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Abstract—The red blood cell deformation caused by disorders
like sickle cell disease can be assessed by observing blood samples
under a microscope. This manual process is cumbersome and
prone to errors but can be supported by automated techniques
that allow red blood cells to be classified according to the shape
they present. There are proposals in the literature that use
functions based on integral geometry to obtain a description
of the cells’ contour before performing classification, reaching
96.16% accuracy with the use of the k-Nearest Neighbor (KNN)
classifier. In those approaches, the classification-confusion cases
persist mainly in the classes of most significant interest, which are
those related to the detection of deformed cells. In this work, we
use artificial neural networks-based classifiers, trained with the
characteristics obtained from integral geometry-based functions,
to classify erythrocytes into normal, sickle, and other deformations
classes. Our proposal achieves accuracy of 98.40%. This result
is superior to those of previous studies concerning the classes
of greatest interest. Also, our approach is computationally more
efficient than previous works, making it suitable for supporting
medical follow-up diagnosis of sickle cell disease.

I. INTRODUCTION

Sickle cell anemia is a hemoglobinopathy that causes
deformation of red blood cells, which lose elasticity and
acquire a sickle or crescent appearance (Fig. 1, center and
right columns). Red blood cell deformation and rigidity can
cause vascular obstructions, generating intense crises of pain
in the joints and even heart attacks [1]. According to the
World Health Organization (WHO), approximately 5% of the
world’s population carries trait genes for hemoglobin disor-
ders, mainly sickle-cell disease and thalassemia. In countries
such as Cameroon, Republic of Congo, Gabon, Ghana, and
Nigeria, the prevalence is between 20% to 30%, while in some
parts of Uganda, it is as high as 45% [2]. Sickle cell anemia
is the most common hereditary disease in Cuba. On average,
3% of Cubans is a carrier of this severe hemolytic anemia [3].
It is estimated that about 8% of Afro-descendants in Brazil
have sickle cell anemia [4].

Clinical follow-ups of patients affected with sickle cell ane-
mia consist of carrying out complementary tests, which include

Fig. 1. Examples of erythrocytes with normal shape (left), sickle shape (cen-
ter), and other deformations (right). The contours are highlighted in blue. Note
that in some cases, cells with other deformations are similar to normal cells
or sickle cells (e.g., lines three and four in the right columns).

observing peripheral blood samples under a microscope to
obtain a criterion about the deformation of the red blood cells.
This process is quite cumbersome and prone to errors since
the specialist visually evaluates the cellular deformation, with
the consequent margin of error introduced by his/her implicit
subjectivity and the variability of the criteria in terms of the
deformation of the cell.

In practice, it has been observed that the use of automated
methods for the classification of erythrocytes as having or
not some deformation allows obtaining reliable results in a
relatively short period compared to the manual process. But
it is important to notice that the automatic process is highly
dependent on the set of characteristics used to represent the
contour of the cells to be studied, which allows to obtain
a valid criterion on their shape efficiently. Two main ap-
proaches for employing characteristics for shape description
exist: (i) the use of elemental shape characteristics directly
obtained from the contour, such as circular and elliptical shape



coefficients, roundness, eccentricity, perimeter, area, diameter,
among others; and (ii) the use of characteristics obtained
from the functional representation of the contour, a variant
with advantages regarding the possibility of using a better
description of complex shapes.

For the first approach, recent proposals report high accu-
racy values ranging from 94.56% to 99.94% using different
classifiers and considering different sets of classes for red
blood cells’ shape. For instance, Abood et al. [5] (98%),
Safca et al. [6] (96%) and Delgado-Font et al. [7] (95%)
used Linear Discriminant Analysis (LDA). Chy and Ra-
haman [8] (95%) and Alkrimi et al. [9] (98%) employed
Support Vector Machine (SVM) classifiers, while Alkrimi
et al. [9] (98%), Alom et al. [10] (99.94%), Grochowskiet
et al. [11] (94.56%), Elsalamony [12] (95%) and Tyas et
al. [13] (95%) explored the power of Neural Networks. For
the second approach, there are some characteristics obtained
from the functional representation of the contour of shapes that
report accuracy values ranging from 84% to 96.16%. Examples
include the UNL-Fourier transform using LDA with template
matching, as proposed by Frejlichowski [14] (92.48%) and
the curvature as a function of the contour arc length using
Hidden Markov Models (HMM), as developed by Delgado-
Font et al. [15] (84%). Special attention is given to shape
descriptors derived from integral geometry-based functions
(e.g., Gual-Arnau et al. [16], 96.16%, and Herold-Garcia and
Fernandes [17], 94.7%) and the representation of the contour
on the shape space with elastic metrics (e.g., Gual-Arnau
et al. [18], 93.33%, and Epifanio et al. [19], 94%), both
using the k-Nearest Neighbor (KNN) algorithm for supervised
classification.

In the process of classifying erythrocytes according to their
shape, each class consists of elements that are representative
of the shape studied, be it a normal cell, sickle cell or a
cell with another deformation. The potential of the functions
as descriptors have been demonstrated on cases where cells
from different classes have similar shapes. For instance, see
the last two examples of cells with other deformations in
Fig. 1 and notice that they are challenging cases because they
are similar to, respectively, normal and sickle cells. Results
showed that the functional representations proposed by Gual-
Arnau et al. [16] and Herold-Garcia and Fernandes [17]
are more effective than the use of elemental characteristics
on challenging cases, where the performance achieved using
elemental features was less than 80% [16] as this kind of
feature is not suitable under these conditions.

On the one hand, the use of elemental shape character-
istics (the first approach) with classifiers based on neural
networks reports good accuracy using data from classes with
objects that are representative of each studied deformation
and well-differentiated between them. On the other hand,
integral geometry-based solutions (the second approach) seems
to describe the geometry of erythrocytes better, but the use of
simple classifiers such as KNN limits their power.

In this work, we propose the use of integral geometry-
based characteristics together with neural networks to classify

erythrocytes as normal, sickle or other deformations. The
aim is improving the classification performance by taking
advantage of what this kind of descriptor and neural network-
based classifiers have to offer best, especially for the classes
of greater interest (i.e., sickle and other deformations) and on
cases where confusion persist due to shape similarities.

The main contribution of this paper is the use of Artificial
Neural Networks (ANN) trained with features obtained using
integral geometry-based functions to perform the morpho-
logical analysis and classification of red blood cells. In this
paper, we have considered the weighted integrated generalized
support function [16], the Crofton descriptor [16], and three
computationally-efficient variants of those [16], [17] as input
data to the ANN-based classifier. Our approach’s performance
is superior to state-of-the-art proposals, and the better results
are obtained with one of the descriptors that guarantee the
reduction of computational cost.

II. MATERIAL AND METHODS

Fig. 2 illustrates the workflow of the proposed approach,
which consists of the following steps:

1. To obtain the contour of previously segmented ery-
throcytes. In our experiments, we have used an image
database that provides contours extracted using the level-
set method (see Section III-A).

2. To obtain the representation of the shape of erythrocytes
as integral geometry-based feature vectors.

3. To perform erythrocytes supervised classification, by
training and evaluating artificial neural network models
with the characteristics obtained in the second step.

In the following sections, we first present the two classic in-
tegral geometry-based functions used to represent the contour
of objects (Section II-A), and then we describe three efficient
approximations for those functions (Section II-B). The feature
vectors computed from those five solutions (Section II-C)
are used (individually) as input to the ANN responsible
for classifying a given erythrocyte with respect to its shape
(Section II-D). Section II-E discusses the computational cost of
the descriptors and the computational complexity of classifiers.

A. Classic Integral Geometry-Based Functions

Let int(D) be the interior of a compact domain D (i.e., the
erythrocyte) and L2

1 a straight line in R2 given by the normal
equation of the line, xcos(φ)+ ysin(φ) = p, where (x,y) ∈ R2,
φ is the angle between the x-axis and the normal to the line
and p is the distance from the origin O of R2 (taken as the
centroid of D) to the line. Taking the length

∣∣L2
1∩ int(D)

∣∣≥ 0
and the angle φ ∈ [0◦,360◦), the generalized support function
of D is [20]:

p(σ ,φ) =

{
supL2

1

{
p |
∣∣L2

1∩ int(D)
∣∣≥ σ

}
, σ ≤ σM(φ)

0 , otherwise
(1)

where sup denotes the supremum and σM(φ) is the major
length σ of |L2

1∩ int(D)| for a given φ -value.
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Fig. 2. The steps of the proposed approach for erythrocyte classification according to their shape. Red denotes the workflow for training of the proposed
model. Green indicates the workflow for classifying a given test image.

The weighted integrated generalized support function (2)
proposes integration with respect to σ for (1), so it depends
on one parameter, the angle φ , and is defined as follows [20]:

W (φ) =
σM(φ)

σM

∫
σM(φ)

0
p(σ ,φ)dσ , (2)

where σM is the largest value of all the σM(φ) existing in the
representation.

Both functions (1) and (2) were presented by Gual et al. [20]
as shape descriptors. In this work, we only use (2) because
of its superior performance in comparison to (1) in previous
experiments. Please, refer to [16], [17], [20] for details.

Now, let:
σ(p,φ) =

∣∣L2
1∩D

∣∣ (3)

be the length of the intersection of L2
1 with D. This function

was used by Gual-Arnau et al. [16] as the base for the
Crofton’s descriptor:

Cρ(φ) =
∫

ρ

0
σ(p,φ)d p, (4)

where ρ ∈ [0, p(φ)] is a user-defined parameter, and
p(φ) = supL2

1

{
p | L2

1∩D 6= /0
}

is the support function of D.

B. Efficient Approximations of Integral Geometry-Based
Functions

Considering that the most relevant information of any region
is found mainly in the area close to its contours, Gual et
al. [20] developed a “cut” version of W (φ) (2) as follows:

Wc(φ) =
∫

σ0

0
p(σ ,φ)dσ , (5)

where σ0 < σ . The Wc(φ) function considers for integration
only the portion of σ values closest to the region’s border.
Wc(φ) is the first function proposed to reduce the computa-
tional cost of integral geometry-based descriptors.

Recently, Herold-Garcia and Fernandes [17] proposed two
new descriptor functions for erythrocyte shape classification
inspired on previous integral geometry-based solutions, but
with significantly less computational effort: ∼ 98% less com-
putation. Those descriptors are defined as:

pΦ(σ ,φ) = {p(σ ,φ) | φ ∈Φ)} (6)

and
σΦ(p,φ) = {σ(p,φ) | φ ∈Φ} , (7)

where
Φ =

{
φ0 +

i−1
n

360◦ mod 360◦
}n

i=1
(8)

is a discrete set of n equally spaced angular values such that
0◦ ≤ φ1 < · · ·< φn < 360◦, and φ0 ≥ 0◦ is a constant.

C. Feature Vectors
As proposed in the original works, the feature vectors for

the one-dimensional functions (2), (4) and (5) are composed of
the magnitude of the 2nd to the 6th coefficients of the Fourier
approximations for the one-dimensional vector obtained with
these function, directly considering each vector as a one-
dimensional discrete signal (see [16], [20] for details). For (6)
and (7), it is taken as descriptor the magnitude of the 2nd

to the 6th coefficients of the Fourier approximations of the
signals formed by stacking the values computed evaluating
the functions for the angles in Φ, as described in [17].
Invariance to rotation and scaling in all cases is achieved
by normalizing the feature vectors by the magnitude of the
1st Fourier coefficient. Thus, the ith component of the feature
vector v = (v1,v2, · · · ,vd) is given by:

vi =
∥∥∥Fi+1

F1

∥∥∥, (9)

where F j denotes the jth coefficient of the Fourier approxi-
mation of the discrete signal computed using (2), (4), (5), (6),
or (7), and ‖z‖ denotes the magnitude of a complex number z.



D. ANN-Based Classifier

An ANN is a supervised learning algorithm that, from a
set of input data of dimension d called input vector, computes
an output vector having m dimensions, using a function f
modeled by intermediate layers of nodes (or neurons) placed
between the input and the output layer.

In this work, we consider an ANN having three fully con-
nected layers (see Fig. 2): the input layer including d nodes,
one hidden layer having h neurons, and the output layer with
m = 3 neurons, one for each class of shape: normal, sickle, and
other deformations. Each node in the input layer pass on to
the hidden layer its respective component of the feature vector
obtained from the contour representation computed with the
integral geometry-based functions (see Section III-B). In each
neuron of the hidden layer, values that go to the next layer
are transformed by evaluating a ReLU activation function.
The values emitted by the output layer are processed by
the softmax function to map the non-normalized output of
a network to a probability distribution over predicted output
classes. We perform the optimization of the cross-entropy
loss function by adjusting the values of the connections
(weights) between neurons using the backpropagation training
process. This process applies a weight correction to reduce the
difference between the network outputs and the desired ones
so that the network can learn and reduce future errors.

E. Computational Cost

The computational cost and total memory required for
calculating the feature vectors presented in Section II-C are
related to the amount of information handled by the re-
spective integral geometry-based function. As discussed by
Herold-Garcia and Fernandes [17], the functions pΦ(σ ,φ) and
σΦ(p,φ) consider only a tiny subset Φ of angular values,
while W (φ), Wc(φ) and Cρ(φ) use 360 angles to obtain the
descriptor’s map from which feature vectors are calculated.
As a result, the computational cost and memory footprint of
pΦ(σ ,φ) and σΦ(p,φ) are considerably lower than previous
approaches. It is about 2% of the cost for the Φ set assumed
in [17] and in our experiments.

It is well-known that the time complexity of the brute-force
KNN classifiers to find the closest neighbor is O(nd), where
n is the number of classes and d the dimensionality of the
feature [21]. Because there are few classes in erythrocyte shape
classification problem (only three), in practice it is not worth
organizing the data after model training in a tree to reduce such
time complexity to something in the order of O(log(n)d).

For the ANN used in this work, the temporal complexity is
O((d +n)k), where where n is the number of classes, d the
dimensionality of the feature, and k is the number of neurons
in the hidden layer. Since (n+n)k is much greater than nd,
it turns out that the KNN classifier is the least complex
alternative. However, the ANNs evaluated in our experiments
are not prohibitive in terms of computational cost. Besides,
they return better results in the classification.

III. RESULTS AND DISCUSSIONS

This section compares the classification performance of
the proposed method with previous integral geometry-based
solutions where a KNN classifier was employed. Refer to [16],
[17] and [20] for a comparison of state-of-the-art solutions to
previous approaches from the literature.

A. Image Database

We have used the erythrocytesIDB image database [22],
which consists of 202 images of normal cells, 210 images of
sickle cells, and 213 images of cells with other deformations.
The latter group includes images having shapes close to
normal or sickle forms, making the classification of this class
a challenging task. This is the same image database used
in the investigations carried out with the original functions
and their variants for computational cost reduction, e.g., [16],
[17], [20]. Fig. 1 shows some examples of images included in
the erythrocytesIDB image database and the contour of their
respective cells (in blue).

B. Feature Extraction

In all experiments that follow, we have considered the same
parameterization as Gual-Arnau et al. [16], Herold-Garcia
and Fernandes [17], and Gual et al. [20] to compute the
descriptor functions: ∆σ = 1, ∆p = 1, ∆φ = 1◦ for W (φ) (2)
and Cρ(φ) (4); 8 values for σ in Wc(φ) (5); 8 values for
ρ in Cρ(φ) (4); and for the two other efficient descriptors,
pΦ(σ ,φ) (6) and σΦ(p,φ) (7), we have considered the values
n = 8 as the number of angles and φ0 = 0 in (8).

The Fourier coefficients used in the calculation of the feature
vectors were taken as described in Section II-C. Still, experi-
ments were carried out using a higher number of coefficients,

TABLE I
ANN HYPERPARAMETES (1ST EXPERIMENT)

d h m Ep Lr Rg
W (φ) 7 70 3 1000 0.08 0.0
Cρ (φ) 7 90 3 1000 0.04 0.0
Wc(φ) 6 80 3 1000 0.04 0.0008

pΦ(σ ,φ) 20 80 3 1000 0.2 0.0
σΦ(p,φ) 30 90 3 1000 0.01 0.0002

Hyperparameters: (d) Neurons in the input layer; (h) Neurons in the hidden
layer; (m) Neurons in the output layer; (Ep) Epochs; (Lr) Learning rate;
(Rg) Regularization

TABLE II
ANN HYPERPARAMETES (2ND EXPERIMENT)

d h m Ep Lr Rg
W (φ) 6 50 3 1000 0.04 0.0
Cρ (φ) 6 30 3 1000 0.1 0.0
Wc(φ) 8 30 3 1000 0.04 0.0001

pΦ(σ ,φ) 30 70 3 1000 0.008 0.004
σΦ(p,φ) 10 55 3 1000 0.01 0.0

Hyperparameters: (d) Neurons in the input layer; (h) Neurons in the hidden
layer; (m) Neurons in the output layer; (Ep) Epochs; (Lr) Learning rate;
(Rg) Regularization



especially for descriptors designed for reducing computational
cost, due to the smaller amount of information they handle.

C. Experiments

We have performed three experiments to assess the per-
formance of the proposed approach on the classification of
erythrocytes in normal, sickle and other deformation classes:

1st experiment. Following the methodology of previous
works, in this experiment, we performed 5×1 cross-
validation to obtain erythrocytes supervised classification
and compared the results of our approach to results of
state-of-the-art integral geometry-based techniques. Here,
we randomly distributed the images in the folds while
keeping the approximately uniform distribution of class
samples in each of them.

2nd experiment. In this experiment, we analyzed the re-
sponse of the ANN-based classification models to ele-
ments that did not participate in the training/validation
stage by considering 80% of the image database’s entries
for training/validation and 20% for model testing after-
ward. We applied 5×1 cross-validation during the train-
ing/validation stage, and we also randomly distributed the
images in the partitions while keeping the approximately
uniform distribution of class samples in each of them.

3rd experiment. Here, we took the model with the best
performance in the 2nd experiment and repeated the ex-
periment considering different compositions for partitions
to check the influence of the partition in the classification.

The selection of hyperparameters values for each ANN
model in the 1st and 2nd experiments was performed by
empirically exploring the space of hyperparameters. Tables I
and II present the values that led to the best results for each
descriptor function. The hyperparameters values set for the
2nd experiment were also used in the 3rd experiment.

The performance of the compared techniques was assessed
considering recall (Rec), precision (Pre), F1-score (F1), and
accuracy (Acc). Tables III and IV show all these values for,
respectively, ANN and KNN classifiers in the 1st experiment.
In the case of the W (φ) function, F1-score values of 96.80%,
97.87% and 94.76% are reached in the normal, sickle and
other deformation classes, respectively, with the use of ANN.
This result is slightly lower than the one obtained previously
using KNN for the case of the normal class (97.52%), and
higher than the ones obtained for sickle and other deformations
classes (96.42% and 94.14%, respectively). The accuracy
achieved by the function W (φ) through the use of the ANN
classifier (96.48%) is higher than the accuracy obtained with
the use of the KNN method (96.00%).

With the descriptor Cρ(φ), the use of ANN reached F1-
score values of 97.29%, 96.71%, and 94.01% for the normal,
sickle, and other deformations classes, respectively. This result
is higher than the one achieved using the KNN algorithm in the
sickle class (96.24%), and slightly lower than those achieved
for normal and other deformations classes. In both cases the
accuracy is similar, 96% and 96.16%, respectively.

TABLE III
CONFUSION MATRIX AND PERFORMANCE OF ALL DESCRIPTORS USING

ANN CLASSIFIERS (1ST EXPERIMENT)

W (φ)

N S O Rec Pre F1 Acc
N 197 0 5 97.52 96.10 96.80

96.48S 0 207 3 98.57 97.18 97.87
O 8 6 199 93.43 96.14 94.76

Cρ (φ)

N S O Rec Pre F1 Acc
N 198 0 4 98.02 96.59 97.29

96.00S 0 206 4 98.10 95.37 96.71
O 7 10 196 92.02 96.08 94.01

Wc(φ)

N S O Rec Pre F1 Acc
N 197 0 5 97.52 95.16 96.33

96.16S 0 207 3 98.57 97.18 97.87
O 10 6 197 92.49 96.10 94.25

pΦ(σ ,φ)

N S O Rec Pre F1 Acc
N 199 0 3 98.51 95.67 97.07

96.32S 0 205 5 97.62 97.16 97.38
O 9 6 198 92.96 96.12 94.51

σΦ(p,φ)

N S O Rec Pre F1 Acc
N 199 0 3 98.51 96.60 97.55

97.12S 0 208 2 99.05 97.20 98.11
O 7 6 200 93.90 97.56 95.69

Classes: (N) Normal; (S) Sickle; (O) Other deformations
Metrics: (Rec) Recall; (Pre) Precision; (F1) F1-score; (Acc) Accuracy

TABLE IV
CONFUSION MATRIX AND PERFORMANCE OF ALL DESCRIPTORS USING

KNN CLASSIFIERS (1ST EXPERIMENT)

W (φ)

N S O Rec Pre F1 Acc
N 197 0 5 97.52 97.52 97.52

96.00S 0 202 8 96.19 96.65 96.42
O 5 7 201 94.37 93.93 94.14

Cρ (φ)

N S O Rec Pre F1 Acc
N 198 0 4 98.02 98.02 98.02

96.16S 0 205 5 97.62 94.91 96.24
O 4 11 198 92.96 95.65 94.28

Wc(φ)

N S O Rec Pre F1 Acc
N 195 0 7 96.53 93.75 95.12

93.92S 0 202 8 96.19 95.28 95.73
O 13 10 190 89.20 92.68 90.91

pΦ(σ ,φ)

N S O Rec Pre F1 Acc
N 195 0 7 96.53 95.59 96.06

94.72S 0 201 9 95.71 96.17 95.94
O 9 8 196 92.02 92.45 92.23

σΦ(p,φ)

N S O Rec Pre F1 Acc
N 197 0 5 97.52 95.17 96.33

94.08S 0 199 11 94.76 94.76 94.76
O 10 11 192 90.14 92.31 91.21

Classes: (N) Normal; (S) Sickle; (O) Other deformations
Metrics: (Rec) Recall; (Pre) Precision; (F1) F1-score; (Acc) Accuracy

In the cases of the functions tailored for reducing computa-
tional cost (Wc(φ), pΦ(σ ,φ), and σΦ(p,φ)), the accuracy val-
ues achieved using ANN were 96.16%, 96.32%, and 97.12%,
respectively, which are higher than the accuracies 93.92%,
94.72%, and 94.08% obtained using the KNN classifier, and
also equivalent or better than those obtained using the original
functions (W (φ) and Cρ(φ)) with the KNN classifier. These
are excellent results, especially considering the high degree
of computational cost reduction that these functions provide,
especially pΦ(σ ,φ) and σΦ(p,φ). With this, we demonstrate



that ANN models trained with the analyzed descriptors achieve
better results than KNN-based classification algorithm. Hence,
with ANN, the representation potentialities of these descriptors
are better exploited.

Tables V and VI show the results obtained in the 2nd ex-
periment. Recall that this experiment considers 80% of the
images for the ANN models’ training and validation, while
the remaining 20% is used to test the models. This experiment
allows us to analyze the real capacity of generalization that the
ANN has when classifying elements that do not participate in
the training/validation and model selection stage.

In the training/validation stage (Table V), the accuracy
values are high, all over 95%, which shows the learning
capacity of the model trained with the integral geometry-
based characteristics. The most interesting results are obtained
in the testing stage of the model (Table VI), where all the
functions have accuracy values higher than 95%, too. For the
function Cρ(φ), the value obtained (95.20%) does not exceed
that reached using the KNN classifier, which was 96.15% in
the 1st experiment, but for the other functions, the accuracy
values reached using ANN are higher. The case with the best
result is the combination of σΦ(p,φ) with the ANN classifier,
whose accuracy is 98.40%.

In the last experiment, we repeated the 2nd experiment
three more times for the best-rated descriptor using a different
set of images in each partition to verify the influence that
the composition of the training/validation and testing data
may have on learning the ANN parameters/weights using
80% of the data and classifying the remaining 20% of the
images. Table VII summarizes the performances achieved by
combining the σΦ(p,φ) function with the ANN classifier
in the 3rd experiment. Notice that the accuracy is greater
than 96% in all cases. These results show that for an image
database such as the erythrocytesIDB [22], the partitioning of
the universe used for carrying out the training/validation of the
ANN model does not have much influence on the final result,
and the σΦ(p,φ)-based descriptor provides better accuracy
results than using KNN with any of the analyzed functions.

From a practical point of view, a predictive model is exposed
to two types of errors: false positives (FP, or type I error) and
false negatives (FN, or type II error). Depending on the nature
of the problem, a model that makes fewer errors of one or
both types is of greater interest. In this case, for the clinical
follow-up of the patient with sickle cell anemia disease, the
possibility of a crisis is determined fundamentally by the
existence of sickle cells, so this is the class of most significant
interest to study, and both scenarios are important. Therefore,
an automated method to evaluate the patient’s condition should
minimize the occurrence of both types of errors, both FP and
FN, in the sickle cell class (it means F1-score is maximized
in this class). It is because when the model does not classify
as sickle those erythrocytes that belong to that class, it will
not allow the correct analysis of the cell deformation. As
a result, the incorrect classification may lead to a wrong
diagnosis of a possible crisis, and the patient would not receive
the appropriate treatment. In the opposite case, an automated

TABLE V
CONFUSION MATRIX AND PERFORMANCE OF ALL DESCRIPTORS ON

MODEL TRAINING/VALIDATION USING ANN CLASSIFIERS
(2ND EXPERIMENT)

W (φ)

N S O Rec Pre F1 Acc
N 159 0 2 98.76 95.78 97.24

96.39S 0 168 3 98.25 96.55 97.39
O 7 6 154 92.22 96.86 94.47

Cρ (φ)

N S O Rec Pre F1 Acc
N 157 0 4 97.52 93.45 95.44

95.22S 0 167 4 97.66 97.09 97.37
O 11 5 151 90.59 95.06 92.77

Wc(φ)

N S O Rec Pre F1 Acc
N 159 0 2 98.76 95.21 96.95

95.79S 0 165 6 96.49 97.06 96.77
O 8 5 154 92.22 95.06 93.61

pΦ(σ ,φ)

N S O Rec Pre F1 Acc
N 159 0 2 98.76 96.36 97.54

96.39S 0 169 2 98.83 95.48 97.12
O 6 8 153 91.62 97.45 94.44

σΦ(p,φ)

N S O Rec Pre F1 Acc
N 157 0 4 97.51 96.31 96.91

95.59S 0 165 6 96.49 96.49 96.49
O 6 6 155 92.81 93.93 93.37

Classes: (N) Normal; (S) Sickle; (O) Other deformations
Metrics: (Rec) Recall; (Pre) Precision; (F1) F1-score; (Acc) Accuracy

TABLE VI
CONFUSION MATRIX AND PERFORMANCE OF ALL DESCRIPTORS ON

MODEL TESTING USING ANN CLASSIFIERS (2ND EXPERIMENT)

W (φ)

N S O Rec Pre F1 Acc
N 38 0 2 95.00 95.00 95.00

96.80S 0 39 0 100.0 100.0 100.0
O 2 0 44 95.65 95.65 95.65

Cρ (φ)

N S O Rec Pre F1 Acc
N 39 0 1 97.50 95.12 96.29

95.20S 0 37 2 94.87 97.37 96.10
O 2 1 43 93.48 93.48 93.48

Wc(φ)

N S O Rec Pre F1 Acc
N 38 0 2 95.00 92.68 93.83

95.20S 0 38 1 97.44 100.0 98.70
O 3 0 43 93.48 93.48 93.48

pΦ(σ ,φ)

N S O Rec Pre F1 Acc
N 39 0 1 97.50 95.12 96.29

96.80S 0 38 1 97.44 100.0 98.70
O 2 0 44 95.65 95.65 95.65

σΦ(p,φ)

N S O Rec Pre F1 Acc
N 40 0 0 100.0 95.23 97.56

98.40S 0 39 0 100.0 100.0 100.0
O 2 0 44 95.65 100.0 97.77

Classes: (N) Normal; (S) Sickle; (O) Other deformations
Metrics: (Rec) Recall; (Pre) Precision; (F1) F1-score; (Acc) Accuracy

model that classifies as sickle those erythrocytes that do not
belong to that class may induce the specialist to consider
the proximity of a crisis and the treatment will be indicated
to the patient unnecessarily, which in the same way is not
recommended. Thus, both errors should be considered when
evaluating the models.

On model testing, the functions W (φ) and σΦ(p,φ) show
the best results of F1-score in the sickle cell class with
100% (Table VI). Besides, the other two descriptors that
guarantee the reduction of the computational cost to obtain



the characteristics reached a value of 98.70% for F1-score in
sickle cell class, which is also very high. Hence, it is valid
to consider the optimized functions instead of the original
ones. Performing an analysis within each class for the case
of the descriptor that obtains the best result, σΦ(p,φ), it is
found that it considerably improves classification performance
when used with an ANN-model, reaching values of F1-score
of 97.56%, 100% and 97.77% for the normal, sickle and other
deformations classes in the 2nd experiment (Table VI) and
97.55%, 98.11% and 95.69% in the 1st experiment (Table III).
These results are much higher than those reached when the
same descriptor was used with a KNN classifier (96.33%,
94.76% and 91.21% in Table IV). This confirms that the use
of the characteristics obtained with these integral geometry-
based functions to train a model of ANN allows to improve
the performance reported so far in the literature, by reducing
the number of cases that were not correctly predicted by the
KNN classifier in the classes of greatest interest, i.e., sickle
and other deformations, where there are elements with shapes
similar to normal and sickle, which in turn allowed to improve
the performance in the class of normal cells.

It is important to comment that the variations on the F1-
scores and accuracy values presented for σΦ(p,φ) in the
last rows of Table VI and in Table VII occur due to the
database’s characteristics, where some of the elements of the
class other deformations are similar to the sickle and normal
shape classes. So, it is natural that some partitions lead to
better results than others, according to their composition. It
is worth noting that with all partitions tested with ANN, the
results obtained are better than with KNN, which illustrates
the stability of the proposed technique.

The performances reported in this work are better than those
for previous integral geometry-based solutions where KNN
was employed and reached values equal to or better than the
performance reported by other recent approaches. Recall that
the potential of these functions have been demonstrated under
similarity conditions between objects of different classes,
while the majority of previous works have studied classes of
well-differentiated object.

The σΦ(p,φ) is one of the functions that allow the re-
duction of the computational effort of the original functions
(reduction of ∼ 98% [17]). At the same time, it presents a
high F1-score when combined with ANN-based classifiers, and
automated methods to evaluate the patient’s condition should
maximize the F1-score for the sickle and other deformation
classes. These results suggest that our approach has the desired
properties to be implemented in mobile apps designed as self-
awareness tools to facilitate the analysis of blood smears of
individuals with sickle cell disease or screening in developing
countries where specialists might not be available. As future
work, we will investigate how the accuracy of the proposed
technique for classification of red blood cells’ shape impacts
the quality of peripheral blood smear analysis to support the
medical follow-up diagnosis of sickle cell disease. But for that,
it will be necessary to have access to a dataset that relates the
blood samples to the patient’s diagnosis.

TABLE VII
PERFORMANCE OF THE σΦ(p,φ) DESCRIPTOR ON MODEL TESTING USING

ANN CLASSIFIERS AND CONSIDERING OTHER PARTITIONINGS
(3RD EXPERIMENT)

Partitioning # Class Rec Pre F1 Acc

1
N 100.0 97.56 98.76

98.40S 97.44 100.0 98.70
O 97.83 97.83 97.83

2
N 100.0 95.45 97.67

96.80S 95.55 100.00 97.72
O 94.74 94.74 94.74

3
N 97.37 97.37 97.33

96.20S 97.78 95.65 96.99
O 92.86 95.12 93.49

Classes: (N) Normal; (S) Sickle; (O) Other deformations
Metrics: (Rec) Recall; (Pre) Precision; (F1) F1-score; (Acc) Accuracy

IV. CONCLUSION

We presented a new approach for the morphological classi-
fication of erythrocytes that combines features obtained from
the functional representation of the red blood cells contour
using integral geometry-based functions and an ANN-based
classifier. We carried out a comparative study of this approach
and state-of-the-art solutions based on integral geometry-based
functions where KNN was used. Results show that, with
the functions Wc(φ), pΦ(σ ,φ), σΦ(p,φ), i.e., the variants
of the original functions that allow the reduction of the
computational cost, 95.20%, 96.80% and 96.20%-98.40% of
accuracy were reached (recall that in the case of the pΦ(σ ,φ)
function, the experiments were realized at least four times with
different partitions). Those results outperform previous works
that consider the same set of classes for red blood cell’s shape.
Those techniques achieved, respectively, 93.92%, 94.72%, and
94.08% of accuracy by assuming a KNN-based classifier.
For the case of the descriptor σΦ(p,φ) combined with an
ANN-based classifier, the solution with better results, our
experiments reported that the F1-score of the sickle and other
deformations classes were 96.99%-100% and 93.49%-97.83%,
respectively, and reduction of confusion cases between classes
was achieved. The same function with KNN achieved F1-
scores of 94.76% and 91.21%, respectively.

It is important to emphasize that the integral geometry-based
features used in this research do not require data augmentation
while training our ANN-based classifier since these features
are invariant to rotation, translation, and scale.
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CNPq-Brazil (grant 311.037/2017-8); and FAPERJ (grant
E-26/202.718/2018).



REFERENCES

[1] D. Manwani and P. S. Frenette, “Vaso-occlusion in sickle cell disease:
pathophysiology and novel targeted therapies,” The Journal of the
American Society of Hematology, vol. 24, no. 122, pp. 3892–3898, 2013.

[2] World Health Organization. Sickle cell disease. [Online]. Available:
https://www.afro.who.int/health-topics/sickle-cell-disease

[3] B. Marcheco-Teruel, “Sickle cell anemia in Cuba: prevention and
management, 1982-2018,” MEDICC Review, vol. 21, no. 4, pp. 34–38,
2019.
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