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Abstract—Cross entropy with softmax is the standard loss
function for classification in neural networks. However, this
function can suffer from limitations on discriminative power,
lack of generalization, and propensity to overfitting. In order to
address these limitations, several approaches propose to enforce
a margin on the top of the neural network specifically at the
softmax function. In this work, we present a novel formulation
that aims to produce generalization and noise label robustness
not only by imposing a margin at the top of the neural network,
but also by using the entire structure of the mini-batch data.
Based on the distance used for SVM to obtain maximal margin,
we propose a broader distance definition called 1-to-N distance
and an approximated probability function as the basis for our
proposed loss function. We perform empirical experimentation
on MNIST, CIFAR-10, and ImageNet32 datasets to demonstrate
that our loss function has better generalization and noise label
robustness properties than the traditional cross entropy method,
showing improvements in the following tasks: generalization
robustness, robustness in noise label data, and robustness against
adversarial examples attacks.

I. INTRODUCTION

The standard loss function used in neural networks for
classification is arguably the cross entropy with softmax. This
approach is continually used along the time especially for
image classification [1], [2]. However, recent works have
pointed out many limitations when the standard cross entropy
is used. Examples of limitation include the lack of represen-
tation power, propensity to overfitting, and misclassification
caused by adversarial examples even when they are slightly
perturbed [3]–[10].

In recent works, several alternatives [3], [4], [7]–[9] have
been proposed for the cross entropy loss function based on
the large margin principle. That is, the classifier seeks for
the model parameters that produce the largest distance to the
decision boundary. This principle has theoretical and empirical
foundations and has shown desirable benefits, such as better
generalization and robustness to input perturbations [11].

In general, the approaches that use the notion of margin
in neural networks can be classified into two categories. In
the first category, the approaches impose a margin in the
output of the neural network [3], [7]–[9]. All these approaches
propose to put the margin specifically at the softmax function.
Thus, given a sample (xi, yi), the margin value decreases
the probability mapping produced by the softmax function
at the yi output, making the classification more rigorous
and confident when achieves or passes the margin value for
such yi output. Since these types of approaches use the last
hidden layer representation and define the margin only in the
output space, they are efficient in training time and viable for

various practical application, such as face recognition and face
verification [3], [7]–[9].

In the second category, the approaches impose margin not
only on the output of the network, but also in the hidden
and input layers [4]. Due to the intractability of an exact
margin computation in a nonlinear boundary given by the
entire neural network, the loss function is approximated. This
type of approaches commonly demands large computational
resources and training time due to its intrinsic complexity that
increases for each hidden layer that is included [4].

In this work, we propose a novel formulation that imposes
a margin value on the output of the neural network, however,
unlike the previous methods from this category, we do not fo-
cus on providing a margin to the traditional softmax function.
Instead, we impose margin over a new probability mapping
function approximated from a broad distance (that we called
1-to-N), which is based on the distance used for SVM to obtain
maximal margin.

Our contributions are summarized as:
1) A novel general loss function for classification based

on the large margin principle with better generalization
and noise label robustness properties than the traditional
cross entropy.

2) 1-to-N distance (Equation 5) and its approximated prob-
ability mapping function that transforms the network
output of a sample (xi, yi) to its probability using the
network outputs from all its negatives samples present in
the mini-batch (that is, {(xj , yj)|yj 6= yi}) (Equation 6).
This approach is different from the well-know softmax
function that uses the network outputs for every class
that only the sample xi produces (Equation 1). To the
best of our knowledge, this type of formulation has not
appeared before.

3) We provide an analytical comparison of our approach
with the more related counterparts using the interpre-
tation of the equation that describes the hyperplane
orientation updated in each learning step. We also show
that the hyperplane orientation equations of all related
approaches are instances or variations of the SVMs
orientation equation when it is solved by dual optimiza-
tion [11]–[13].

The ultimate goal of a classification model is a good
generalization ability that has direct implication in several
real applications. In the data collection process, for example,
is often susceptible to mistakes. Thus, noise label robustness
approaches have become very useful. Generalization is also
important in techniques, such as metric learning and few-



shot learning, where commonly they deal with limited training
examples [14]. Recently, works have shown a disappointment
characteristic of the neural network models when adversarial
examples caused misclassification even when they are slightly
perturbed. There are specific techniques for addressing adver-
sarial examples attacks, but this is also related to the poor
model generalization [10], [15].

Therefore, due to the generalization importance in a broad
range of sceneries and applications, we follow the experimen-
tation protocol of Elsayed et al. [4] to evaluate the effective-
ness of our approach in the following tasks: generalization
robustness using smallest training data, robustness in noise
label data, and robustness against adversarial examples attacks.
We show that our proposed loss function outperforms the
models training with the traditional cross entropy method in
all the tasks.

II. RELATED WORK

Given the data {(xi, yi)}Mi=1 with xi ∈ R1×h, the cross
entropy loss function LCE is defined as:

S(fWyi
xi ) =

ef
Wyi

xi

K∑
k=1

ef
Wyk

xi
(1)

LCE = − 1

M

M∑
i=1

logS(fWyi
xi ) (2)

where S(fWyi
xi ) is the softmax function, K is the number of

classes and fWyi
xi =WT

yix
i+byi is the network output from the

input xi for the class yi; with Wyi ∈ Rh×1 and and byi ∈ R.
Since the softmax function is the central piece in the LCE

various works [3], [7]–[9] propose to impose a margin value
(δ) in order to make the classification more rigorous by
decreasing the output value, that is, fWyi

xi − δ (for example as
in the work of Liang et al. [7]). Since the output value for the
correct class yi becomes smaller than the output for the other
classes, the learning process must continue until achieving
the largest output. In the same line, other works [3], [8], [9]
transform the network output to the angle space to introduce
an angular margin fWyi

xi = ‖Wyi‖‖xi‖ cos(θ), where θ is the
angle between xi and Wyi. In this case, the classification
is more rigorous when the angle θ increases. Thus, many
alternatives have been proposed to increase θ, such as the
product θδ, the sum θ + δ, or some combination of them [3],
[8], [9].

Another approach that can be easily implemented in the
neural network output using the hinge loss function is the Soft-
SVM [16]. This approach is the relaxation of the Hard-SVM
constraints to allow the margin violation of some examples,
which is useful for the not linearly separable cases. The margin
here is defined as the minimum Euclidean distance from the
samples to the hyperplane and is the same that we use for

our formulation. The Soft-SVM is formulated as follows [12],
[13]:

Ŵyi, b̂yi = min
Wyi,byi

λ

2
‖Wyi‖2 +

1

M

M∑
j=1

[1− yi(fWyi
xj )]+ (3)

where [z]+ = max(0, z) and λ > 0 that controls the tradeoff
between the norm minimization and the margin violation.

Elsayed et al. [4] introduced a loss function especially
designed to explore the margin feature not only in the output
space, but also in the input and any chosen set of hidden
layers of a network. The margin here is defined directly in a
nonlinear boundary produced by the neural network and based
on any distance metric, such as l1, l2, and l∞ norms. Thus,
for each input sample, this formulation enforces a margin in
each hidden representation computing gradient with respect to
each hidden layer and for each class.

Our approach differs from the method of Elsayed et al. [4]
in the sense that we only impose margin on the output of
the network, which avoids computing gradients throughout the
network layers that could increase the training time.

III. PROPOSED APPROACH

Given a binary classification problem, we need to find the
parameters of the hyperplane Hw : wTxi+b that separates the
data {xi, yi}mi=1, where xi ∈ Rd, w ∈ Rd and yi ∈ {−1,+1}.

The SVM approach computes the optimal hyperplane that
separates the data with maximal margin by minimizing the
squared norm ‖w‖2 or equivalent maximizing the following
distance [11]:

ρ(w, b) = min
{xi|yi=1}

γi − max
{xj |yj=−1}

γj (4)

Under the constraints yi(wTxi+b) ≥ 1 i = 1, ...,m, where
γi = wT xi+b

‖w‖ and γj = − (wT xj+b)
‖w‖ are the distance from the

samples (xi, yi = 1) and (xj , yj = −1) to the hyperplane
Hw.

We propose a more relaxed and broad distance, which we
called 1-to-N distance, defined as:

γ1-to-N
i =

wTxi + b

‖w‖
−

∑
{xj |yj=−1}

wTxj + b

‖w‖ (5)

γ1-to-N
i computes the summation of one positive γi and

all negative γj distances. It means that, whereas ρ(w, b)
only considers closer positive and negative samples to the
hyperplane, γ1-to-N

i considers all negative samples for one
positive.



Now, we approximate a probability mapping function to the
γ1-to-N
i as:

γ1-to-N
i ≡ exp(wTxi + b−

∑
{xj |yj=−1} w

Txj + b),

‖w‖ = 1

=
ew
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/
ew
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{xj |yj=−1} e

wT xj+b

≥ ew
T xi+b

ewT xi+b +
∑
{xj |yj=−1} e

wT xj+b

(6)

We approximate a probability mapping function “like soft-
max”1 by transforming the distance to the exponential scale,
then by approximating a product by the summation, and
by taking a lower bound (Equation 6). Thus, we obtain a
softmax’s form function and guarantee a valid probability
mapping (with a range in [0, 1]).

Then, we can maximize γ1-to-N
i distance or, equivalently,

maximize its approximated probability function as:

argmax
i=1,...,m

eδ−[δ−w
T xi+b]+

eδ−[δ−wT xi+b]+ +
∑

{xj |yj=−1}

e−δ+[δ+wT xj+b]+ (7)

Our approach maximizes the probability function over a
bounded region given by the margin δ. The probability is
maximum when the number of samples across the margin is
minimum, which follows the same idea of Soft-SVM [11]–
[13].

We proposed a broad distance and a bounded margin with
the goal of gain generalization not only by imposing a margin
value, but also by using the whole structure of the data.

In general, for a K class classification problem, we learn
the parameters of a neural network model using the data
{xi, yi}Mi=1, where yi = 1, ...,K and xi ∈ Rh is the output
of last hidden layer. We define a “like softmax” function over
the data and using a margin value δ as:

P (fWyi
xi ) =

eδ−[δ−f
Wyi

xi ]+

eδ−[δ−f
Wyi

xi ]+ +
∑

{xj |yj 6=yi}

e−δ+[δ+fWyi

xj ]+ (8)

where fWyi
xi =WT

yix
i+byi is the network output for the class

yi, but here we prefer to consider as the distance of the sample
xi to the hyperplane defined by Wyi ∈ Rh×1 and byi ∈ R with
‖Wyi‖ = 1. Similarly, fWyi

xj =WT
yix

j + byi is the distance of
the sample xj to the hyperplane defined by (Wyi, byi). The set
{xj |yj 6= yi} is the set of samples present in the data whose
class is different from yi. Figure 2b illustrates this principle.

1We called “like softmax” function because it is different from the well-
known softmax function derived from an exponential family distribution.

Note the difference of P (fWyi
xi ) with respect to the softmax

function S(fWyi
xi ) defined in Equation 1. In addition to the

bounded margin, also in its denominator, P (fWyi
xi ) computes

the distance between all the samples {xj |yj 6= yi} and the
hyperplane defined by (Wyi, byi), whereas S(fWyi

xi ) in its
denominator computes the distance between the sample xi and
all the hyperplanes (K hyperplanes). Figure 2b illustrates this
principle.

Then, we maximize the probability P (fWyi
xi ) over the

data via the maximum likelihood, argmaxWyi

∏M
i=1 P (f

Wyi
xi ),

which is equivalent to minimize the following loss function:

L1-to-N = − 1

M

M∑
i=1

logP (fWyi
xi ) (9)

We experiment with two types of bounded margin, the
[−δ, δ] used in Equation 8 and the margin [0, δ]. Figure 1
illustrates the principle of how the bounded values encourage
the convergence.
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Fig. 1. For [−δ, δ] the probability value of P (fWyi

xi
) is maximum when

γi = δ and γj = −δ, whereas for [0, δ] P (fWyi

xi
) is maximum when

γi = δ and γj = 0 (along the blue line).

A. Method Comparison

Suppose the mini-batch of data {(xi, yi), (xj , yj)|yi 6= yj}
of some usual size (e.g., 256 samples), where yi is fixed for
some class (called “positive samples”) and yj (called “negative
samples”) that can take random values from the available
classes {k}Kk=1 − yi.

Given a hyperplane HWyi
:WT

yix
i+byi in the last layer and

assuming that we use SGD for optimization, the orientation of
the hyperplane will change for each iteration of the training
process in order to separate the data as: Wyi =Wyi+α

∂L
∂Wyi

,
with ∂L

∂Wyi
< 0. It is common to compute the ∂L

∂Wyi
for one

sample, but it is more useful if we consider all the samples



into the mini-batch. Then, it could show a more intuitive shape
of ∂L

∂Wyi
to see how the SGD fits the hyperplane in order to

separate the data.
We use this idea to compare our L1-to-N function against

the most related approaches: the hinge loss (LHinge) and cross
entropy (LCE). Thus, we use the loss function LCE for cross
entropy defined in Equation 2 and the hinge loss function
defined as:

LHinge =
∑
{xi,xj}

[δ − fWyi
xi ]2+ + [δ + fWyi

xj ]2++

λ

2

K∑
k=1

‖Wyk‖2
(10)

We compute the partial derivatives for L1-to-N, LHinge, and
LCE with respect to Wyi using all the samples present in the
mini-batch2:

∂L1-to-N

∂Wyi
= −

∑
{xi}

∑
{xj}

P (fWyi
xj )(xi − xj) (11)

∂LHinge

∂Wyi
= −[

∑
{xi}

(δ − fWyi
xi )xi−∑

{xj}

(δ + fWyi
xj )xj ]

(12)

∂LCE

∂Wyi
= −[

∑
{xi}

∑
{k 6=yi}

S(fWk
xi )xi−∑

{xj |yj 6=yi}

S(fWyi
xj )xj ]

(13)

We see that the three approaches share some variation of
vector difference between the positive and negative samples,
whereas for L1-to-N and LCE the difference is weighted by their
probability values, for LHinge its difference is weighted by
how much the samples invade the margin. We also observe
that all approaches are similar to w =

∑
{yi=+1} αix

i −∑
{yj=−1} αjx

j for binary classification found in SVM when
the dual optimization problem is solved [11]–[13].

The main difference between L1-to-N and LCE is in the
P (fWyi

xi ) (Equation 8) and S(fWyi
xi ) (Equation 1) computa-

tions. If we consider the softmax function as a mapping from
a set of values to its probabilities equivalence, we see that
S(fWyi

xi ) is computed using the set of distances from the
xi sample to every hyperplane (with normals {Wyk}Kk=1),
without taking into account rest of samples present on the
batch of data (Figure 2a). Thus, the softmax function uses the
distance between one sample and all hyperplane as the core
of its computation.

On the other hand, P (fWyi
xi ) computes the set of distances

from the xi and {xj |yj 6= yi} samples to one hyperplane
(defined by (Wyi, byi)), as illustrated in Figure 2b. Then,
P (fWyi

xi ) function uses all samples and one hyperplane as
the core of its computation. Therefore, our approach gains

2For simplicity, in Equation 12, we not include the derivation of the term
λ
2

∑K
k=1 ‖Wyk‖2.

a “broad context” that is useful for generalization and noise
robustness.

Another difference between L1-to-N and LCE is the com-
plexity to compute S(fWyi

xi ) when the number of classes
increases. L1−to−N does not care about this problem due to
the denominator computation in P (fWyi

xi ), which only depends
on the number of samples (in the worst case, ≈ 512 mini-batch
size is used in practice).

With respect to the L1-to-N and LHinge, we observe that the
main difference is that in LHinge the distance values used
to weight the samples are independent for each xi and xj

samples (Figure 3a), whereas for L1-to-N the P (fWyi
xi ) value is

computing relating xi and all xj samples.
We also show in Figure 3b the involved distance that could

be used for an join approach between cross entropy and 1-to-N
approaches. In Section IV, we show the results of experiments
with this approach.

IV. EXPERIMENTS

In this section, we present the empirical evaluation of our
approach in generalization robustness, robustness in noise
label data, and robustness against adversarial examples attacks.

We perform the evaluation on the following datasets: (i)
MNIST [17], which contains handwritten digits (from 0 to
9) images of 28×28 shapes divided into 60,000 training
images and 10,000 test images, (ii) CIFAR-10 [18] is a
10-class dataset consisting of 60,000 images of 32×32×3
shapes divided into 50,000 training images and 10,000 test
images, and (iii) ImageNet32 [19] is a downsampled (images
of 32×32×3 shapes) variant of the original ImageNet 2012
challenge dataset, created to facilitate fast experimentation for
network architectures, training algorithms, and hyperparam-
eters search. This dataset consists of the same number of
classes than the original ImageNet (1000 classes) and samples
(1,281,167 training images and 50,000 validation images).

We follow the experimentation protocol of Elsayed et al. [4].
For generalization robustness, we train models with random
subsets of training data of different sizes. For robustness in
noise label data, we create noisy training data by introducing a
different percentage of incorrect labels. For robustness against
adversarial examples, we experiment with attacks in the black-
box and white-box scenarios.

A. Implementation Details

We use TensorFlow 1.15.2 to implement our approach. For
MNIST dataset, we train the same network used by Elsayed et
al. [4], which is a 4 hidden-layer model with 2 convolutional
layers. For CIFAR-10 and ImageNet32 datasets, we train a
Wide Residual Network [20], specifically a WRN-28-2, where
28 is the depth value that represents the total number of
convolutional layers and 2 is the widening value that multiplies
the number of filters.

The L1-to-N is easy to implement, however, perhaps the
novelty here is that, given a mini-batch of data, we need a look-
up table that indicates the negative samples for each positive



(a) For Cross Entropy method. (b) For 1-to-N approaches.

Fig. 2. Intuition about the distance (black lines) from one sample to hyperplanes (colored lines) that are used for cross entropy and 1-to-N approaches. The
dashed black lines represent the bounded distances for samples out the margin.

(a) For Hinge Loss method. (b) For 1-to-N + Cross Entropy approaches.

Fig. 3. Intuition about the distance (black lines) from one sample to hyperplanes (colored lines) that are used for hinge loss and 1-to-N + cross entropy
approaches. The dashed black lines represent the bounded distances for samples out the margin.

sample. We efficiently created a look-up table as the difference
of two matrices created with the labels.

For the hinge loss implementation (Equation 10), we use
λ = 0 because we do not use any type of regularization method
in all experiments.

For the join approach of 1-to-N and cross entropy (1-to-
N+CE), we use the following probability function:

eδ−[δ−f
Wyi

xi ]+∑
{xj |yj 6=yi}

e−δ+[δ+fWyi

xj ]+ +

K∑
k=1

ef
Wyk

xi
(14)

The probability function used for L1-to-N with [0, δ] bounded
margin varies only in the second term of the denominator in
Equation 8, replacing the term

∑
{xj |yj 6=yi} e

−δ+[δ+fWyi

xj ]+ by∑
{xj |yj 6=yi} e

[δ+fWyi

xj ]+ .
The size of the margin is one more hyperparameter that

depends on the dataset. Thus, we need to be careful about large
margin values. For instance, if we consider infinite margin
value the probability P (fWyi

xj ) could be maximum in the
middle of the positive samples producing a bad hyperplane
convergence.

B. Hyperparameter Details

For the MNIST and CIFAR-10 datasets, we train over the
90% of the training data and use the remaining 10% as

validation data. For the prediction step, we use the entire test
data.

In all our experiments, we use a batch size of 256, SGD with
RMSProp, batch normalization, without dropout. In addition,
we use data augmentation for CIFAR-10 and ImageNet32
consisting of horizontal flips, take random crops from image
padded by 4 pixels on each side and mean/std normalization.
We obtained accuracy results very close to the state of the
art on each dataset, using the following setup for training: for
the MNIST dataset, we use a learning rate of 0.01 and run
for 18 epochs of training for the cross entropy and 1-to-N
models, whereas we run for 30 epochs with the hinge loss
model. For the CIFAR-10 dataset, we use a learning rate of
0.1 with decay of 0.5 for every 6,000 steps and we run for 60
epochs of training for the cross entropy and 1-to-N models,
whereas we run for 100 epochs with the hinge loss model. For
the ImageNet32, we use a learning rate of 0.01 with decay of
0.2 for every 10 epochs, and momentum of 0.9. We run for 25
epochs of training for the cross entropy and 1-to-N models,
whereas we run for 30 epochs with the hinge loss model. These
results are very close to the state of the art on ImageNet32
using WRN-28-2 reported by Chrabaszcz et al. [19].

The accuracy value on a particular benchmark depends on
several details [21], among them, how complex the network
architecture is. The WRN-28-2 used on the CIFAR-10 and
ImageNet32 datasets is not a very complex model since our



main purpose is to introduce and show the advantages of our
formulation against cross entropy rather than to improve the
state of the art for each benchmark.

C. Generalization Robustness

Given a dataset, we randomly choose samples from the
training set to create small subsets by keeping a fraction of
the data. For example, on MNIST, a subset of 68 samples that
represent the 0.125% is the smallest subset (Figure 4). We
train (without using data augmentation) all the models using
the same subset and evaluate its performance on the entire
test set. With the goal to avoid bias about easy subsets that
would favor the performance of some particular method, we
compute the mean of the performance on 5 random subsets
for each subset (for instance, 5 subsets of 68 samples).

The performance result of the 1-to-N models with different
margin values for MNIST and CIFAR-10 datasets are shown in
Figure 4. The accuracy curves show that the 1-to-N approaches
were better than the cross entropy method especially for the
smallest subsets where the generalization is more important.
We did not observe conclusive results about the role of the
margin value. Thus, for the MNIST dataset, the methods with
large values obtained roughly higher accuracy, however, this
effect was not observed on the CIFAR-10 dataset.

D. Noise Label Robustness

Given a dataset, we create noisy data by randomly choose
a percentage of samples from the training set and randomly
exchange its labels by incorrect values (for instance, the label
‘1’ by the label ‘3’). The percentage of incorrect labels varies
from 0% to 80% of the train set as used by Elsayed et al. [4].
The new noisy set is used for all methods as training data,
the evaluation accuracy is computed on the entire test set
when each method achieves around 80% accuracy on the noisy
training set.

In a similar way to the generalization robustness exper-
iments, we do not use data augmentation and, to avoid
bias about easy noise data, we compute the mean of the
performance on 5 random noisy dataset (for example, 5 noisy
training sets created by change 20% of the training labels).

The performance result of the 1-to-N models with different
margin values on MNIST and CIFAR-10 datasets are shown in
Figure 5. The accuracy curves show that the 1-to-N approaches
were better than the cross entropy method. In a similar way to
the generalization results, we did not see conclusive results
about the role of the margin value for the both datasets,
because, on the MNIST dataset, the approaches with small
margin were better than those with large margin, however, for
CIFAR-10 dataset, this behavior was opposite.

E. Robustness Against Adversarial Examples Attacks

In the image data context, the adversarial examples look like
part of the training or testing sets, but contain imperceptible
perturbations designed to produce fool a machine learning
model [10]. There are several methods to create adversarial
examples, among the most commonly used are Fast Gradient

Sign Method (FGSM) [5] and its iterative extension, the
Basic Iterative Method [6], which can produce more rigorous
perturbations by applying FGSM for multiples times. In short,
we call it as IFGSM as used by Elsayed et al. [4].

Given a dataset, we use the training data to train all models.
Then, we choose some model to be “the attacker,” which
will generate adversarial examples from the entire testing data
with different levels of perturbation severity (ε) using the
IFGSM method. Then, “the defender” model will evaluate its
accuracy over the generated adversarial examples. In the black-
box attack, the “the defenders” and “the attacker” models are
different, whereas these models are the same as in the white-
box.

We perform the black-box attack using the cross entropy
approach and the defense using the 1-to-N and hinge loss
models with different margin values, whereas that, for the
white-box, we perform an attack and defense for each model.
The performance results for MNIST and CIFAR-10 datasets
are shown in Figures 6 and 7, respectively, whereas that, for
ImageNet32, the performance results are shown in Figure 8.3

The accuracy curves show that, for all attacks and all datasets,
the hinge loss and 1-to-N models were superior to the cross
entropy approach.

With respect to the black-box attack on the MNIST and
CIFAR-10 datasets, the hinge loss and 1-to-N obtained similar
accuracy, being hinge loss slightly better. The curves also show
that the approaches with small margin were better than those
with large margin in most of the cases. This behavior did not
happen on the ImageNet32 dataset, where the large margin
approach obtained better accuracy.

In the white-box attack over all datasets, the 1-to-N ap-
proaches were very superior to the hinge loss and the role
of the margin was clearer than in black-box, especially on
the CIFAR-10, where the approaches with large margin were
better than those with smaller margin value.

Finally, with respect to the bound margins, we see that the
methods that use [0,+σ] achieve better performance on all
the datasets than those that use [−σ,+σ]. In addition, the join
approach of 1-to-N and cross entropy (1-to-N+CE) led to a
boost to the cross entropy method evidenced in the accuracy
improvement obtained.

V. CONCLUSIONS AND FUTURE WORK

We introduced a broader idea of distance (1-to-N distance)
that allows us to derive a novel probability mapping function
(“like softmax”), which is the core of our loss formulation.
Our probability mapping explores the samples in the mini-
batch for its computation, instead of the hyperplanes for each
individual sample as the traditional softmax function. This is
a fundamental difference between them.

We performed empirical experiments from several variations
of 1-to-N models in different useful tasks and benchmarks,
showing that our formulation has better generalization and

3For clarity, we only show the results of three methods for the black-box
attack and the methods with larger margin value for the white-box attack.
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Fig. 4. Performance accuracy versus subsets of training data.
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Fig. 5. Performance accuracy versus different percentages of noise labels.
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Fig. 6. Performance accuracy versus different values of perturbation for MNIST dataset.

noise label robustness properties than the cross entropy. In
addition, the margin value makes it flexible to generalize
over adversarial example attacks. Therefore, for large margin
values, our approach is robust to white-box attacks, whereas
it is robust for black-box attacks for small values.

As directions for future work, we intend to improve and ex-
tend the 1-to-N formulation for many applications in different
classification scenarios.
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