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Abstract—Scene change detection is an image processing
problem related to partitioning pixels of a digital image into
foreground and background regions. Mostly, visual knowledge-
based computer intelligent systems, like traffic monitoring, video
surveillance, and anomaly detection, need to use change detection
techniques. Amongst the most prominent detection methods,
there are the learning-based ones, which besides sharing similar
training and testing protocols, differ from each other in terms
of their architecture design strategies. Such architecture design
directly impacts on the quality of the detection results, and also
in the device resources capacity, like memory. In this work,
we propose a novel Multiscale Cascade Residual Convolutional
Neural Network that integrates multiscale processing strategy
through a Residual Processing Module, with a Segmentation
Convolutional Neural Network. Experiments conducted on two
different datasets support the effectiveness of the proposed ap-
proach, achieving average overall F -measure results of 0.9622
and 0.9664 over Change Detection 2014 and PetrobrasROUTES
datasets respectively, besides comprising approximately eight
times fewer parameters. Such obtained results place the proposed
technique amongst the top four state-of-the-art scene change
detection methods.

I. INTRODUCTION

Scene change detection is a specific kind of image pro-
cessing task, that involves partitioning the digitalized cap-
tured scene into foreground and background pixel regions.
Such a processing strategy is frequently used in many visual
knowledge-based computer intelligent systems, such as traffic
monitoring [1], autonomous driving [2], object and people
tracking [3], action recognition [4], video surveillance [5],
and anomaly detection [6]. Each of those systems presents
its challenges for the change detection itself, such as: (a)
the shooting environment condition, (b) video capture device
quality, and also (c) local computer memory storage capacity.

Concerning some difficulties presented by (a), it can be
named a few ones such as shadows, low-light, specular reflec-
tions, and blizzard. Regarding (b), it can be noticed problems
with the device sensors, mostly due to subtle temperature vari-
ations and also issues related to digital noise, mainly generated
during analogic to digital signal conversion. Regarding (c),
the change detection technique must be adaptable to work in
mobile-reduced memory devices such as smartphones, tablets,
and drones.

†These authors contributed equally to this paper.

In the last few decades, in an attempt to solve problems
(a), (b), and (c), many scene change detection techniques
have been developed. They can be classified into two big
groups, i.e., the non-learning-based and the learning-based
ones. Amongst the non-learning-based group, one can refer to
the works of KaewTraKulPong and Bowden [7], Zivkovic [8],
and Varadarajan et al. [9], with a strong basis on statistical
parametric modeling of the scene changes. Considering the
same statistical domain, one can also encounter the works of
Bevilaqua et al. [10], and Lanza and Di Stafano [11], that
use nonparametric statistics for the scene change modeling.
Besides such mentioned techniques, it is possible to find more
simple and effective methods, which include SuBSENSE from
St-Charles et al. [12], PWCS from St-Charles et al. [13], and
IUTIS-5 from Bianco et al. [14].

The second group of change detection techniques includes
those methods capable of learning how to differentiate between
the foreground and background scene regions, that when
properly designed and trained, can easily adapt to difficult
change detection scenarios, as demonstrated by the works of
Wang et al. [15], that use a multistage and multiscale network
named Cascade, Babaee et al. [16], concerning the usage of a
multistage convolutional neural network named DeepBS, San-
tos et al. [17], which use a multistage residual convolutional
neural network named CRCNN, Santana et al. [18], which use
siamese-based change detection networks named SEU-Nets,
and Lim and Keles [19]–[20], that work with autoencoder
change detection convolutional neural networks FgSegNet M,
FgSegNet S, and FgSegNet v2.

Although the learning-based methods present state-of-the-
art results in the literature when compared against the non-
learning-based techniques, they are not yet capable at solv-
ing, at the same time, the problems (a), (b), and (c). The
CascadeCNN, DeepBS, and CRCNN techniques can be low
memory consumptive methods, but at the same time, do not
achieve FgSegNets results. On the other hand, in the case of
the FgSegNets, better detection results implicate high memory
consumption.

In this work, we attempt to improve the effectiveness of the
CRCNN method in dealing with problems (a) and (b), trying
to maintain the technique already good compromise with the
problem (c). In that sense, we propose four modifications to
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Fig. 1. Architecture of the proposed MCRCNN model, where the output of the residual processing module RPM is depth-wise concatenated to the 15th
SCNN convolutional layer feature maps. CONV stands for convolutional layers, while IBN and IIN indicate, respectively, the interleaved batch normalization
and instance normalization layers, which applied at every three subsequent convolutional layers.

improving the CRCNN method. Such changes include: (i)
Multiscale residual map processing (ii) Multistage training
using high-level feature aggregation policy (iii) Interleaved and
hybrid intralayer feature normalization using batch [21] and
instance [22] normalization strategies, and (iv) color image
processing.

The remaining of this manuscript is divided into Section II,
describing the theoretical basis of the proposal, Section III,
presenting the proposal training and evaluation methodology,
Section IV, presenting and discussing the quantitative and
qualitative obtained results, and Section V, showing the con-
clusion of this work and pointing towards future research
directions.

II. PROPOSED APPROACH

In this work, we propose a learning-based scene change
detection technique named Multiscale Cascade Residual Con-
volutional Neural Network (MCRCNN). Such a proposal is
based on the work of Zhang et al. [23], concerning the usage
of residual learning and on the work of Santos et al. [17],
regarding the usage of a multistage cascaded convolutional
neural network for scene change detection. Figure 1 summa-
rizes the MCRCNN proposal, which consists of a two-stage
deep convolutional neural network composed of 20 layers and
a multiscale Residual Processing Module (RPM).

The first stage of the MCRCNN model consists of learning
how to generate the so-called residual map, as described
in more detail in Subsection II-A. In the second stage, the
multiscale processed residual map, as described by Subsec-
tion II-B, is integrated into the change detection network,
whose functionality is described by Subsection II-C.

A. Background Convolutional Neural Network

The first change detection stage of the MCRCNN model,
named Background Convolutional Neural Network (BCNN),

is responsible for generating a foreground highlighted image,
such as the vehicles in Figure 1. The BCNN architecture is
very similar to the Denoising Convolutional Neural Network
(DnCNN) proposed by Zhang et al. [23]. As shown by
Figure 1, it starts with a single convolutional layer, shown in
orange color, gets deeper with the insertion of 15 more convo-
lutional layers, represented by the blue-colored rectangle, and
ends with a single convolutional layer, shown in green color.

Blue-colored and orange-colored layers in Figure 1 are
locally activated by Rectified Linear Unity (ReLU) func-
tions [24], use kernels of size 3×3, and output 64 feature maps
each. The green-colored layer is linearly activated, uses kernels
of size 3× 3, and outputs the residual map color image. One
particularity of the blue-colored layers is the Interleaved Batch
Normalizations (IBNs), which are batch normalization [21]
operations applied at intervals of three layers, just before the
ReLU activation procedure. Such a strategy tries to equally
distribute the normalization procedure along the entire network
avoiding processing overhead, also diminishing the network
memory consumption.

The BCNN training procedure follows the same principles
of the CRCNN work [17]. It consists of two phases: the first
one takes an interval I = {S1, S2, ..., Sm} of consecutive
frames from the video and uses it to calculate the deterministic
background image, which stands for an image s that represents
the median of such an interval1. The second phase consists of
minimizing the accumulated2 square error between the deter-
ministic background image and the approximated background
image b, which is represented as follows:

1The same procedure was adopted by Lanza et al. [10]. Other alternatives
would be using auxiliary non-learning-based segmentation techniques, like
performed by Babaee et al. [16], or even manually selection.

2Minimizing the sum rather than the mean cost value imposes to the
optimization an even bigger penalization.



b = f −BCNN(f ; Θ1), (1)

where f denotes the input image normalized between [0, 1],
Θ1 refers to the BCNN trainable parameters, and BCNN(·)
refers to the residual map learned during the training process.
In light of that, the BCNN training process aims at minimizing
the following equation:

LB(b, f ; Θ1) =
1

2

n∑
i=1

||bi − si||2F , (2)

where n stands for the number of training samples and || · ||2F
represents the Frobenius norm. Notice that we employed a
patch-based methodology, where bi and si denote the ith patch
extracted from images b and s, respectively.

B. Residual Processing Module

The Residual Processing Module (RPM) design was in-
spired by the Feature Processing Modules FPM [19] and
FPM M [20]. It serves mainly to improve the BCNN residual
map quality treating undesirable spatial coherence problems.
As shown by Figure 2, RPM starts by applying, over the resid-
ual map, a Spatial Dropout (SD) pre-processing technique,
which according to Hinton et al. [25] is a very efficient strategy
to prevent the network parameters from overspecialization.
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Fig. 2. Residual Processing Module architecture.

After the SD regularization, the residual map is conducted
to the multiscale processing stage, where it is convolved by
dilated3 filters at rates of 4, 8, 16, and 32. The dilation results
are then activated by ReLU functions, which generate the
feature maps F1 to F4.

Such generated feature maps are next depth-wise concate-
nated into F5 and convolved by a single 1×1 filter, producing
the local linear-combined map P. In the last RPM processing
step, P is smoothed by an average pooling layer of window
size 4 × 4, generating the refined residual map R’, that after

3Such a strategy tries to simulate the usage of kernel sizes of respectively
7× 7, 11× 11, 18× 18, and 35× 35.

has been properly normalized4, is used in the second stage of
the MCRCNN proposed model.

C. Segmentation Convolutional Neural Network

The second stage of the MCRCNN model is named Seg-
mentation Convolutional Neural Network (SCNN) and it is
responsible to generate the probability map identifying, with
real values between [0, 1], the image change locations, also
called foreground regions. In this multiscale version of the
CRCNN proposed by Santos et al. [17], the RPM output (see
Subsection II-B for more details) is depth-wise concatenated
with the 15th SCNN convolutional layer output5. The resultant
block of 65 feature maps is then convolved by a single filter
of size 3× 3 and activated by a sigmoid function, been such
convolutional process represented in Figure 1 by the yellow
rectangle.

The SCNN normalization policy follows the BCNN one, but
in such case, the IBNs are substituted6 by Interleaved Instance
Normalizations (IINs) [22]. The training process follows the
work by [17], which aims at minimizing the average binary
cross-entropy measured between the network output and the
ground-truth binary detection mask. Such an image corre-
sponds to the pre-annotated true foreground regions present
in the grayscale input image. Therefore, the SCNN training
process aims at minimizing the following equation:

LS(t, f ; Θ2) = −
k1∑
i=1

k2∑
j=1

[ti,j log(t̂i,j) +

(1− ti,j) log(1− t̂i,j)],

(3)

where
t̂ = SCNN(f ; Θ2), (4)

notice that t is the ground-truth pre-annotated binary mask,
Θ2 stands for the SCNN trainable parameters, f indicates
the SCNN input color image, the same BCNN input image,
and k1 and k2 denote the maximum image height and width,
respectively.

III. METHODOLOGY

In this section, we present the methodology used to train
and evaluate the proposed MCRCNN model. To simplify the
explanation we structured it into Subsection III-A, which
presents the relevant information about the datasets used
in this work, Subsection III-B, that describes the proposal
training procedures, and Subsection III-C, which discuss the
MCRCNN evaluation protocol.

4The values of the output of the RPM module are normalized between
[0, 1] using min-max normalization.

5Such output comprehends a set of 64 feature maps activated by ReLU
function.

6Since the SCNN optimization consists in using the full-sized images, IN
processing adapts better than BN ones.



A. Datasets

1) Change Detection Dataset 2014: The Change Detection
Dataset 2014 (CD2014) is a large and freely available dataset
of videos collected by Wang et al [26] from different realistic,
camera-captured, and challenging scenarios. Such a dataset
contains 11 video categories with 4 to 6 video sequences each,
subdivided into:

• Baseline: combines mild challenges present in Dynamic
Background, Camera Jitter, Intermittent Object Motion,
and Shadow categories into four different videos named
highway, office, pedestrians, and PETS2006.

• Dynamic Background (Dyn. Bg.): includes scenes from
six different videos with so much background motion,
e.g., cars and trucks passing in front of a tree shaken.
Such video names are boats, canoe, fall, fountain01,
fountain02, and overpass.

• Camera Jitter (C. Jitter): contains four indoor and
outdoor videos captured by unstable video devices, for
example vibrating cameras. Those video names are bad-
minton, boulevard, sidewalk, and traffic.

• Intermittent Object Motion (Int. Obj.): contains six
videos with objects that move and then stop for a short
while producing “ghosting” artifacts. Such video names
are abandonedBox, parking, sofa, streetLight, tramstop,
and winterDriveway.

• Shadow: six indoor and outdoor videos containing ob-
jects surrounding by a strong shadow that could be miss
detected as real moving objects. Such video names are
backdoor, bungalows, busStation, copyMachine, cubicle,
and peopleInShade.

• Thermal: five videos that have been captured by far-
infrared cameras named corridor, diningRoom, lakeSide,
library, and park.

• Bad Weather (B. Weat.): includes four outdoor videos
captured from challenging winter weather conditions,
e.g., snowstorms, and fog. Such video names are blizzard,
skating, snowFall, and wetSnow.

• Low Framerate (L. Frame.): four videos captured
varying frame-rates between 0.17fps and 1fps. Such
video names are port 0 17fps, tramCrossroad 1fps, tun-
nelExit 0 35fps, and turnpike 0 5fps.

• PTZ (PanTZ): four videos captured by pan-tilt-zoom
cameras and named continuousPan, IntermittentPan,
twoPositionPTZCam, and zoomInZoomOut.

• Turbulence (Turbul.): four outdoor videos that show
air turbulence caused by rising heat. Which are named
turbulence0, turbulence1, turbulence2, and turbulence3.

2) PetrobrasROUTES: The PetrobrasROUTES is a private
dataset which consists of 281 high-resolution color images
collected from an indoor Petrobras7 workspace. The main
challenge of such a dataset regards the detection of objects
obstructing escape routes.

7Petrobras is a publicly-held company on an integrated basis and specialized
in the oil, natural gas, and energy industry [27].

B. Training procedure

The training procedure methodology follows basically the
same protocols of [17], where for the CD2014 dataset consist
of:

1) to select 300 color images8 and their 300 correspondent
binary images, which were ground-truth manually anno-
tated.

2) to calculate the deterministic background over the first
100 images.

3) to train the BCNN network using batches of randomly
extracted patches of size 40 × 40, like in [23], from
the input and output background images to minimize
the cost of Equation (2). The patches were augmented
using geometric transformations, such as rotation and
reflection.

4) to freeze all BCNN network trainable parameters and
just train the second MCRCNN part, the SCNN network,
and also the RPM module using the full-sized images
to minimize the cost of Equation (3).

For the PetrobrasROUTES the training procedure consists
in:

1) to select 51 color images and their 51 correspondent
binary images, which were ground-truth manually an-
notated.

2) to manually select one of the 51 color images to be the
deterministic background.

3) to follow the same steps 3) and 4) from the CD2014
dataset training protocol.

The BCNN, RPM, and SCNN parameters were trained
using the Adam method [28] by a maximum of 100 epochs9,
with 500 gradient updates per epoch, using a learning rate10

of 0.001 and batches of size 128 for the BCNN training
process. We trained the MCRCNN parameters with 80% of
the input images and used the remaining 20% to evaluate the
convergence of the training process.

C. Evaluation procedure

The evaluation process consists in to apply the trained
MCRCNN model over each video test image following the
protocol:

• Deep Segmentation: first forward propagating the test
images through the trained BCNN model, generating
the residual image counterpart, and through the trained
SCNN model. Before the last SCNN convolution, we
concatenate the residual image to the 15th SCNN con-
volutional layer outputs. Later, we binarized11 the SCNN
probabilistic output.

8We used the same set of training images from [20] to train the proposed
MCRCNN model.

9Depending on the training video sequence, convergence can be achieved
in less than 100 epochs.

10The initial value is reduced by a factor of 0.1 every time the loss function
hits a plateau.

11In the majority of the experiments, the best threshold value was 0.7,
except for the categories B. Weat, Dyn. Bg., Int. Obj., and N. Videos, which
used values of respectively 0.8, 0.9, 0.6, and 0.9.



TABLE I
COMPARISON OF F-MEASURE RESULTS OF 11 CATEGORIES FROM CD2014 DATASET

Methods Baseline C.Jitter B.Weat Dyn.Bg. Int.Obj. L.Frame. N.Videos PanTZ Shadow Thermal Turbul. Overall

FgSegNet v2 [20] 0.9980 0.9961 0.9900 0.9950 0.9939 0.9579 0.9816 0.9936 0.9966 0.9942 0.9815 0.9890

FgSegNet S [19] 0.9980 0.9951 0.9902 0.9902 0.9942 0.9511 0.9837 0.9837 0.9967 0.9945 0.9796 0.9878

FgSegNet M [19] 0.9975 0.9945 0.9838 0.9838 0.9933 0.9558 0.9779 0.9779 0.9954 0.9923 0.9776 0.9865

MCRCNN 0.9938 0.9889 0.9632 0.9811 0.9893 0.8619 0.9428 0.9344 0.9906 0.9765 0.9635 0.9622

CRCNN [17] 0.9919 0.9799 0.9569 0.9687 0.9755 0.8498 0.9388 0.8967 0.9852 0.9818 0.9637 0.9535

Cascade [15] 0.9786 0.9758 0.9451 0.9451 0.8505 0.8804 0.8926 0.8926 0.9593 0.8958 0.9215 0.9272

DeepBS [16] 0.9580 0.8990 0.8647 0.8647 0.6097 0.5900 0.6359 0.6359 0.9304 0.7583 0.8993 0.7593

IUTIS-5 [14] 0.9567 0.8332 0.8289 0.8289 0.7296 0.7911 0.5132 0.5132 0.9084 0.8303 0.8507 0.7820

PAWCS [13] 0.9397 0.8137 0.8059 0.8059 0.7764 0.6433 0.4171 0.4171 0.8934 0.8324 0.7667 0.7477

SuBSENSE [12] 0.9503 0.8152 0.8594 0.8594 0.6569 0.6594 0.4918 0.4918 0.8986 0.8171 0.8423 0.7453

• Misclassification Rate: in such a step, we calculated the
number of correct and incorrect detections encoded by the
True Positives (TPs), i.e, the number of pixels correctly
classified as foreground, the True Negatives (TNs), i.e.,
the number of pixels correctly classified as background,
the False Positives (FPs), i.e., the number of background
pixels incorrectly classified as foreground, and the False
Negatives (FNs), i.e., the number of foreground pixels
incorrectly classified as background.

• Detection Measurements: in such a step, (TPs), (TNs),
(FPs), and (FNs) are combined into four different mea-
sures used to evaluate the robustness of the proposed
MCRCNN model. Those measures are computed as fol-
lows:

Precision =
TP

TP + FP
, (5)

Recall =
TP

TP + FN
, (6)

F −measure = 2.0× Recall × Precision

Recall + Precision
, (7)

and

PWC = 100.0× FN + FP

TP + FP + FN + TN
(8)

where PWC denotes the percentage of wrong classifications.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of the proposed
MCRCNN method regarding the comparison against the non-
learning-based change detection techniques, IUTIS-5 [14],
PAWCS [13], SuBSENSE [12], and the learning-based ones

FgSegNet v2 [20], FgSegNet S [19], FgSegNet M [19], Cas-
cade [15], DeepBS [16], and CRCNN [17].

For the sake of clarity, the discussion is subdivided into
Subsection IV-A, which presents the quantitative and qual-
itative results related to the CD2014 dataset, and Subsec-
tion IV-B, which presents the results regarding Petrobras-
ROUTES dataset.

A. CD2014 Dataset Results

According to Table I, the MCRCNN proposal, in compar-
ison against SuBSENSE, PAWCS, and IUTIS-5 techniques,
shows average overall F -measure improvements of 0.2169,
0.2145, and 0.1802, respectively. In the worst-case scenario,
considering the comparison against the learning-based tech-
niques, MCRCNN average overall F -measure results were
lower than FgSegNet v2, FgSegNet S, and FgSegNet M by
respectively 0.0268, 0.0256, and 0.0243. Table I also shows
that MCRCNN average overall F -measure results overcome
DeepBS, Cascade, and CRCNN ones. In such cases, the results
were improved by respectively 0.2029, 0.035, and 0.0090,
respectively.

Analyzing Table II, one can see that the proposed tech-
nique, in the best-case scenario, achieved improvements in
Precision, Recall, and PWC of respectively 0.2196, 0.1969,
and 1.8883, regarding the comparisons against SuBSENSE
and DeepBS techniques. Table II also shows that even so
MCRCNN was not capable to overcome the FgSegnets, it gets
close Precision results of 0.0046 and 0.0053 in comparisons
against FgSegNet S and FgSegNet M, respectively.

It is worth noting that even so the FgSegNets quantitative
results, presented by Tables I and II, overcome the MCRCNN
method, our proposal network architecture is much more
compact. It has a total of 1, 116, 618 parameters, while the top
two ranked techniques, i.e., FgSegNet v2 and FgSegNet S,
comprise an amount of 9, 225, 161 and 7, 622, 465 parameters,
respectively. Besides, even considering the RPM module size,
the MCRCNN almost preserves the same CRCNN size of
1, 112, 720 parameters.



TABLE II
COMPARISON OF PRECISION, RECALL AND PWC OVERALL RESULTS

FROM CD2014 DATASET.

Methods Avg. Precision Avg. Recall Avg. PWC

FgSegNet v2 [20] 0.9823 0.9891 0.0402

FgSegNet S [19] 0.9751 0.9896 0.0461

FgSegNet M [19] 0.9758 0.9836 0.0559

MCRCNN 0.9705 0.9514 0.1037

CRCNN [17] 0.9604 0.9602 0.1348

Cascade [15] 0.8997 0.9506 0.4052

DeepBS [16] 0.8332 0.7545 1.9920

IUTIS-5 [14] 0.8087 0.7849 1.1986

PAWCS [13] 0.7857 0.7718 1.1992

SuBSENSE [12] 0.7509 0.8124 1.6780

According to Figure 3, when comparing the MCRCNN
foreground detection masks in row (d) with the CRCNN masks
in row (e), it can be noticed that MCRCNN exhibit more
problems related to false negatives, been those problems more
pronounced in Bad Weather and Shadow category scenes. The
first one regards the incomplete detection of the truck body,
and the second one concerns the middle person foot and the
people heads. Such observations corroborate with the average
overall MCRCNN Recall results presented by Table III.

According to Figure 3, the images from row (f) show that
the Cascade technique also has some difficulties to detect
changes in the Bad Weather and Shadow categories. It presents
even worst false negative issues, as it can be seen by the barely
detected truck body in the Bad Weather scene, and by the
undetected person’s head in the Shadow scene. Also, regarding
the Shadow category, different from MCRCNN, CRCNN, and
FgSegNet v2 techniques, Cascade was not able to avoid the
false positive shadow regions.

Besides the foreground masks, row (b) of Figure 3 shows
us the BCNN normalized residual map. As it can be noticed,
the miss detected foreground regions are pretty much related
to the dark residual map regions. In such cases, we argue
that the RPM dilation processing strategy was not capable of
properly fill those map holes, which could contribute to the
SCNN paying less attention to such regions during its training
procedure.

B. PetrobrasROUTES Dataset Results

Considering the experiments conducted over the Petro-
brasROUTES dataset, Table III shows that the MCRCNN
results overcome learning-based state-of-the-art change detec-
tion techniques like FgSegNet v2, FgSegNet S, and CRCNN
in terms of at least three of the four used detection measure-
ments.

According to Table III, in the best case scenario, regard-
ing the comparison against the FgSegNet v2 technique, the
MCRCNN method exhibit improvements of 0.0524, 0.1084,
and 0.3535 in terms of F -measure, Recall, and PWC

TABLE III
COMPARISON OF PRECISION, RECALL AND PWC OVERALL RESULTS

FROM PETROBRASROUTES DATASET.

Methods F-measure Precision Recall PWC

FgSegNet v2 [20] 0.9095 0.9672 0.8583 0.5831

FgSegNet S [19] 0.9221 0.9770 0.8732 0.4287

MCRCNN 0.9664 0.9661 0.9667 0.2296

CRCNN [17] 0.9619 0.9611 0.9627 0.2218

measurements, respectively. In the worst case scenarios, the
MCRCNN comparisons against FgSegNet S and CRCNN
exhibit worsen results of 0.0109 and 0.0078 in terms of
respectively Precision and PWC measurements.

Concerning the detection quality analysis, Figure 4(c) shows
that MCRCNN was able to produce a much more pre-
cise foreground object detection mask in comparison against
FgSegNet v2, whose results were severed affected by false
negatives, as shown by Figure 4(e). On the other hand, even
so in Figure 4(c) most of the object shape was recovered,
in comparison against Figure 4(d), which shows the CRCNN
results, and against Figure 4(b), which shows the reference
ground-truth mask, the MCRCNN technique presents more
false positive areas around the detected foreground object.

V. CONCLUSION

In this work, we proposed a novel Cascade Residual
Convolutional Neural Network that integrates a multiscale
processing strategy (through a developed residual processing
module) with a learning-based segmentation mechanism in
an attempt to solve the scene change detection problems.
Regarding tests conducted over CD2014 dataset, the proposed
MCRCNN model achieved results close to the state-of-the-
art change detection techniques. The proposal was capable of
overcoming three supervised learning-based change detection
methods and three other non-learning based ones. Even so the
MCRCNN did not overcome the FgSegNet v2, FgSegNet S,
and FgSegNet M techniques regarding CD2014 dataset, it
proven to be much more compact, i.e., around 8× smaller
than the best scored FgSegNet v2 technique in the number of
network parameters. Regarding the test conducted over Petro-
brasROUTES dataset, the proposed MCRCNN model outper-
formed the top two state-of-the-art techniques FgSegNet v2
and FgSegNet S, and also the CRCNN method. Regarding
future works, we pretend to focus our investigation in the
MCRCNN false negative problem, conducting a more careful
analysis of the RPM filter. We also intend to search for other
possible ways to improve the residual learning process and
also explore different ways of integrating the residual learned
map with the second stage MCRCNN segmentation network.
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Fig. 3. Qualitative results considering the categories “Bad Weather”, “Low
Framerate”, and “Shadow” from CD2014 dataset: (a) input RGB frame, (b)
MCRCNN residual maps, (c) ground-truth detection masks, results concerning
(d) proposed MCRCNN, (e) CRCNN, (f) Cascade and, (g) FgSegNet v2.
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Fig. 4. Qualitative results considering an obstructed route video scene
from PetrobrasROUTES dataset: (a) input RGB frame, (b) ground-truth
detection mask, and results concerning (c) MCRCNN, (d) CRCNN and (e)
FgSegNet v2 techniques.


