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Abstract—This work presents an online pipeline for incremen-
tal 3D reconstruction and 6-DoF camera pose estimation based
on colored point clouds captured by consumer RGB-D cameras.
The proposed approach combines geometric matching provided
by the point cloud with photometric matching provided by the
color sensor through an adaptive weighting scheme that avoids
eventual misalignment errors between RGB and depth data. Our
experimental results indicate that the 3D reconstructions achieved
by the proposed scheme are visually better or similar than a
competitive approach.

I. INTRODUCTION

Three Dimensional reconstruction is the process of esti-
mating the 3D structure (shape and appearance) of an object,
which can be achieved using various methods. We can use a set
of color captures of the subject from different views (which
is te core of Structure-from-Motion – SfM – in Computer
Vision) or a set of point clouds acquired from different views
(using a laser scan or time of flight camera, for instance).
Now we have a large availability of low-cost RGB-D sensors,
making 3D scanning software a popular application for the
maker culture. These RGB-D sensors capture simultaneously
color (RBG) and depth (D) information, generating a colored
3D point cloud as output. Some of these sensors focus on near-
range applications, being useful to build natural user interfaces,
3D object scanning and face recognition, for example. Some
of them are able to capture longer-range depth values, being
designed to build applications that make a wider perception of
the environment like autonomous cars, robot navigation and
scene reconstruction, to name a few applications.

Although the mathematical formulation for shorter- or
longer-range applications is the same, the nature of captured
scenes vary. For example, algorithms for 3D alignment that use
mid-range sensors (2 to 4 meters) focus on the reconstruction
of larger scenes (e.g., full indoor environments), such as [1]. In
these cases, the sensor is able to capture several 3D objects at
different locations and orientations (e.g., walls, chairs, tables),
so that many point and depth correspondences across different
frames can be obtained. Also, the full Field-of-View (FoV) of
the sensor might contain scene objects, and it was recently
shown in [2] that using features that are spatially spread tends
to produce more accurate results in the context of epipolar
matrix estimation. On the other hand, scanning smaller objects
require near-range sensors (0.5 meters to 1 meter) to obtain
enough geometric and textural details. In this scenario, the
captured image contains mostly the object (typically in the

central part of the camera FoV) and some background, leading
to limited geometry/color/texture variability. Hence, finding
correspondences across different views is a more challenging
task, which compromises both camera pose estimation and 3D
reconstruction.

In this paper, we present a 3D reconstruction algorithm
for temporally continuous RGB-D data suited for near-range
sensors. The core of our approach is to take advantage of
geometric alignment (depth data) when there is low color
information, and explore color matching to compensate for
low geometric information (e.g. in locally planar regions).
In this context, errors in the alignment of depth and RGB
images may lead to the estimation of erroneous correspon-
dences, especially in the regions of discontinuity or with a
wide inclination concerning the camera axis. To lessen these
problems and the inherent drift of the alignment process, we
use a weighted correspondence scheme that considers normal
map information to choose which point correspondences are
reliable to the alignment process. Additionally, an optional
loop closure process can be executed at the end of the process
in order to achieve global consistency in the final trajectory if
it is applicable.

II. RELATED WORK

Various approaches have been proposed to address the 3D
reconstruction problem; most of them depend on reliable
point matching between adjacent frames to estimate a rigid
transformation that describes camera movement between these
frames. This review will focus on methods that explore point-
cloud data (with or without associated color information), and
direct the reader to [3] for a survey on surface reconstruction
from point clouds.

The classical technique called Iterative Closest Point
(ICP) [4] consists of establishing initial correspondences
between point clouds, and then iteratively finding a rigid
transformation that best matches each of the selected pairs
of points belonging to the input point clouds. Several variants
of this algorithm have been proposed, such as the point-to-
point formulation [4], in which a simple closed formulation
is used to iteratively minimize the distance between points.
To improve convergence, the minimization of a point-to-plane
formulation [5] is used with non-linear solving methods. More
recently, Serafin and Grisetti [6] use a series of criteria to prune
bad correspondences, using normal and curvature information
while uses normal and tangent information to generate an



extended measurement of each point correspondence that
improves the convergence of the minimization function.

Other works use 2D [7] or 3D [8] feature descriptors to find
a global transformation to align point clouds. These algorithms
require some pre-processing to obtain discriminative points
and generate its descriptors before finding matches between
these features. Errors on this matching process can lead to
gross errors on final alignment. To overcome this problem,
techniques like RANSAC try to cope with spurious matches
(outliers) and can be used to minimize its influence, but
unfortunately, it can increase algorithm complexity.

Direct methods using dense RGB-D information such as [9]
and [10] aim to find the optimal alignment between the current
frame and a warped reference frame minimizing a photomet-
ric error function. In comparison to ICP, these approaches
present more convergence issues when the displacements
between frames get larger, and rolling shutter cameras are
used. Nonetheless, coarse-to-fine alignment strategies can be
implemented to alleviate this limitation. As an advantage, this
class of algorithms can be easily parallelized being suited to
real-time applications while keeping good accuracy.

Many other direct dense alignment algorithms have been
proposed, such as [11], [12]. These algorithms use color
and geometrical information like depth and normal maps to
formulate the matching problem as an energy minimization
function. In [11], an objective function is built combining
photometric and geometric error, while Corte et al. [12] present
a general framework that uses information from range maps,
depth maps, normal maps and color images.

The approaches presented in [13] and [14] rely only on
depth maps, and the alignment occurs in a frame-to-model
fashion where incoming frames are incrementally integrated
into a reference model. The well-known Kinect Fusion [13]
uses a volumetric data structure called Truncated Signed
Distance Field (TSDF), which builds in real-time a mesh
of the reference model, filtering data that fall inside voxel
regions giving a better appearance to the final reconstruction.
Similarly, Keller and his colleagues [14] build an incremental
fused point cloud as the reference model and projects this
with splatting rendering to generate a depth map to align with
new depth frames. It is observed in [15] that a frame-to-model
pipeline drastically reduces drift.

The use of colored point clouds is attractive because the
two modalities can be used in a complementary manner: if the
object lacks geometry, color can help; conversely, geometric
information can be useful when the object lacks textural
information. However, colored point clouds in off-the-shelf
cameras are acquired by two different sensors, and small errors
in the camera calibration parameters might generate a wrong
mapping of color and geometric information. This problem
is particularly challenging when using near-field depth cam-
eras, since objects closer to the camera are more prone to
such misalignment. This work presents a 3D reconstruction
approach that explores both color and depth information,
similarly to [11]. As contributions, we explicitly handle the
misalignment problem by introducing a weighted scheme

based on normal map information. Moreover, we implement a
frame-to-model TSDF based scheme instead of frame-to-frame
used on [11] in order to reduce camera drift and filter points
of the model while are removed the noisy point insertions
during the online model construction. The proposed approach
is presented next.

III. THE PROPOSED APPROACH

We propose a pipeline that can build 3D models on-the-
fly, fusing the acquired point cloud into a refined consolidated
model, considering that at first, the consolidated model is just
the first acquired point cloud. We use the current pose to
project the model, creating a depth map at time t that will
be used to find the next camera pose at time t + 1 using a
weighted combination of photometric and geometric features.
An overview of the proposed approach is illustrated in Fig. 1,
and each step is detailed next.

Fig. 1. Proposed iterative pipeline

A. Color and Depth Bilateral filtering

Cheap RGB-D Cameras have very limited image quality,
particularly when it works under low illumination conditions,
for example, as the case of indoor photographing many
artifacts like salt and pepper noise and the Gaussian noise
appear when we take photos. In the case of depth capturing,
often pixels are obtained with bad depth estimates, which
are undesirable both to the registration process and model
integration process. To improve quality with algorithm com-
plexity of the final model, normal map estimation and get
better results at photometric/depth alignment, we perform a
fast bilateral filtering [16] on input RGB and depth images.
This filter smoothes noise of depth measurements and RGB
pixels, while preserving the edges of the original image based
on two parameters: σs to control spatial smoothing and σr
controls range smoothing.

B. Normal Map and Weight Map Estimation

Although the pipeline presented in this work is generic
for any point cloud capture device, we note that devices
that explore Time of Flight (ToF) or structured light present
limitations when the scanned surface is locally orthogonal
(or close to orthogonal) to the emitting rays. In these cases,
the amount of reflected light back to the sensor (in the case
of ToF cameras) is small, so that the depth estimate (and
consequently the corresponding 3D camera coordinates) might



be very wrong, generating “flying pixels” that are disconnected
from the object.

To avoid generating point cloud models with flying pixels
or similar artifacts, we first prune the acquired point cloud
using a pre-processing step based on the surface normals. More
precisely, we compute the angular distance θ(nc, np) between
the local normal vector np at each point cloud location and
the camera axis vector nc, given by

θ(nc, np) = arccos < np, nc >, (1)

where < ·, · > denotes the inner product. If the angle is
sufficiently large (based on a threshold Tθ), the point is
removed from the point cloud.

C. Rough Initial Registration based on PnP

Although we assume a temporally continuous capture of
the object, rapid camera (or object) motion might generate
adjacent point clouds that are significantly apart from each
other. Since our fine alignment scheme (that will be described
next) might not converge in such cases, we first perform a
rough alignment of the point clouds.

Although we can use other geometric descriptors such as
SHOT [8], in this work we opted to use image-based features
instead. More precisely, we selected ORB image features [17]
because they showed to provide more stable matchings when
analyzing objects at a near distance – which is the case of this
work – than geometric features. To estimate the 3D position
of extracted keypoints from the reference view, we unproject
the keypoints to 3D space using the reference depth map
frame. Assuming that the depth camera is calibrated (which
is the case, since this information is used to fuse RGB and
depth values), we end up with the classical Perspective-n-
Point (PnP) problem. From the several existing solutions, we
chose the EPnP algorithm [18] due to its robustness and speed,
also including a RANSAC-based outlier removal scheme. We
check the validity of each transformation using a criterion that
verifies if the transformation matches a minimum of 99% of
the inlier points. We define a point as inlier when the 2D
image distance between a point and its matching point is below
100 pixels, and the descriptor distance between them is lower
than 80% of the distance of the second-best matching point.
Otherwise, we choose to use the identity matrix as the initial
transformation.

D. Refined Registration

After the initial pose estimation provided by EPnP, we fine-
tune the estimate by solving a convex optimization problem
that aims to minimize intensity and depth differences between
pixels of each pair of the RGB-D images in two consecutive
video frames. The goal of the optimization problem is to obtain
optimal parameters of a rigid transformation matrix T that
describes the 6-DoF synthetic camera pose that renders the
best alignment between two colored point clouds: the first one
is the current model, rendered by a synthetic RGB-D camera
at the location of the last camera pose, and the second one
is the RGB-D frame currently being captured by the sensor.

We find the optimal rigid transformation between these two
frames using a fine-tuned Gauss-Newton algorithm over a joint
photometric and geometric error function.

Following [11], we have the photometric and geometric
errors combined in the same objective function. As in their
work, our algorithm receives as input a pair of registered
RGB-D images (Ii, Di), (Ij , Dj) and a transformation T that
roughly aligns the images, obtained from ePnP.

1) Photometric Error: The Photometric Error EP is for-
mulated as the sum of squared intensity differences, as in [9]–
[11]. As argued by these authors, the choice of combining
RGB channels in one gray scale value reduces the computa-
tional cost without significant loss of accuracy. In this work,
we consider findings of [19]–[21] and introduce a sensor
independent weighting function wP (q) for each pixel at the
location q that aims to reduce the importance of residuals
which the depth estimate might be degraded. As this depth
accuracy degradation might produce erroneous RGB to Depth
matching, we prefer to give progressively less weight to the
color pixels that are aligned with poor depth estimates.

The photometric error EP is given by

EP (T ) =
∑
p,q

wP (q) (Ii(p)− Ij(q))2 , (2)

where p = (u, v)T is a pixel in the registered (Ii, Di) image
pair and q = (u′, v′)T is its correspondent pixel in the (Ij , Dj)
image pair. This correspondence is found by unprojecting q
back to the 3D space (using pixel location, depth estimate and
camera intrinsic parameters), applying the transformation T
and re-projecting it into pixel coordinates of the (Ij , Dj) pair:

p = πuv(s(π
−1(Dj(q)), T )), (3)

Where s is the function that applies rigid transformation to
the homogeneous points according to:

s(x, T ) = Tx. (4)

Also, the inverse point projection π−1 from depth map to
homogeneous 3D point is defined as:

π−1(u, v, d) =

(
d(u− cx)

fx
,
d(v − cy)

fy
, d, 1

)>
, (5)

where fx and fy are focal lengths and (cx, cy) is the principal
point coordinate of the camera. The function π maps a 3D
point w = (wx, wy, yz, 1)> into image coordinates u, v plus
an additional coordinate d to store depth information based on
how much a point is away from the sensor.

π(wx, wy, wz) =

(
wxfx

wz
+ cx,

wyfy

wz
+ cy, wz

)>
, (6)

To extract information from images we defined two con-
venient the functions πuv and πd. πuv returns the first two
coordinates of π which are the pixel coordinate on the image
plane (Ii, Di) and πd returns only the last coordinate which
stores the depth of the point.



2) Geometric Error: The Geometric Error EG is obtained
in a similar way to the ICP point-to-plane formulation of [5],
except that we chose using only the third component from
normals Ni(p) and 3D points of depth maps Di and Dj .

We are first intending to align confident points from planes
that are parallel to the camera’s image plane while avoiding
alignment of noisy points that lies on planes that are almost
orthogonal to the image plane. As nz = cos(θ), we are giving
greater weighting to the fronto-parallel tangent planes of the
incoming point cloud.

Differently from the proposed photometric error modelling,
here we can easily measure how much the values of the
correspondent points change as the camera moves and the
difference must be calculated using values from πd and Di(p),
where πd is the warped depth value of Wj(q). As in the
photometric error we also use a weighting scheme, and define

Wj(q) = s(π−1(Dj(q)), T )) (7)

EG(T ) =
∑
p,q

wG(p)Ni(p) (Di(p)− πd(Wj(q)))
2
, (8)

where wG(p) is a weighting function for the geometric error.
In this work we used wG = wP , and this common weighting
function will be detailed in section III-D3.

3) Point weighting: As discussed in III-A, time of flight
and structured light depth cameras are more accurate when
scanning fronto-parallel regions, since the amount of re-
flected/captured light is larger. The previous statement is
confirmed in the case of Kinect v1 and v2 sensors as presented
in the work of [19], [22]. Besides using this information
for removing potentially bad points, we also explore it for
weighting the global photometric and geometric distances.
More precisely, the largest weight should be assigned to points
that present tangent planes fronto-parallel to the camera sensor,
and progressively less weight as the tangent planes become
closer to fronto-orthogonal. This behavior is captured by the
angle θ(nc, np) between the camera viewing direction np and
the normal vector np to the tangent plane of the point p under
consideration. Our weighting function wP is given by

wP (p) = max{0, cos (σθ(nc, np))}, (9)

where σ is a parameter that controls how fast the weight
decreases as the angle θ increases, so that θ values above
π/(2σ) lead to null weights (i.e., the corresponding points are
discarded from the analysis). We selected σ = 1.3 based on
experiments and by the strong indication of works [19], [22]
that most of Z-axial error (depth measurement) occurs when
tangent plane angle varies from 70◦ to 90◦ with respect to the
camera pointing vector.

It is important to note that the use of wP (p) also helps with
another common issue when dealing with RGB-D cameras:
color bleeding. Note that depth and color information is cap-
tured by different calibrated sensors, and later fused together
based on the (intrinsic and extrinsic) parameters of each
sensor. Since these parameters typically present some error, the
registration of the two sensors is not perfect. In particular, the

misalignment is more noticeable along depth discontinuities
(which typically arise on the boundaries between two objects).
At these locations, the colors of one object might be wrongly
projected to the other object, which could lead to inconsis-
tencies between EP and EG. Since depth discontinuities tend
to generate a front-orthogonal local tangent plane, its effect is
implicitly alleviated by our weighting function.

4) Optimization of Joint Error: We previously presented
individual photometric and geometric errors, but we seek a
solution where both objective functions are minimized as
much as possible. For that purpose, we build a joint objective
function that combines these errors through a weighted sum:

E(T ) = EP (T ) + λEG(T ), (10)

where λ ≥ 0 controls the relative weight of the geometric
error. Here if we set λ > 1 we are favoring geometric
alignment over the photometric alignment.

To represent the 6-DoF with a minimal representation we
use the twist vector ξ = [ωx, ωy, ωz, tx, ty, tz]

> that combines
rotational and translational motion parameters to describe a
rigid motion. This twist vector has its Lie algebra correspon-
dence in matrix form ξ̂ ∈ se(3) as follows:

ξ̂ =


0 −ωz ωy tx
ωz 0 −ωx ty
−ωy ωx 0 tz

0 0 0 0

 (11)

From this matrix we can obtain the 6-DoF transformation
T ∈ SE(3) matrix using the matrix exponential T = exp(ξ̂).

To find the best transformation to this non-linear objective
function, we use the Gauss-Newton method since it provides
fast convergence. To calculate the Jacobian for residuals of the
projected RGB and Depth pixels rP , rG we need to compute
JrP and JrG as shown below:

JrP =
∂rP

∂ξ
=
∂rP

∂x

∂x

∂X

∂X

∂ξ
, (12)

JrG =
∂rG

∂ξ
= λ

[
Nr

∂X

∂ξ

]
, (13)

where ∂rP
∂x is the image gradients from the gray intensity

image obtained from the original RGB image, Nr is the pixel
associated normal vector obtained from the depth map using
the technique described on paper of Badino et al. [23], ∂x

∂X is
the perspective projection derivatives, ∂X∂ξ is the 6-DoF motion
derivative of 3D points. We then define

Jξ = (JrP , JrG)
>
, r = (rP , rG)

>
, (14)

and we use these variables to solve the following linear system
in order to obtain motion increments ∆ξ:

J>ξ Jξ∆ξ = −Jξr. (15)

To check if we have found a new motion increment that
minimizes the objective function, we update the matrix ξ̂ to
calculate the rigid motion matrix Tt = exp(ξ̂) that aligns the



model with the current frame. This process is repeated until the
objective function no longer decreases its value or has reached
to the maximum of iterations allowed. The pipeline keeps an
updated matrix T̃t−1 containing the last pose of camera until
this last estimate. By concatenating the last pose matrix and
the inverse of the last found transformation T−1t we get the
new actual camera pose matrix:

T̃t = T̃t−1T
−1
t (16)

E. TSDF Integration and Model generation

To incrementally build the mesh and use it as a smooth
reference model, we use a type of Signed Distance Func-
tion [24] and integrate point cloud data into a Truncated Signed
Distance Function (TSDF) as in KinectFusion [15]. The core
idea of this step is to accumulate the measured distances
between points that fall into the same voxel space with a
weighted running average given by:

Di+1(p) =
Wi(p)Di(p) + wi+1(p)di+1(p)

Wi(p) + wi+1(p)
, (17)

Wi+1(p) = Wi(p) + wi+1(p), (18)

where Di(p) is the accumulated average of signed distance
of the point p to the centroid ci of the voxel that contains
the point, Wi(p) is a function that returns the previous voxel
accumulated weight, wi+1(p) is defines the incremental weight
(set to 1). The term di+1(p),is the new point distance to surface
scaled by the truncation value µ that will be accumulated into
the same voxel, given by

di+1(p) =

{
sgn(φi(p)) if |φi(p)| > µ

φi(p)/µ otherwise
(19)

where
φi(p) = π(ci)− π(p) (20)

presents a signed distance between the point and the voxel
centroid.

At the very first integration of a point cloud to the TSDF
structure we initialize all the with voxels with Wi(p) = 0 and
Wi+1(p) = 1 and the update voxels where the incoming points
falls with di+1(p) function. Finally to extract the surface from
the TSDF voxels at every iteration, the classical Marching
Cubes algorithm [25] is used.

F. Model projection

The core of the proposed approach described in sec-
tion III-D requires a pair of color and a pair of depth images
(at adjacent frames). Although all these four images are
provided by the RGB-D camera, we adopted a frame-to-model
alignment.

More precisely, we synthetically generate the depth image
Di by projecting the model from the last pose tracked of
the camera, rendering only the closest visible points of the
model concerning the current camera position. This synthetic
generated depth image is smoother and contains more reliable
points than we usually have with depth images acquired from

depth sensors, which improves the alignment process avoiding
measurement errors. On the other hand, RGB images obtained
by synthesizing a view from the current 3D model are not
adequate because they tend to accumulate errors due to color
bleeding when RGB and depth present some misalignment.
Hence, we use a hybrid approach by selecting the color images
directly from the sensor and extracting the depth image from
the consolidated model.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++11, with the help of
the libraries OpenCV for image manipulation and Open3D for
3D visualization and TSDF data structures. All tests were run
on a PC running Linux Mint 18.3 in an Intel i5-7400 processor
with 8 GB of RAM. All the pipeline runs only on CPU, except
for visualization tasks that explore GPU processing.

To evaluate the accuracy of our reconstruction approach, we
performed tests using the 3D-Printed RGB-D Object Dataset
introduced in [26]. This dataset consists of five different
3D-printed objects that were scanned using RGB-D sensors
of different quality and with two types of scanning camera
motions: stopped camera pointing to the object on a turntable
and a handheld camera motion (more erratic) around the
object. Here we use only the Kinect recorded scenes of the
dataset because only these can emulate an application using
off-the-shelf cameras, noting that the phase shift and synthetic
data are not suitable to the scope of this work.

A. Parameter setting

We set λ = 5 in Equation (10), favoring a tight depth
alignment while using the color information to disambiguate
point matchings on planar regions of depth data. Larger values
of λ tend to make the error function behave like the common
ICP distance error. Conversely, lower λ values tend to preserve
photometric errors at lower levels but not necessarily with a
proper depth alignment. This value for λ was found based on
empirical tests covering all the scenes of the used dataset. For
the edge-aware smoothing using the bilateral filter, we selected
σs = 3 and σr = 5, also based on experiments.

To remove possible flying points we use a conservative
pruning angle value Tθ = 70◦ was chosen for Equation (1),
which might also remove some good points. However, we
noted that removing a few good points at some frames is better
than keeping bad estimates, since missed good points tend to
appear again (at a better angle) during other frames of the
capture.

B. Quantitative evaluation

1) Camera trajectory (pose): The Relative Pose Error
(RPE) measures local accuracy of the camera trajectory es-
timate, whereas the Absolute Trajectory Error (ATE) captures
the global accuracy of the camera pose estimates comparing
the ground truth camera pose and the estimated camera
pose [27]. We computed the well-known root-mean-square
error (RMSE) using these two metrics (ATE and RPE) for



the results produced by our method and [11], which is imple-
mented in the Open3D library (from this point we will refer
to Open3D as the Colored Point Cloud registration module
of the library). For a fair comparison, Open3D is used as
a substitute for the “Frame-to-Model Registration” step of
our algorithm presented in Fig. 1. As shown in Table I, our
algorithm consistently yields better RPE results than Open3D,
probably because of our weighting point scheme that gives
lower confidence to points that are tilted away from the camera
image plane. This effect is especially noticeable in scenes
that contain more sudden movements, i.e., those made by
handheld motion. We have also included our results without
the proposed weighting scheme, named “W/o weight” in
Table I. As can be observed, the weighting scheme reduces the
average RPE RSME error in about 10%. The ATE differences
are smaller for some datasets, such as for “Teddy Turntable”,
but in others, the results produced by our approach presents
a considerably smaller error. For instance, our error for the
“Bunny Turntable” dataset was one-third of the error obtained
by Open3D. We can also observe that using the weighting
scheme increases the ATE RMSE error for some datasets, but
on average, it is better than the version without weighting.

TABLE I
RPE (×103)/ATE (×102) RMSE RESULTS

Dataset Open3D Proposed W/o weight
Teddy Turntable 1.66 / 1.39 0.60 / 1.29 0.61 / 1.13
Bunny Turntable 9.58 / 2.80 0.57 / 0.81 0.58 / 0.79
Kenny Turntable 2.88 / 1.39 0.60 / 1.15 0.62 / 1.16
Tank Turntable 3.61 / 1.22 0.56 / 1.12 0.57 / 1.13
Leopard Turntable 2.98 / 1.24 0.62 / 1.10 0.65 / 1.11
Teddy Handheld 12.05 / 1.83 7.34 / 1.16 7.44 / 1.30
Bunny Handheld 10.34 / 1.52 4.79 / 0.99 7.50 / 1.30
Kenny Handheld 6.75 / 0.90 1.60 / 0.75 2.20 / 1.02
Tank Handheld 10.82 / 2.21 6.83 / 1.49 5.38 / 1.41
Leopard Handheld 10.57 / 1.87 5.76 / 0.92 7.40 / 1.21
Average 7.12 / 1.64 2.93 / 1.08 3.29 / 1.15

2) 3D Reconstruction: We compare the quality of the
generated models by comparing the 3D point distances of the
obtained models, and the corresponding “ground-truth” model
generated using ground truth pose data. By using the Cloud
to Mesh (C2M) tool provided by CloudCompare [28], we can
obtain a histogram of distance differences, which is calculated
with a point cloud and a mesh: one is the ground truth mesh,
and the other is a point cloud sampled from the mesh created
with our pipeline. Each of the points of the cloud has its
distance calculated with respect to the closest triangle from
the ground truth mesh, and these distances are accumulated in
a histogram. We can obtain a measure of the mesh fidelity by
computing the mean value and standard deviation of the error
histograms, for instance.

We summarize the results in table II, using the average of
absolute distance error (note that distances might be positive
or negative, depending if a given point is inside or outside the
mesh) and standard deviation of the signed distance error. The
first one is used to verify if the generated mesh presents its
points close to the ground truth mesh, which might indicate

if the mesh has as global shift with respect to the geometry
of the ground truth mesh. The standard deviation with the
signed distance error measures the deviation from the error
average: if it is large, we can expect more deformations in the
final generated mesh. All of these measurements assume that
two meshes are sufficiently well-registered to get the minimal
distance between the correspondence points.

TABLE II
C2M MEAN ± STD. DEV. SCALED BY A FACTOR OF 104

Dataset Open3D Proposed W/o weight
Teddy T. 13.30± 21.53 11.54 ± 18.71 12.50± 19.85
Bunny T. 90.39± 119.07 11.66 ± 17.56 11.97± 18.40
Kenny T. 2.64 ± 14.47 8.64± 14.15 10.14± 17.66
Tank T. 5.65 ± 11.01 10.20± 17.87 10.58± 19.37
Leopard T. 7.85 ± 14.27 11.49± 18.70 12.07± 20.04
Teddy H. 33.68± 65.37 9.48 ± 18.05 9.75± 19.11
Bunny H. 12.58± 30.53 6.20 ± 9.71 7.22± 11.55
Kenny H. 7.17 ± 17.98 12.30± 20.61 7.72± 14.21
Tank H. 16.03± 30.90 4.93 ± 8.60 7.90± 12.90
Leopard H. 16.94± 30.69 8.35 ± 16.88 18.78± 44.66
Average 20.62± 35.58 9.48 ± 16.08 10.86± 19.77

The table II indicates that the use of the weighting scheme
provides consistently better results than not using it (both in
terms of the mean and standard deviation). Also, our full
approach (with weighting) presented smaller both average
error and standard deviation than the baseline considering
all datasets (see the last row of the table). In particular, the
improvement is more noticeable in the handheld sequences,
which indicates that our method can better handle erratic
camera motion.

C. Qualitative evaluation

Although C2M presents a quantitative way of comparing
3D models, visual inspection is paramount for identifying the
introduction of possible artifacts. In particular, the preservation
of geometric details and thin structures of the generated
models is essential for evaluating if the reconstruction suc-
ceeded. Fig. 2 shows the GT model and the results produced
by our approach and Open3D for three datasets, where the
red rectangles highlight regions for which Open3D generated
artifacts. Some artifacts are errors in geometry reconstruction,
while others are observed as wrong color blending. It is also
interesting to note that our reconstruction results were very
similar to the GT model.

As additional visual results, we have also created datasets
related to 3D body scans and compared our results with
Open3D. Fig. 3 shows the results of a partial (top, 220 frames)
and a full (bottom, 438 frames) body scan produced by the
two methods. The results of both methods look coherent in
the partial scan, but a closer inspection indicates that the shirt
texture on the shoulder of the person was somewhat deformed
by Open3D. In the full scan, Open3D was not able to provide
good alignments in the back of the person, and we aborted the
execution. Our approach, on the other hand, did not show such
drifts. A handheld scanned scene with smaller objects is shown
in Fig. 4. Although both results are visually good, Open3d



Fig. 2. Top to Bottom: Leopard Handheld, Teddy Handheld and Tank
Handheld datasets. From left to right: GT model, Proposed and Open3D.

generates small artifacts in some geometrical structures, as
highlighted by the red rectangles.

Fig. 3. Results of partial (top) and full (bottom) body scanning. Left:
Proposed, Right: Open3D

D. Execution speed

Although the tested implementation is not optimized for
parallel processing and did not explore GPU acceleration, we

Fig. 4. Handheld motion scanning: Proposed vs Open3d

TABLE III
AVERAGE IN MILLISECONDS PER FRAME

Bilateral
Filter

Normal
Map

Rough
Init.

RGB-D
Alignment

TSDF
Integration

1004 168 68 1045 251

check the execution times for each pipeline step in order
to check for possible processing bottlenecks. We confirm by
measurements that time performance was affected mainly by
the two components that had significant complexity: Bilateral
Filtering, and RGB-D Alignment as shown in Table III. These
two components are fully parallelizable, but for now, our
implementation did not have this concern in mind. Open3D
alignment step presents an average time of 856 milliseconds
per iteration.

E. Pose Graph Optimization Results

As a final experiment, we evaluated the effect of adding a
post-processing scheme based on loop closure, which is ade-
quate when performing full scans. More precisely, we coupled
the pose graph optimization algorithm [29] implemented in
the Open3D library [30] to the obtained camera trajectory.
Fig. 5 illustrates a visual example, indicating that the overall
geometry of the meshes is improved with the post-processing
step. Interestingly, the texture on the planar surface was blurred
after the optimization step, which corroborates the hypothesis
of the misalignment of color and depth sensors.

Fig. 5. Teddy Turntable: Proposed, Proposed + Pose Graph and GT

V. CONCLUSIONS AND FUTURE WORK

We have presented an online 3D reconstruction pipeline
based on RGB-D video sequences focused on near-range cap-
tures. The core of the proposed approach is an iterative pose
alignment procedure that considers a weighted combination of
color and depth images aiming to reduce the inherent noise



of depth sensors that also accounts for possible misalignment
between the color and depth sensors. As additional contribu-
tions, we perform a rough alignment based on PnP that is
able to handle larger motion between adjacent frames of the
sequence, and the use of a frame-to-model registration scheme
that further reduces the influence of noise in the depth image,

Our experimental results indicate that both the pose and
the obtained 3D models with our method are comparable to
or better than a state-of-the-art method. A qualitative analysis
(visual inspection) indicates that the proposed model is capable
of keeping geometric texture and thin structures, and at the
same time, avoids color bleeding artifacts that arise due to the
misalignment of depth and color sensors.

As future work, the most immediate issue to address is
code optimization to accelerate Bilateral filter and RGB-D
alignment performance. In addition, the idea of weighting
the correspondences could be improved through the use of
machine learning techniques, by recognizing image areas that
we could set larger weights in order to ensure the best
alignment of point clouds. As an alternative to the projective
correspondence implemented in this work, the nearest neigh-
bor correspondence could be used as in the Open3D technique,
possibly resulting in smoother alignments.
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