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Abstract—The unpaired image-to-image translation consists of
transferring a sample a in the domain A to an analog sample
b in the domain B without intensive pixel-to-pixel supervision.
The current vision focuses on learning a generative function that
maps both domains but ignoring the latent information, although
its exploration is not explicit supervision. This paper proposes
a cross-domain GAN-based model to achieve a bi-directional
translation guided by latent space supervision. The proposed
architecture provides a double-loop cyclic reconstruction loss in
an exchangeable training adopted to reduce mode collapse and
enhance local details. Our proposal has outstanding results in
visual quality, stability, and pixel-level segmentation metrics over
different public datasets.

I. INTRODUCTION

Image-to-image translation [1] aims to learn a mapping
function to convert an image from a source domain to a
target domain while preserving its semantic presentations.
This problem implies a wide range of computer vision ap-
plications beyond style transfer, such as high-quality image
generation [2], [3], inpainting [4], [5] and segmentation [6],
[7]. Traditionally, those were pixel-to-pixel supervised tasks
that required a big amount of paired data which itself is a hard
task. To overcome this problem, the majority of authors have
adopted unsupervised learning methods, especially explorative
GAN-based approaches. Domain exploration is not explicit
supervision, then non-explorative GAN models do not unravel
critical features.

According to Zhang et al. [8], the main benefit of GANs
inside the image-to-image translation is the image-level feed-
back which better per-pixel information. Nevertheless, GAN
models fail when image-level feedback collapse as an overfits
consequence in a set of unpaired domains. Zhu et al. [9] in-
troduce a cyclic architecture, called CycleGAN, to perform an
exploratory translation without paired data. In every iteration,
the latent vectors from both domains are forced to match while
exchanging source A and target B domain, iteratively. Cycle-
GAN establishes a bi-directional correspondence reinforced by
a loop which ensures that a sample a ∈ A is the same one
after mapping (A → B) and mapping back (B → A). This
setting lacks a mechanism to enforce the translation regularity
resulting in undesirable semantic changes.

This research paper proposes a double-cycle GAN-based
architecture considering latent space as a transferable domain

to overcome the mode collapse and preserve quality and
resolution. This manifold learning approach alongside a self-
regularization term encourages the translation regularity. We
use Wasserstein distance to blunt known GAN-based model
failures, like vanishing gradient and divergence. Furthermore,
every control-loop has different loss functions to prevent
distortions in domain-specific attributes. We run experiments
in various public datasets1 for style transfer and image seg-
mentation. In both cases, our proposal achieves noticeable
results, quantitatively and qualitatively, which implies a large
improvement over CycleGAN.

II. PRIOR WORKS

Currently, there are two main approaches regarding the
image-to-image translation task in the deep learning era. In
the first one, the latent space disentangles into independent
and specific features to model an explicit mapping function
[10]–[12]. While, the second one includes cyclic architectures
techniques to achieve a cross-domain translation by the im-
plicit exploration of latent spaces [9], [13]–[16]. This review
only covers the second approach, although it includes some
essential details from the first one.

A. Non-Cyclic Architectures

Before Isola et al. [1] pioneered deep learning approach
for the image-to-image translation, there were prior attempts
such as image analogies [17] and exemplar-based procedures
[18]. Isola et al. [1] connect various domains by a pixel-
level reconstruction considering supervision constraints, al-
though useful, it requires a wide amount of paired data.
To overcome pixel-level supervision requirements and dataset
constraints, several authors propose techniques for unpaired
datasets [9], [13], [15], [19]–[21]. Gatys et al. [19] develop
an encoding/decoding procedure to transfer style vectors from
the source domain to a white noise vector, iteratively. Next,
Gatys et al. [20] expand their previous approach by extracting
content and style from two different domains and transfer them
to a white noise vector.

Since GAN-based models explore latent spaces to learn
high-representative latent vectors and manifold-domain cor-
relations [22], multiples works propose enhancements over

1http://people.eecs.berkeley.edu/∼taesung park/CycleGAN/datasets/



vanilla GAN to face the unpaired image-to-image translation
problem. Taigman et al. [23] present a domain transfer net-
work (DTN) composed by multiclass GAN loss, a constancy
component, and regularization. DTN has an autoencoder as the
generator while exchanging domains. Zhang et al. [8] intro-
duce a smoothness term to attain harmonic functions to enforce
consistent mappings. Their model, call HarmonicGAN, based
on similarity-consistency metrics reduces semantic variations
in translation. Zhu et al. [13] perform a generative visual
manipulation on several natural domains by latent operations
with manifold smoothness expressed in terms of constrained
optimization.

B. CycleGAN-based Architectures

Dual learning approach imports machine translation [24]
concepts and models, including cycle consistency GANs [9].
The CycleGAN provides a bi-directional prediction by ex-
changing source and target domain every iteration. Notwith-
standing, Zhu et al. [25] argue that mapping functions are am-
biguous, then a low-dimensional latent vector may be linked to
multiple feasible translations. Thereon, they explicitly boost la-
tent encoding and output to prevent the many-to-one mapping
or mode collapse problem. In the Dual-GAN architecture [15],
each generator maps a real and generated sample from one
domain to the other while producing generated samples from
real ones. Hiasa et al. [26] focus on MRI contrast correction
for bone structures by translating CT-style by a gradient-
consistency loss to enhance the resolution at the boundaries.

Cross-domain architectures lack quality in high-resolution
and different domains [14]. Thereon, recent efforts [14], [27],
[28] aim to disentangled high-representative latent features
to overlook quality and ambiguity problems. Li et al. [14]
decompose translations into multi-stage transformations by
Stacked Cycle-Consistent Adversarial Networks. Lee et al.
[27] take advantage of ambiguity to achieve a diversity-model
using a domain-invariant content space and a domain-specific
attribute space. Following the cross-domain disentanglement
concept, Gonzalez et al. [28] distribute the internal features
into exclusive and shared representations via cross-domain
autoencoders.

III. BACKGROUND

Before methods, we explain most in-depth the basic con-
cepts used by the state-of-the-art, including autoencoders,
generative adversarial networks, and the CycleGAN.

A. Autoencoders

As Figure 1 illustrates, autoencoders contain two chained
networks: An encoder e which reduces the input’s complexity
to a low-level domain (ZX ) and a decoder d which reconstructs
the original data. This arrangement accomplishes a representa-
tion that tends to resemble the optimal latent space. Classical
autoencoders work well-enough for denoising, visualization,
and very-simple images synthesis. Nonetheless, they fail in
complex-domain mapping due to the complexity and discon-
tinuity of latent spaces. Thereon, several improvements have

been proposed to overcome its limitations and to extend its
range of applications. Equation 1 presents the loss function,
known as reconstruction loss Lress, and evaluates the distance
between the original sample (X) and the reconstructed one
(X ′) using norm-1.
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Fig. 1. Autoencoder architecture. e encodes a original sample x ∼ X into a
latent vector Zx, then d decodes Zx to get a reconstructed sample x′.

Lress =
1

n

n∑
i=0

||x′i − xi||1 (1)

B. Generative Adversarial Networks - GANs

Goodfellow et al. [22] proposed a generative model based on
adversarial learning. GANs re-sample the domain distribution
ρr by a competitive game between a generator G and a binary
discriminator D. D has to maximize real/fake classification,
while G tries to trick D by improving fakes. A random vector
(z ∼ ρz) feeds G to generate a fake sample (x ∼ ρg). The
adversarial loss LGAN (Equation 2) represents a min-max ad-
versarial game, where D(x, θd) maximize log(D(x)) whereas
G(z, θg) minimize log(1 − D(G(z))). LGAN prioritizes the
performance of G, nonetheless, D normally overcome G.
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Fig. 2. The generator G maps a noise vector z ∼ Z to get a synthetic
sample G(z). Then, both the false G(z) and the original x samples feed the
discriminator D, which tries to predict whether the samples are real or fake.

min
G

max
D
LGAN (D,G) = Ex∼ρr(x)[log(D(x))]

+Ez∼ρz(z)[log(1−D(G(z)))]
(2)

There are two main problems in GANs training [3], [29]–
[31]. First, LGAN means a two-player non-cooperative game
with continuous updating; hence, it is hard to achieve Nash
equilibrium. Second, the vanishing gradient problem arises
with sigmoid cross-entropy loss [29]. To overcome these
problems, we adopt the least-squares loss instead of sigmoid
cross-entropy loss (Equations 3 and 4), and a better metric
of distribution similarity. Arjovsky et al. [30] introduce the
Wasserstein-GAN (WGAN), which uses Wasserstein distance
as the loss function (Equation 6). The Wasserstein distance is



the minimum energy cost required to modify the shape of one
distribution to another distribution. Given G(z, θg) distribution
(ρg) and the real distribution (ρr), then, Equation 5 shows the
Wasserstein (W) distance between ρr and ρg .

max
D
LLSGAN (D) =

1

2
Ex∼ρr(x)[(D(x)− 1)2]

+
1

2
Ez∼ρz(z)[(D(G(z)))2]

(3)

min
G
LLSGAN (G) = Ez∼ρz(z)[(D(G(z))− 1)2] (4)

W(ρr, ρg) = Inf
γ∼

∏
(ρr,ρg)

E(x,y)∼γ [‖x− y‖] (5)

LWGAN (ρr, ρg) =W(ρr, ρg) = max
D

Ex∼ρr [D(x)]

−Ez∼ρr(z)[D(G(z))]
(6)

C. Cycle Consistency GANs - CycleGANs

Being A and B two unpaired domains, and GA and GB their
one-way mapping functions, respectively. Then, GA transfer
the features from A to B, and GB from B to A. Meanwhile,
discriminators (DA and DB) tries to classify the real samples
X from fakes (X∗) given by the opposed generator. GA
and GB are cross-domain autoencoders, such that, GB(A) =
dB(eA(A)) = B∗ and GA(B) = dA(eB(B)) = A∗. Fig-
ure 3 shows that reconstructions (Xr) are obtained when a
generator maps X∗, thereupon, dA(eB(B∗)) = Ar ≈ A and
dB(eA(A

∗)) = Br ≈ B. Finally, the CycleGAN loss function
(Equation 8) includes both LGAN and cycle reconstruction
error Lcycle (Equation 7) weighted by a factor λ.
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Fig. 3. A → B: GA transfers a ∈ A to b∗ ∈ B∗. B → A: GB transfers
b ∈ B to a∗ ∈ A∗. Meanwhile, DA and DB try to recognize the original
samples (x) from fakes (x∗).

Lcycle(GA, GB) =EA∼ρr(A)[‖GA(GB(A))−A‖1]
+EB∼ρr(B)[‖GB(GA(B))−B‖1]

(7)

LCycleGAN = LGAN (DA, GA) + LGAN (DB , GB)

+λLcycle(GA, GB)
(8)

IV. DOUBLE-CYCLE GAN ARCHITECTURE

Our proposal is a double-cycle GAN architecture that
considers latent spaces an intermediate domain to support
translation. We use feedback loops to control the transfer
quality considering a consistency cycle loss function per
loop. Furthermore, generators are cross-domain autoencoders
composed of many ResNet blocks to face the vanishing
gradient problem inside the translation stage. Figure 4 shows
an extended CycleGAN architecture with the latent-domain
Z. Thus, ZA = eA(A) ∧ ZB = eB(B) are the latent vectors;
while, B∗ = dB(ZA)∧A∗ = dA(ZB) are the transferred style
samples from the pixel-level domains.

A eA B*dB
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GB

Fig. 4. Latent-space Z as a low-dimensional domain to support the translation.

The vanishing gradient problem affects the transference
quality in every loop over time. To overcome its effects,
we add reconstruction loops and reconstructed variables (Xr)
which come from mapping a transferred variable (X∗). Hence,
Xr ≈ X including latent vectors Z, which play a control vari-
ables role inside every cycle (Equation 9). Figure 5 illustrates
the reconstruction cycle pipeline regardless of domain. Finally,
Equation 10 is the reconstruction loss at pixel-level given the
current setting.

LcycleZ (eA, eB , dA, dB) = EA∼pr(A)[||zrA − zA||1]
+EB∼pr(B)[||zrB − zB ||1]

(9)

Lress(eA, eB , dA, dB) = EB∼pr(A)[||Bi −B||1]
+EA∼pr(B)[||Ai −A||1]

(10)
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Fig. 5. Reconstruction cycle: eB(B∗) = Zr
A ≈ ZA and dA(eB(B∗)) =

Ar ≈ A are reconstructed samples.
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Fig. 6. Double-cycle GAN architecture. A → Ar : e encodes a ∈ A into za ∈ ZA, then dB decodes za to get a transferred sample b∗ ∈ B∗. The
reconstruction cycle closes to get the reconstructed samples at pixel-level (ar ∈ Ar) and latent-level zra ∈ Z∗A. B → Br : the second cycle follows the same
statements but exchanging A and B. Discriminators (DA and DB) learn to differentiate between real and transferred samples. Discriminator DZ helps to
avoid overfitting and/or mode collapse inside feature vectors.

We join both reconstruction cycles (A → Ar and B →
Br) using the same encoder to create a continuous latent
space for both domains. Therefore, latent vectors Z begin
to resemble their reconstructed versions Zr, and decoders
become the primary support of translation. Figure 6 presents
a full view of our architecture. As can be seen, ZA = e(A),
ZB = e(B), dB(ZA) = B∗ and dA(ZB) = A∗, being A∗ and
B∗ transferred samples. From both reconstruction cycles, we
establish that ZrA = e(B∗), ZrB = e(A∗), dA(ZrA) = Ar and
dB(ZB) = Br. Discriminators work like in the CycleGAN,
also, we add a latent-variable discriminator DZ . DZ aims to
distinguish ZA from ZB to homogenize their latent vectors
and unfold the hidden information.

A. Loss Function

We import the WGAN loss functions to the cyclic loss
to face instability and the mode collapse. Due to the high-
hierarchy, we split the adversarial loss into the generator
loss (Equations 12) and the discriminator loss (Equations
11). Further, a saturation block prevents overflow-values in
discriminator training.

LGAN (D) = EA∼ρr(A)[min(0,−1 +D(A))]

+Ez∼ρz(z)[min(0,−1−D(G(z)))]
(11)

LGAN (G) = −Ez∼ρz(Z)[D(G(z))] (12)

Considering GA(x) = e(dA(x)) and GB(x) = e(dB(x))
for Equations 11 and 12. Then, Equations 13 and 14 are loss
functions of DA and DB , respectively. We merge the loss
functions of GA and GB into Equation 15, which integrates
e, dA and dB as variables.

LGAN (DA) =EA∼ρr(A)[min(0,−1 +DA(A))]+

EB∼ρr(B)[min(0,−1−DA(dA(e(B))))]
(13)

LGAN (DB) =EB∼ρr(B)[min(0,−1 +DB(B))]+

EA∼ρr(A)[min(0,−1−DB(dB(e(A))))]
(14)

LGAN (dA, dB , e) = −EA∼ρr(A)[DB(dB(e(A)))]

−EB∼ρr(B)[DA(dA(e(B)))]
(15)

Latent variables suffer the same pixel-level problems, spe-
cially the vanishing gradient problem. Thus, we integrate the
LSGAN loss in the inner cycle for the training of DZ and e
(Equations 16 and 17).

LLSGANZ
(DZ) =

1

2
EA∼ρr(A)[(DZ(e(A))− 1)2]

+
1

2
EB∼ρr(B)[(DZ(e(B)))2]

(16)

LLSGANZ
(e) = EA∼ρr(A)[(DZ(e(A)))

2]+

1

2
EB∼ρr(B)[(DZ(e(B))− 1)2]

(17)

Equation 18 presents the reconstruction loss for both re-
construction cycles considering a single encoder e. Further,
Equation 19 presents the cyclic loss from Z perspective.

Lress(e, dA, dB) = EB∼pr(A)[||Bi −B||1]
+EA∼pr(B)[||Ai −A||1]

(18)



LcycleZ (e, dA, dB) = EA∼pr(A)[||zrA − zA||1]
+EB∼pr(B)[||zrB − zB ||1]

(19)

Since e = eA = eB , Equations 9 and 10 stay with
three input variables each instead of four but preserving their
syntaxis. Then, LcycleZ (e, dA, dB) = LcycleZ (eA, eB , dA, dB)
and Lauto(e, dA, dB) = Lauto(eA, eB , dA, dB). Equations 13,
14 and 16 updates DA, DB and DZ , respectively. Lastly,
Equation 20 integrates the reconstruction loss at pixel-level
(Equation 18), the cyclic loss at latent-level (Equation 19),
the adversarial loss of the encoder e (Equation 17) and the de-
coders (Equation 15). Parameter λ controls the reconstruction
and cyclic loss functions to overflow. Meanwhile, β switches
the training process among the encoder and decoders.

LTotal(D) =λLress(e, dA, dB) + λLcycleZ (e, dA, dB)+
βLLSGANZ

(e) + (1− β)LGAN (dA, dB , e)
(20)

B. Training Details

We use 256 256 pixels datasets, including Cityscapes,
Horse2zebra, Monet2photo, and Photo2VanGogh. Dataset split
into 80% to train and 20% to validate. Adam optimizer is
used to train e, dA, dB , DA, and DB with α = 0.00002; and
α = 0.0002 for DZ . To force the convergence, we set 200
epochs and a decay factor of 20% every 100 epochs for α.
λ = 10 to minimize Lress and LcycleZ . The model process
1 sample per batch due computational limitations. Finally, we
define a switch factor n = 5 to control β value. Algorithm 1
is the cross-domain training scheme, which prioritizes latent
space reconstruction before image generation.

Algorithm 1: Cross-domain training algorithm.
Input: A and B: Input domains. K: Epochs.

λ: Saturation factor. α: Learning rate.
m: Batch size. n: Switch factor.

Output: DA, DB , DZ , e, dA and dB trained.
1 for c = 1, 2, ..., K do
2 j ← 0
3 for i = 1, 2, ..., |A| do
4 Sample m tuples < a, b >; a ∈ A ∧ b ∈ B
5 if j < n then
6 Eq. 13, 14 and 16: Update DA, DB and DZ

7 Eq. 20 with β = 1: Update e, dA and dB
8 j ← j + 1
9 else

10 Eq. 20 with β = 0: Update e, dA and dB
11 j ← 0

V. EXPERIMENTS AND RESULTS

In this section, we show the experimental tests to con-
trast our results against CycleGAN results for We contrast

our experimental results against CycleGAN for different
datasets and hyperparameters. Performed tasks include style
transfer (Figures 8 and 9) and image segmentation (Figure
7). The Cityscapes dataset consists of paired tuples <real
image, segmented image>. Monet2photo, Horse2zebra, and
Photo2VanGogh are two-domain unpaired datasets.

A. Metrics

We use three metrics from FCN semantic segmentation and
scene parsing evaluations [7]. Given nij pixels of class i
labeled as class j from k different classes, and let ti =

∑
j nij

be the total number of pixels from class i. Then, we compute:
1) Pixel accuracy:

∑
i nii/

∑
i ti.

2) Mean accuracy: 1
k

∑
i nii/ti.

3) Mean of region intersection over unions (UI):
1
k

∑
i nii/(ti +

∑
j nji − nii).

We employ these metrics to evaluate the segmentation task
using the Cityscapes dataset. Table I shows a comparison
between our results against CycleGAN.

TABLE I
METRIC COMPARISON.

Pixel accuracy Mean accuracy Mean UI

CycleGAN 0.52 0.17 0.11

Ours 0.65 0.22 0.16

VI. CONCLUSIONS AND FUTURE WORKS

Latent spaces as a control-domain replace quite right the
end-to-end approach. Then, adjustments, like unifying the
encoders, improve the transfer quality by forcing both latent-
domains to get closer. Hyperparameters must be tuned ac-
cording to the task and domains to avoid overfitting and
underfitting problems. The learning stage works in two blocks.
The first one specializes in feature maps generation, while the
second one focuses on more realistic details. We outperform
the CycleGAN considering FCN metrics and visual conditions.

In brief, we take advantage of cyclic reconstructions to en-
hance quality while subduing the mode collapse problem. Our
proposal shows improvements over the CycleGAN in terms
of quality and boundary resolution. However, our method is
not interpretable nor easy to implement. Hence, better metrics
are required to evaluate generative models in different tasks.
Also, it requires a bigger computational capacity and time to
converge.

Upcoming works will examine an explicit disentanglement
of latent vectors to surpass the domain conditions, like size
and resolution. Furthermore, we will explore new evaluation
metrics to achieve an adequate semantic evaluation.
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Fig. 7. Comparison of results for the semantic segmentation task using the Cityscapes dataset.
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Fig. 8. Comparison of results for style transfer task using Monet2photo and Horse2zebra datasets.
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Fig. 9. Results of transfer style using the Monet2photo and Photo2VanGogh
datasets.
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