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Abstract—Sign language recognition (SLR) is a very challeng-
ing task due to the complexity of learning or developing descrip-
tors to represent its primary parameters (location, movement,
and hand configuration). In this paper, we propose a robust
deep learning based method for sign language recognition. Our
approach represents multimodal information (RGB-D) through
texture maps to describe the hand location and movement.
Moreover, we introduce an intuitive method to extract a rep-
resentative frame that describes the hand shape. Next, we use
this information as inputs to two three-stream and two-stream
CNN models to learn robust features capable of recognizing a
dynamic sign. We conduct our experiments on two sign language
datasets, and the comparison with state-of-the-art SLR methods
reveal the superiority of our approach which optimally combines
texture maps and hand shape for SLR tasks.

I. INTRODUCTION

Sign Language (SL) is a visual-gestural language used
by hearing-impaired people. This language uses hand-shapes
variations, body movement, and even facial expression to
convey information or meaning. Also, sign languages provide
a natural way of interaction by minimizing the barrier of com-
munication between hearing-impaired and society. Currently,
many translation services are human-based and are expensive
due to the experienced staff required. For this reason, many
researchers are interested on the development of different Sign
Language Recognition (SLR) applications. (SLR).

Sign languages are not simple holistic gestures; they are
well structure linguistic systems which decomposes into small
units such as hand configuration, location, and movement [1],
[2]. The SLs structure consists of primary and secondary
parameters that are combined sequentially or simultaneously.
According to [3], the primary parameters are:

• Hand Configuration: hands take different shapes to gen-
erate signs.

• Articulation Point or Location: is the space in front of the
body (neutral space) or a region of the own body (head,
waist, and shoulders), where signs are articulated.

• Movement: is a complex parameter that involves many
forms and directions, i.e., from pulse motion, movements
of the finger joints, directional movements in the space
or a set of movements in the same sign.

The secondary parameters are:

• Orientation of the palm of hands: is the direction of the
palm during the sign: facing up, down, toward the body,
forward, left, or right.

• Facial Expressions: many signs have a distinctive element
such as the facial or body expression, giving more sense
and feeling to the statement. So, they can express the dif-
ference between affirmative, interrogative, exclamatory,
and negative sentences.

These primary and secondary parameters are used to com-
plement each other. Depending on the expression context,
some parameter may not be required to interpret a sign.
Moreover, an individual parameter modifies the meaning of
a sign, e.g., the location of the hand in a different position of
the body.

In recent years, the success of automatic Sign Language
Recognition (SLR) systems has opened up a new way of
Human-Computer-Interaction (HCI) that can convert sign ges-
tures into text/speech [4]–[6]. Nevertheless, sign language
recognition is still a very challenging task due to the complex-
ity of exploiting the information from primary and secondary
parameters. The challenge in sign language recognition is
the learning or development of descriptors to represent hand
configuration and movement; e.g., hand configuration involves
tracking hand regions in a video stream, segmenting hands,
deleting blur images, etc. Initial approaches, proposed by
different researchers, used RGB cameras to create controlled
datasets to facilitate the tracking and segmentation of hands.
The authors applied hand-crafted descriptors to extract features
to describe the movement and hand shape. Next, a temporary
statistical method that aligns signs and computes a likelihood
of similarity was used to recognize signs. The most used
methods were Dynamic Time Warping (DTW) [7], [8] and
Hidden Markov Models (HMMs) [9]–[12].

Due to the introduction of low-cost depth cameras/sensors
such as Microsoft Kinect [13] or Leap Motion [14], the sign
language recognition paradigm has turned from RGB camera-
based technique to an RGB-D sensor-based 3D environment
and has opened up ways to extract and learn new features from
multimodal input data. These devices/sensors are capable of
delivering the 3D skeleton of the whole body and are not
sensitive to illumination variations and cluttered backgrounds.
Moreover, they present a signicant contribution on the robust-



ness of SLR systems.
Different approaches proposed to convert the 3D skeleton

trajectories into spherical coordinates to describe spatial and
temporal information of signs [15]–[17]. Other methods as the
proposed by Hernandez et al. [18] used the bag of visual word
technique and Dynamic Time Warping. In Budiman et al. [19],
the authors presented an On-line Sequential Extreme Machine
Learning (OS-ELM) using upper body joints to compute three
projected angles to each axis (x, y, z) and a K-means algorithm
to generate hand features.

Currently, recent studies have demonstrated the power of
deep convolutional neural networks (ConvNets), and it has
become an effective strategy for extracting high-level features
of data [20]–[22]. Moreover, many new architectures have
been proposed for SLRs systems such as 3DCNN [23], or
RNN [24] to process dynamic signs.

Other approaches proposed the generation of texture color
maps to represent the 3D skeleton trajectory [25]–[29]. Fol-
lowing the same ideas, in [30]–[32], are proposed methods
to encode video sequences into movement maps [30]–[32].
These approaches were presented to reduce the complexity of
the CNN model used to process video sequences.

Thus, based on previous ideas, we propose a Sign Language
Recognition System combining CNN models with texture
maps or dynamic images. Our goal is to efciently summarize
the primary parameters of a sign sequence in five texture
images, especially the location and movement of the hand. We
generate three dynamic images using the skeleton data (DXY,
DXZ, DYZ), one using the color data (DC) and one using
depth data (DD). We also propose a method to extract the most
representative frame that describes the hand configuration.
Finally, we present a new dataset of sign language with
complete RGB-D and skeleton information with correctly
labeled signs.

The remainder of this paper is organized as follows. In
Sec. II, we describe our proposed approach. Experiments and
results are presented in Sec. III. In Sec. IV, we discuss the
conclusions and future works.

II. METHOD OVERVIEW

The proposed method is shown in Fig. 1 and consists of a
set of phases explained in the following subsections.

A. Texture Maps Generation

We combine two main concepts to generate texture color
maps: skeleton optical spectra and rank pooling. Our goal is to
summarize a dynamic sign efficiently into single flow images
to represent global and local information of hand movement.

1) Skeleton Optical Spectra: Similar to Hou et al. [27], we
use the HSB color model to generate Skeleton Optical Spectra
(SOS) images. These texture maps are capable of describing
the hand movement and its location regarding the body (global
movement). To further enhance the encoded spatiotemporal
information, we encode the velocity of the joints into the
saturation (S) and brightness (B) of the SOS images.

Let Sl = {s1, s2, . . . , sn} the skeleton sequence of a sign
Sl, where n is the number of frames and si = pi1, p

i
2, . . . , p

i
m

where pik is the coordinates of the joint k in the ith frame, i.e.
pik = (xik, y

i
k, z

i
k). We projected the skeleton joints of a sign

video on three orthogonal Cartesian planes: XY, YZ, and XZ.
Hence, we generate three texture color maps (DXY, DYZ, and
DXZ). Fig. 2a shows an example of the texture color maps
generated for a particular sign.

Firstly, we consider the relevant movement of each body
part. Arms and legs often have more motion information, but
different frequency. Therefore, it is not recommended to group
these body parts in the same spectra. Compared to the method
proposed in [27], we generate five spectral distributions (H)
to encode five different body parts with its respective joints:
left leg part K1 = {left hip, left knee, left ankle, left foot},
right leg part K2 = {right hip, right knee, right ankle, right
foot}, left arm part K3 = {left shoulder, left elbow, left wrist,
left hand}, right arm part K4 = {right shoulder, right elbow,
right wrist, right hand}, and middle body part K5 = {head,
neck, torso, hip center}.

The spectrum, i.e. the range of hue (H) in Eq. 1, of the right
arm part, is the inverted spectrum assigned to the left arm part.
The range of hue of the right leg part is the inverted spectrum
assigned to the left leg part. In the middle body part, we adopt
a grayscale (we assign hue = 0) because of the subtle motion
of these joints [27].

In general, the encoding and enhancement of hue (H),
saturation (S), and brightness (B) can be expressed as follows:

H(j, i) =
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(1)

where the joint velocity is calculated by

vij =
∥∥pi+1

j − pij
∥∥
2
. (2)

Thus, for each joint pij in the skeleton si of an sign Sl, we
apply the Eq. 1 to compute its respective hue, saturation and



Fig. 1. Overview of the proposed Sign Language Recognition system.

brightness values. Next, these values are plotted in each Carte-
sian plane to generate three dynamic SOS images. Finally, we
convert the SOS images to RGB color model to process them
in the training stage.

If the skeleton data is not available, we estimate the pose
using the approach based on a nonparametric representation
that encodes both the position and the orientation of human
limbs proposed by Cao et al. [33]. In this case, we only
compute the DXY image.

2) Rank Pooling: For RGB-D data, we apply the dynamic
images generation based on rank pooling proposed in [31],
[32]. The core idea is to represent a sign video through a
single image that summarizes the hand’s movement in the
region where the sign is articulated (local movement). Let
a sign video Sl, we can represent Sl as a ranking function
for its frames F1, . . . , FT . In more detail, let ψFt

∈Rd be a
representation or feature vector extracted from each individual
frame Ft in the video. Let Vi = 1

i

∑i
τ=1 ψ(Fτ ) be time

average of these features up to time t [32]. The ranking func-
tion associates each time t a score S(t|d) = 〈d, Vt〉, where
d ∈ IRd is a vector of parameters. The function parameters d
are learned, so that the scores reflect the rank of the frames
in the video. Therefore, later times are associated with larger
scores, i.e. q > t =⇒ S(q|d) > S(t|d). Learning d is posed
as a convex optimization problem using the RankSVM [34]
formulation:

d∗ = ρ(F1, . . . , FT ;ψ) (3)

Bilen et al. [31] presented an approximation to rank pooling
which is faster and works well in practice, they derivated the
approximate rank pooling by considering the first step in a
gradient-based optimization reducing the Eq. 3 to:

ρ̂(F1, . . . , FT ;ψ) =

T∑
t=1

αtψ(Ft). (4)

The coefficients αt are given by:

αt = 2(T − t+ 1)− (T + 1)(HT −Ht−1). (5)

where Ht =
∑t
i=1 1/t is the t − th Harmonic number and

H0 = 0. Likewise, we can use individual video frames Ft
directly by replacing ψ(Ft).

Hence, the authors show that d∗ can be interpreted as a
standard RGB image, since, this image is obtained from rank
pooling the video frames which summarizes information from
the whole video sequence. The complete process is explained
and detailed in [31], [32].

To generate texture images from depth data, we normalized
each video frame Fd to the interval [0 : 255] using the Min-
Max normalization defined by Fd =

Fd−min(Fd)
max(Fd)−min(Fd)

× 255.
Finally, we generate two dynamic images from RGB-D

videos. Fig. 2b shows the dynamic depth image (DD) com-
puted by the normalized depth video. Similarly, the Fig. 2c
shows the dynamic color image (DC) computed by the RGB
video. Notice that dynamic images tend to focus mainly on
the active body part, such as the right hand in Fig. 2b. In
contrast, background pixels and background motion patterns
tend to average out. Hence, the pixels in dynamic images seem
to focus on the appearance and motion of the user body, which
indicates that they can contain the necessary information to
recognize a sign.

B. Hand Configuration Extraction

Despite texture images generated from rank pooling de-
scribe the local hand movements, they miss information of
the hand shape due to the short time duration and fast motion
of a sign. Therefore, we add a process to extract the hand
configuration of a sign. We follow these three basic ideas:
• Due to the short time duration of a sign, the hand moves

at different speeds, showing variations in its acceleration.



(a) Global Movement and Location (skeleton)

(b) Local Hand Move-
ment (Depth)

(c) Local Hand Move-
ment (RGB)

Fig. 2. Sample of texture Images that represent global and local information
of the hand movement.

• There are segments in the hand trajectory where the
acceleration performs high variations. In these segments,
the corresponding frames present a high level of blur.

• There are segments in the hand trajectory where the varia-
tion of the acceleration is smallest. In these segments, the
frames present a low level of blur. Therefore, in one point
of this segment, there is a frame that clearly shows the
corresponding hand configuration of the sign performed.

Based on the ideas presented above, we propose a fast and
effective method to extract the most representative frame with
the hand shape belonging a sign.

1) Let pih = (xih, y
i
h, z

i
h) be the coordinates of the

hand joint in the ith frame, where i ∈ {1, . . . , n}
and n is the number of points. We compute the
distances between each consecutive point: disti =√

(pi+1
h − pih)2, for i = 1, 2, . . . , n− 1.

2) Next, we compute the velocity V i for each point, and
extract the difference of the velocities to compute the
vector A of accelerations:

disticum =

i∑
k=1

distk, for i = 1, 2, . . . , n− 1 (6)

V i = disticum ×
1

i
, for i = 1, 2, . . . , n− 1 (7)

A = V i+1
h − V ih , for i = 1, 2, . . . , n− 1 (8)

3) Finally, we divide the hand trajectory into M segments
Sk, k = 1 : M , for each Sk segment, we calculate
the corresponding standard deviation (SD) of its accel-
erations. Then, we select the Skmin segment with the
minimum value of SD.

4) For each frame corresponding to the Skmin segment, we
extract the hand area and calculate its relative degree of
focus using the energy of Laplacian as the measure al-
gorithm [35]. So, we select the frame with the maximum
degree of focus.

(a) Acceleration of the hand movement at each trajectory point.

(b) Frames corresponding to four points in the trajectory.

Fig. 3. Illustration of our method to extract the hand shape inside a video
sequence.

Fig. 3a shows the acceleration variations generated by
the hand movement. The trajectory was divided into three
segments. In Fig. 3b the frames F4 and F8 corresponding to
the first segment with greater SD (0.054428) are displayed;
the frames F37 and F40 corresponding to the segment with
minimum SD (0.0025495) are also presented.

C. CNN training and fusion

Different approaches with two-stream (or N-stream) CNNs
propose to combine the spatial and temporal information into
a single network using an integration process [36], [37].
This integration process is known as fusion level and can
be performed after any convolutional stage or fully-connected
layer. The information fusion is important to recognize a sign
language since a sign is composed of different parameters
(hand configuration, location, and movement). Therefore, our
strategy consists of grouping the spatiotemporal information
extracted from each multimodal channel. Thus, we create three
groups: a) global movement and location (DXY, DXZ, and
DYZ), b) local movement and hand shape for RGB data
(DC,HC) and c) local movement and hand shape for depth
data (DD,HD).

We adopted the imagenet-vgg-f [38] model to design our
proposed CNN architectures. This pre-trained model is com-
posed of five convolutional stages and three fully-connected
layers of size 4096. Also, this model takes 224×224×3 images
size as input. According to the number of input images of each
group, we create a copy of the first four convolutional stages
using as initial training parameters the filters learned from the
imagenet-vgg-f model. Next, we introduce a fusion layer to



combine the feature maps calculated after the Conv4 stage.
Finally, we add three fully-connected layers and fix the output
to the number of classes. For the first group, we create a 3S-
CNN model with DXY, DXZ, and DYZ as inputs (Fig. 4a).
For group b, we create the 2S-CNN-C model with DC and HC
as inputs (Fig.4b). Similarly, we create the 2S-CNN-D model
for the group c with DD and HD as inputs.

To fuse data, we did the following Conv Fusion [36]: given
k feature maps xnr , r = 1 : k, as outputs of the n-th layer for
each stream in a CNN architecture at the same pixel location
(i; j) and the same channel d. First, the xni feature maps are
concatenated at the same spatial location (i; j) across channel
d:

yyyn,cat(i, j, kd) = cat(xnr (i, j, d)) (9)

where yyyn,cat ∈ RH′×W ′×D′
, D′ = kd, 1 ≤ i ≤ H ′, 1 ≤ j ≤

W ′, 1 ≤ d ≤ D′.
Then, the stacked up feature map is convoluted with a bank

of filters F ∈ R1×1×D′×D′′
, as follows:

yyyn,conv = yyyn,cat ∗ F + b, (10)

where b ∈ RD′′
is a bias term. The filters are used to learn

weighted combinations of feature maps xnr .
Since the three architectures return a score vector of clas-

sification (sss2SC , sss2SD , sss3S), we apply a later fusion to
calculate the average value of the three vectors to obtain the
final classification score sssavg , which means the highest score
represents the recognized sign.

sssavg = avg(sss2SC , sss2SD, sss3S) (11)

III. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Protocol

1) The LSA64 dataset [39]: is a dictionary of Argentinian
Sign Language; which includes 3200 videos; 10 subjects
executed 5 repetitions of 64 different types of signs. Also, to
simplify the problem of hand segmentation within an image,
subjects wore fluorescent-colored gloves. These simplify the
problem of recognizing and segmenting the position of the
hand, also remove all issues associated with skin color varia-
tions; at the same time, preserve the difficulty of recognizing
the hand shape. Each sign was executed by imposing few con-
straints on subjects to increase the diversity and realism in the
database. All subjects were non-signers and right-handed; they
learned how to perform signs during the recording session.
Moreover, they watched a video of the signs at the same time
performed by one of the authors; finally, they practiced each
sign a few minutes before recording.

To conduct Experiments, the authors performed a subject-
dependent classification by dividing the dataset randomly
through 5 experiments using 80% of training and 20% of
validation. These result in 2560 videos for training and 640
videos for testing. Each set is created randomly to seek to
exempt the random factors present in the tests.

(a) 3S-CNN (Skeleton).

(b) 2S-CNN (RGB-D).

Fig. 4. The proposed CNN architectures for our Sign Language Recognition
system.

2) The LIBRAS-BSL dataset: Many of the existing public
sign language datasets lack effective and accurate labeling or
are stored in a single data format [4], [5]. Thus, we present a
public labeled Brazilian Sign Language dataset composed of
37 very similar signs to train deep neural networks for dynamic
sign language recognition task. The dataset was performed
by ten subjects: six women and four men. Each participant
executed 12 repetitions of a sign. The dataset contains the
complete RGB-D and skeleton data collected using a Kinect
device. To facilitate a fair comparison with the state-of-the-art,
we split the dataset into three subsets: training, validation, and
testing, as listed in Table I.

TABLE I
INFORMATION OF THE LIBRAS–BSL DATASET

Sets RGB Depth Skeleton Sub. (ID)
Training 3552 3552 3552 8 (2, 4–10)

Validation 444 444 444 1 (1)

Testing 444 444 444 1 (3)

B. Training Details

1) Experimental environment: we conduct our experiments
on a Notebook with Intel Core i7-6500U inside, CPU @
3.16GHz, 12GB RAM and NVIDIA Geforce GTX 950M
GPU. We train all networks using the Matconvnet tool-
box [40].



Fig. 5. Hand configurations detected on the LSA64 dataset.

2) Parameter setting: we define the number of segments to
divide a sign as M = 3 due to the short duration of a sign.
We resize the input images to 224×224 for the CNN models.
The training process stopped after 60 epochs. The learning
rate starts from 0.01 in the first 20 epochs, 0.001 in other 20
epochs, and 0.0001 in the last 20 epochs. We set the dropout
ratio of the fully-connected layers to 0.6. We use a batch size
of 205 for both 2S-CNN models and 130 for the 3S-CNN
model.

C. Results on the LSA64 dataset

In spite of the dataset does not provide depth and skeleton
information, we select it owing to the special properties of
deep learning. The LSA64 dataset is a large and balanced
sign language dataset with several frames per video sequence.
Also, it has a high number of similar signs (in motion and
hand configuration).

Therefore, we apply the method mentioned at final of
Sec. II-A1 to estimate body points [33]. Next, we apply our
approach to detect the hand configuration. Fig. 5 shows some
hand configurations detected for the LSA64 dataset.

Then, we conduct the follow experiments:
• We conduct a subject-dependent classification by dividing

the dataset randomly through 5 experiments using 80%
of training and 20% of validation, similar to the original
experimental protocol.

• As we only generated the DXY texture map. We perform
the training of the 3S-CNN model using the DXY image
as input for the three streams channels.

• We generate the DC and HC textures images to perform
the training of the 2S-CNN-C model.

• We perform a later fusion with the scores of the 3S-CNN
and 2S-CNN-C models.

Table II summarizes the mean accuracy and mean standard
deviation computed in five experiments. We also report the
state-of-the-art results and the baseline results from [41],
which employs different classifiers like HMM with Gaussian
Mixture Models (ALL-HMM) to improve the initial results.
Also, in Table II we note that the 3S-CNN model overcomes
several proposed methods, which means that analyzing only
the location and movement of the hand (the global movement),
we can discriminate the majority of signs on LSA64 dataset
(96.92 %). However, we still need local information, i.e., the

Fig. 6. Hand configurations detected on the LIBRAS-BSL dataset.

hand configuration to improve the results. For this reason, the
2S-CNN model achieves a mean accuracy of 99.82%, since
it has information of the hand configuration (HC) and local
information from its movement (DC). The later fusion uses the
mean operator and improves the final prediction stabilizing the
predictions of the CNNs. We can observe this in the standard
deviation that decreases to 0.33 in the later fusion.

Likewise, most of the works in the the-state-of-the-art use
recurrent models or complex CNN architectures to compute
spatiotemporal information of a sign. In our case, we use
texture maps to encode the movement and location of the
hand. As we see in Table II, texture maps help us to achieve
satisfactory results on LSA64 dataset using a simple CNN
model. However, there are some things to take into account in
the methods that generate texture maps, e.g., the overlapping
between the same joints over different frames due to their
slow motion, or the high level of noise in the skeleton that
may generate a false hand movement.

TABLE II
COMPARATIVE RESULTS OF THE STATE-OF-THE-ART ON LSA64 DATASET.

Method Accuracy (mean ± std)
ProbSOM [42] 91.70

3DCNN [23] 93.90 ± 1.40

ALL-BF-SVM [41] 95.08 ± 0.69

ALL (sequence agnostic) [41] 97.44 ± 0.59

ALL-HMM [41] 95.92 ± 0.95

Deep Network [43] 98.09 ± 0.59

skeleton + LSTMs [24] 99.84 ± 0.19

3S-CNN 96.92 ± 0.56

2S-CNN-C 99.82 ± 0.48

Later Fusion (3S + 2SC) 99.91 ± 0.33

D. Results on the LIBRAS–BSL dataset

This dataset provides complete RGB-D and skeleton infor-
mation. Although our proposed dataset has fewer signals (37),
one of the advantages is the high degree of similarity presented
in its primary parameters (location, and hand configuration).

Similar to LSA64 dataset, we apply our approach to detect
the hand configuration. Fig. 6 shows some hand configurations
detected on LIBRAS-BSL dataset.



(a) One day (b) two days

Fig. 7. Sample of two signs with the same location and hand movement but
different hand configuration.

Table III summarizes the results after applying different
experimental schemes on the LIBRAS-BSL dataset. When
we analyze the results, we assume that at the individual
level, the 2S-CNN-D model is the most descriptive because
depth data are invariant to light variations. Thus, this model
achieves a result greater than 81% in the test data, when
combining the local information of hand movement (DD)
with its configuration (HD). Otherwise, the 3S-CNN model
correctly describes globally the position and movement of
the body. Since this model does not present the hand shape
information, its performance decreases due to the confusion
with other signs with similar movements as in Fig. 7, where
two signs present two similar primary parameters (location and
movement).

Also, we can observe that the combination of the 3S-
CNN model with the 2S-CNN-C and 2S-CNN-D models
significantly increases the result of our proposed method
(87.02 %) due to, the fact that in the end, we are integrating
our CNN models trained with the information of the primary
parameters of a sign language (location, movement and hand
configuration).

Finally, in Fig. 8, we present the final confusion matrix
obtained with the test data. When we analyze the confusion
matrix, there is still a confusion between certain groups of
signs, e.g., one year sign (ID: 1), two years sign (ID: 2)
and three years sign ( ID: 3); they have high levels of
confusion. As LIBRAS-BSL dataset contains fewer signs than
LSA64 dataset, presents a high degree of complexity because
it contains similar signs differentiated only by a primary
parameter.

IV. CONCLUSION

In this paper, we propose a robust deep learning based
method for sign language recognition. Our approach encodes
the location and movement of the hands in texture maps.
Then, we extract a representative frame that describes the hand
configuration in a sign video. Next, we use this information
as inputs to two three-stream and two-stream CNN models to

Fig. 8. Confusion Matrix obtained in the testing set on the LIBRAS-BSL
dataset.

TABLE III
RESULTS OF THE EXPERIMENTAL SCHEMES ON THE LIBRAS–BSL

DATASET

Method Validation Testing
3S-CNN 79.19 79.25

2S-CNN-C 81.18 82.94

2S-CNN-D 81.19 83.20

Later Fusion (3S, 2SC) 82.86 84.10

Later Fusion (3S, 2SD) 83.75 84.68

Later Fusion (2SC, 2SD) 84.25 85.86

Later Fusion (3S, 2SC, 2SD) 85.25 87.02

learn robust features capable of recognizing a sign. We conduct
our experiments on two SLR datasets. Results showed that our
proposed method outperform state-of-the-art methods and re-
veal the superiority of our approach which optimally combines
texture maps and hand shape for SLR tasks. Also, we have
presented a challenging dataset of Brazilian Sign Language.
As future work, we will explore new fusion schemes of 2S-
CNN and 3S-CNN models to improve the performance of our
proposed model and try to decrease the error between very
similar signs.
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