474 0.087
GPC 0.578 0.463 0.732 0.826 0.304 0.083
RFC 0.538 0.522 0.704 0.844 0.408 0.559

satimage dataset (k = 200)

KNN 0.826 0.800 0.837 0.852 0.621 0.835
SVM 0.835 0.792 0.852 0.854 0.230 0.230
NB 0.806 0.781 0.794 0.835 0.616 0.739
DT 0.779 0.753 0.780 0.803 0.534 0.798

QDA 0.827 0.787 0.830 0.827 0.622 0.822
MPL 0.828 0.788 0.840 0.847 0.604 0.230
GPC 0.837 0.778 0.845 0.852 0.372 0.230
RFC 0.818 0.799 0.829 0.846 0.605 0.831

samples for testing. Tables II and III show the classification
accuracies for several datasets after dimensionality reduction
to 2D spaces. The results show that there is no method that is
uniformly superior to all the other ones. However, looking at
the average accuracy, the results are more conclusive. Table IV
shows the average and standard deviation of all accuracies for
each dimensionality reduction algorithm. The results indicate
that for these datasets, in average, the proposed parametric
ISOMAP-KL outperformed all the other methods. We also
performed a hypothesis test to check whether the differences

TABLE III
SUPERVISED CLASSIFICATION ACCURACY OBTAINED BY DIFFERENT

CLASSIFIERS AFTER PCA, KERNEL PCA, ISOMAP, ISOMAP-KL, LLE
AND LAPLACIAN EIGENMAPS FOR SEVERAL DATASETS FROM

OPENML.ORG (2D CASE).

PCA KPCA ISO ISO-KL LLE LAP

first-order-theorem dataset (k = 40)

KNN 0.460 0.478 0.467 0.511 0.421 0.445
SVM 0.447 0.410 0.496 0.521 0.410 0.410
NB 0.410 0.410 0.413 0.422 0.418 0.138
DT 0.423 0.449 0.457 0.498 0.377 0.434

QDA 0.410 0.423 0.430 0.405 0.418 0.150
MPL 0.412 0.410 0.431 0.457 0.410 0.410
GPC 0.443 0.414 0.493 0.512 0.410 0.410
RFC 0.483 0.492 0.490 0.516 0.409 0.442

hayes-roth dataset (k = 15)

KNN 0.424 0.651 0.545 0.742 0.833 0.590
SVM 0.606 0.606 0.530 0.742 0.606 0.606
NB 0.606 0.560 0.606 0.803 0.636 0.606
DT 0.621 0.803 0.636 0.818 0.757 0.636

QDA 0.606 0.575 0.606 0.833 0.681 0.606
MPL 0.606 0.606 0.606 0.848 0.606 0.606
GPC 0.500 0.606 0.515 0.818 0.606 0.606
RFC 0.666 0.696 0.636 0.803 0.803 0.621

SPECTF dataset (k = 80)

KNN 0.771 0.754 0.685 0.788 0.725 0.731
SVM 0.742 0.742 0.714 0.811 0.742 0.742
NB 0.725 0.742 0.720 0.754 0.640 0.702
DT 0.782 0.754 0.794 0.794 0.714 0.760

QDA 0.742 0.742 0.720 0.760 0.605 0.742
MPL 0.742 0.794 0.771 0.771 0.742 0.742
GPC 0.754 0.777 0.691 0.765 0.742 0.742
RFC 0.794 0.731 0.771 0.840 0.742 0.777

servo dataset (k = 10)

KNN 0.761 0.750 0.821 0.916 0.797 0.750
SVM 0.797 0.750 0.750 0.916 0.750 0.750
NB 0.928 0.738 0.821 0.905 0.809 0.821
DT 0.904 0.738 0.773 0.845 0.690 0.797

QDA 0.916 0.714 0.821 0.916 0.809 0.809
MPL 0.821 0.809 0.821 0.905 0.750 0.750
GPC 0.833 0.750 0.821 0.905 0.750 0.750
RFC 0.916 0.773 0.785 0.845 0.726 0.821

page-blocks dataset (k = 100)

KNN 0.921 0.928 0.952 0.957 0.932 0.941
SVM 0.925 0.925 0.953 0.956 0.900 0.900
NB 0.879 0.922 0.897 0.942 0.903 0.942
DT 0.889 0.916 0.940 0.955 0.904 0.924

QDA 0.892 0.924 0.901 0.941 0.926 0.942
MPL 0.904 0.911 0.949 0.948 0.920 0.900
GPC 0.923 0.924 0.950 0.962 0.900 0.900
RFC 0.919 0.931 0.955 0.963 0.927 0.943

are statistically significant. According to a non-parametric
Friedman test, there are strong evidences for rejecting the
null hypothesis that all DR methods are equivalent (p-value
= 1.12 × 10−15) for a significant level α = 0.05. According
to a post-hoc Nemenyi test, ISOMAP-KL produced signif-
icantly better classification accuracies than PCA (p-value =
3.11× 10−12), Kernel PCA (p-value = 10−18), LLE (p-value
= 10−19) and Laplacian Eigenmaps (p-value = 10−19).

The obtained results emphasize that the proposed ISOMAP-
KL is competitive with the existing dimensionality reduction



TABLE IV
AVERAGE CLASSIFICATION ACCURACIES OBTAINED BY DIFFERENT
CLASSIFIERS FOR OPENML.ORG DATASETS IN TABLES II, AND III.

PCA KPCA ISO ISO-KL LLE LAP

Average 0.721 0.698 0.723 0.807 0.621 0.613
Std. Dev. 0.203 0.191 0.184 0.160 0.218 0.263

algorithms, since, overall, it is capable of producing features
that are more discriminant than those generated by PCA,
Kernel PCA and some manifold learning algorithms. In other
words, we conclude that ISOMAP-KL is a viable option for
unsupervised metric learning in pattern classification tasks. To
illustrate how the proposed method is capable of producing
better defined clusters, we present some scatter plots for the
two dimensional case, comparing ISOMAP and ISOMAP-KL.
Figures 2 and 3 show the clusters for the mfeat-fourier and
texture datasets. Note that the clusters produced by ISOMAP-
KL show less overlapping, that is, they tend to be easier to
discriminate by pattern classifiers.

Fig. 2. Scatterplots of mfeat-fourier dataset for the 2D case: ISOMAP (above)
versus ISOMAP-KL (below)

VI. CONCLUSION

Unsupervised metric learning is a fundamental step in many
pattern recognition problems dealing with high-dimensional
data. In this scenario, algorithms for dimensionality reduction

Fig. 3. Scatterplots of texture dataset for the 2D case: ISOMAP (above)
versus ISOMAP-KL (below)

play an important role, since besides learning an adaptive
distance function for each dataset, they also learn an optimal
representation for the observed data in terms of compres-
sion. In this paper, we presented ISOMAP-KL, a parametric
patch-based method based on the KL-divergence that maps
neighborhoods of the KNN graph to a feature space in which
a surrogate for the pairwise distance matrix is obtained by
replacing the usual Euclidean distance by the symmetrized
relative entropy between local statistical models. Results with
several real datasets indicate that besides improving the quality
of the clusters, which is a desirable feature in unsupervised
classification, the proposed method can also improve the
supervised classification accuracy, indicating that it can be
better suited to unsupervised metric learning than regular PCA,
Kernel PCA and some manifold learning algorithms.

Basically, the main positive points of ISOMAP-KL can be
summarized as: 1) ISOMAP-KL is a patch-based approach so
it is less sensitive to the presence of noise and outliers in data
(the entropic distance matrix is computed between pairs of
patches instead of pair of isolated points); 2) the method can be
easily extended to different statistical models and divergences,
such as Bhattacharyya and Hellinger distances. On the other
hand, ISOMAP-KL has limitations, the major one being the
sensitivity to the patch size K. Experiments have shown
that variations on this parameter can produce significantly



different classification results. We still do not have a complete
solution regarding the estimation of this parameter for each
specific dataset, but we hope to study this problem as a future
improvement.

Future works may include the incorporation of Fisher in-
formation based distances, which has been shown to be the
metric tensor of the parametric space. Besides considering
other information-theoretic measures, we aim to use different
statistical models. For instance, it has been observed that
several datasets have multi-modal features. Gaussian Mixture
Models (GMM’s) can be used to model this kind of behavior
in an elegant way. Gaussian-Markov random fields (GMRF’s)
are particularly interesting mathematical structures, since it is
possible to replace the usual statistical independence assump-
tion by a more realistic conditional independence hypothesis.
In other words, unlike most classical statistical models, we
can incorporate the dependence between random variables in
a formal way. Multivariate Generalized Gaussian distributions
(MGGD’s) can also be an alternative, since in many cases
data shows signs of non-Gaussian behavior. Finally, another
relevant problem is the adaptive definition of the appropriate
patch size. We intend to perform local analysis of the Hessian
matrix in order to bring insights about how to adjust the K
parameter. Points with higher curvature should have a smaller
neighborhood whereas points with lower curvature could have
larger neighborhoods.
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