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Abstract—Magnetic Resonance Imaging (MRI) is a non-
invasive technique, which has been employed to detect and
diagnose many spine pathologies. In a Computer-Aided Diagnosis
(CAD) context, the segmentation of the paraspinal musculature
from MRI may support measurement, quantification, and anal-
ysis of muscle-related pathologies. Current semi-automatic seg-
mentation techniques require too much time from the physicians
to annotate all slices in the exams. In this work, we focus on
minimizing the time spent on manual annotation as well as
on the overall segmentation processing time. We use the mean
absolute error between slices aiming at minimizing the number
of annotated slices in each exam. Moreover, we optimize the
manual annotation time by estimating the inside annotation
based on the outside annotation, while the competitors demand
the annotation of inside and outside annotation (seeds). The
experimental evaluation shows that our proposed approach is
able to speed up the manual annotation process in up to 50%
by annotating only a few representative slices, without loss of
accuracy. By annotating only the outside region, the process can
be further speed up by another 50%, reducing the total time
to only 25% of the previously required. Thus, the total time
spent on manual annotation is reduced by up to 75%, and,
since human interaction is greatly diminished, allows a more
productive and less tiresome activity. Despite that, our proposed
CleverSeg method presented accuracy similar to or better than
the competitors, while managing a faster processing time.

I. INTRODUCTION

Back pain is one of the most common complaints world-
wide. In general, it is related to spinal disease and can cause
a significant loss of function and compromise the quality of
life. Surgical spinal treatments have grown with the population
aging, which require accurate diagnoses to avoid complica-
tions [1]. Magnetic Resonance Imaging (MRI) exams provide
meaningful information to the detection and diagnosis of many
spine pathologies and, at the same time, it is not harmful to
the patient (do not use ionizing radiation) [2], [3].

The segmentation of the paraspinal musculature in the
context of Computer-Aided Diagnosis (CAD) may allow a
faster and more objective analysis of the muscle condition,
supporting in the characterization and quantification of back
muscle-related problems [4]. Many works in the literature have
shown the disadvantage of dealing only with discrete image
slices (2D), which can generate a loss of relevant information
for precise measurements and diagnosis [5]. Accordingly, 3D
segmentation approaches may assist in better visualization and
analysis of the muscle structures in a reliable way.

Integrating automated procedures for reliable segmentation
of selected muscles may reduce the labor-intensiveness asso-
ciated with manual methods [6]. Manually segmenting many
slices of a single 3D exam is also time-consuming. On the
other hand, computer methods can now reduce inaccuracies
occurred or aggregated due to subjective judgments, inter and
intra-subjective variability [7], [8].

Fast and accurate segmentation plays a significant role and
may assist the medical specialist in surgical planning and
evaluation of suitable treatments [7], [9], [10]. One of the
advantages of semi-automatic segmentation is the use of the
specialists’ knowledge, gained over the years, to improve
the results of computer methods. Performing semi-automatic
segmentation assists the physicians and specialists, leads to
time savings, and reduces interpretation errors [11].

Semi-automatic segmentation serves as an essential tool for
many tasks, whereas clinicians, as well as scientists, would
strongly benefit from automated segmentation methods [12],
[13]. Examples of such tasks include the extraction of semantic
and agnostic features, the application of machine learning
algorithms for the classification of anomalies, and Content-
Based Image Retrieval (CBIR) techniques to obtain semanti-
cally similar historical data [14]–[17]. The muscle segmenta-
tion can be meaningful when combined with interactive tools,
allowing the training and education of new radiologists [18],
as students can learn how to segment muscles correctly, and
to detect spine pathologies [19]. Visual tools may also help
physicians and professors to evaluate and determine whether
a student is ready to proceed to further tasks related to a
specific pathology. In practice, the visualization of 3D human
structures can also be used for the simulation of surgical
procedures [20].

In [21], the authors describe the difficulties and challenges
related to the problem of segmenting anatomical structures
from MRI exams. They include the presence of ambiguous
structure boundaries, the resemblance in the structures, insuffi-
cient contrast, low spatial resolution, intensity in-homogeneity,
and image dimensionality of 3D exams.

In this work, we propose CleverSeg, a method that takes
advantage of the motto “growth in unity is strength” to achieve
a better-delineated segmentation. We manage the iterations to
reduce the processing time. We propose the annotation of only
a few slices and the estimation of the interior annotation of
each muscle. Moreover, CleverSeg uses a simple annotation
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Fig. 1. Proposed pipeline: ground-truth in red, exterior annotation in magenta, estimated interior annotation in yellow and CBG segmentation result in blue.

(sloppy-like), which does not require detailed annotation, i.e.,
works with imprecise annotations. As a consequence, the time
spent on manual annotation is greatly minimized, allowing a
more productive and less tiresome activity.

The remainder of the paper is structured as follows. First,
Section II presents the background and related works. Then,
Section III details CleverSeg for the segmentation and re-
construction of paraspinal muscles in volumetric MRI. Next,
Section IV explores the materials and methods used in our
experimental design. After that, Section V details the exper-
imental design, results and discussion. Finally, Section VI
draws the conclusions.

II. BACKGROUND AND RELATED WORKS

There is an association between imaging parameters of the
paraspinal muscles such as cross-sectional area size, shape,
density, and volume with spinal degeneration and low back
pain. As a consequence, measuring the paraspinal muscles in
3D is a crucial step in the analysis of the muscle conditions
associated with low back pain [22]. Manually segmenting
a large exam (several slices) is too time-consuming, thus
automatic and semi-automatic approaches are highly attractive
due to the reduction of labor-intensiveness associated with the
manual approach [23].

Several fully automatic vertebrae segmentation methods are
reported in the literature [5], [6], [21], [24]. Nonetheless, they
take too much processing time or do not produce reasonably
precise results, which may not suit clinical practice [5]. Semi-
automatic approaches, in general, take considerably faster
processing time and produce reasonably precise segmentation
results. However, they often require too much time from the
radiologists on manual annotation of a few or all the slices in
the exam [23].

More recently, two novel semi-automatic approaches called
Balanced Growth (BGrowth) [25] (for 2D images) and 3D
Balance Growth (3DBGrowth) [23] (for 3D images) were pro-
posed for the segmentation of vertebral bodies. BGrowth has
presented promising results for the segmentation of crushed

vertebral bodies in a single slice at a time, considering ma-
lignant (metastasis) and benign (osteoporosis) as well. 3DB-
Growth works well for the segmentation of vertebral bodies
in volumetric MRI scans. Briefly, both approaches balance the
weights along the growing path of a region, so that small
intensities transitions are better delineated.

Another semi-automatic segmentation method is Grow-
Cut [26], which has been one of the most employed methods
on the segmentation of medical imaging. GrowCut is based on
cellular automata (analogous to a bacteria growth in biology)
and works as a region-growing approach with an interactive
labeling procedure [26]. Also, a faster but less accurate version
of GrowCut, Fast GrowCut [27], has been widely used for
segmentation of medical images in the 3D Slicer1 open-source
software [28]. 3D Slicer is a framework which provides a
friendly Graphical User Interface (GUI) and allows interactive
operations and visualization, which is especially helpful for
semi-automatic segmentation approaches [27].

Currently, the results achieved by BGrowth and 3DBGrowth
surpass the other methods from the literature, including Grow-
Cut, presenting promising segmentation results, even with
very simple/sloppy annotation (seed points). However, due
to the balancing approach, 3DBGrowth may require more
iterations for the segmentation of larger exams (more slices).
Furthermore, 3DBGrowth was tested with only 18 slices (in
average) on each exam, and a maximum number of iterations
of 50 [23]. Besides, the slope coefficient defined by the authors
may heavily rely on the physical spacing between slices.

III. THE PROPOSED METHOD

Placing (annotating) seeds appropriately in MRI data is
a crucial initial step to produce accurate paraspinal muscles
segmentation. Nevertheless, due to the 3D nature of MRI data
and the complex structure of the human spine, it becomes a
very difficult and tiresome task.

1https://www.slicer.org/



(a) Original Image. (b) Ground-truth. (c) Outside annotation. (d) Filled Annotation, ∆ =
100%.

(e) Erosions = 3, ∆ = 70%. (f) Erosions = 6, ∆ = 34%. (g) Erosions = 8, ∆ = 16%. (h) Estimated annotation.

Fig. 2. Sample slice with ground-truth (red) and exterior annotation (magenta) and estimated interior annotation in yellow using a ∆ threshold of 20%.

In this work, we present CleverSeg, which focus on mini-
mizing the specialist's effort to segment and reconstruct MRI
exams built on 2D slices. To this end, we contribute in three
main aspects, as the pipeline shown in Fig. 1. The three main
parts of CleverSeg are detailed as follows:
A – Annotation of a few slices: we use the Mean Absolute

Error (MAE) to verify slices that look alike and, there-
fore, are not required to be manually annotated. The error
is calculated slice vs. slice and is not dependent on the
physical spacing between slices.

B – Estimation of the interior annotation: given the initial
outside annotation of each slice annotated in part A,
we estimate the inside annotation using mathematical
morphology. As a consequence, the time spent on manual
annotation may be greatly reduced.

C – Fast and effective semi-automatic segmentation method:
our proposed CleverSeg method works in a faster and
smart way, using only a few iterations. CleverSeg ef-
ficiently propagates the annotated slices in parts A-B
into non-annotated slices. Therefore, the processing time
speeds up while keeping high accuracy.

In the next Subsections, we explore the three main afore-
mentioned contributions. CleverSeg method is publicly avail-
able2 as an extension for 3D Slicer [28].

A. Outside annotation

To choose the most representative slices to be annotated,
we use the MAE to compute the difference between two
paired variables. The MAE (M ) is also applied to measure
the difference between two 2D images S1 and S2, as shown
in Eq. 1. Here, S1 and S2 represent two distinct slices of
the volumetric MRI exam V . Both slices have size n, which
corresponds to the total number of pixels from each slice. The
i-th entries in S1 and S2 are represented by s1,i and s2,i,

2https://github.com/JonathanRamos/SlicerCleverSeg.git

respectively. Note that the closer M(S1, S2) is to zero, the
more similar the images are [29], [30].

M(S1, S2) =
1

n

n∑
i=1

|s1,i − s2,i| (1)

Considering a volumetric exam V = {S1, S2, .., Si, .., Sn},
in which Si represents the i-th slice in the exam, similar
sequential slices can be avoided from the manual annotation
process. The most representative slices may be selected in a
bottom-up manner in three steps, as follows.
Step 1: define S1 to be manually annotated and set S1 as the

initial slice for comparison with the next slice S2.
Step 2: if the error M(S1, S2) is lower then a threshold η,

then compare S1 with the next slice S3. This process
repeats until the i-th slice Si, such that M(S1, Si) ≥ η.
Then, define Si as the initial slice for comparison and go
back to Step 1.

Step 3: repeat Steps 1 and 2 until the final slice Sn is reached.
The last slice is always set to be manually annotated.

Note that, the first (S1) and last (Sn) slices are always set
to be manually annotated and the number of non-annotated
slices between them may vary according to the threshold η.
The value of the threshold η can be set by the user.

For analysis purposes, we define a Percentage of Anno-
tated Slices (PAS), which is the number of annotated slices
(#annotatedSlices) divided by the total number of slices in
the exam with muscle content (#slices):

PAS =
#annotatedSlices

#slices

B. Inside annotation estimation

Given the outside annotation of the i-th slice (Si) as
exemplified in Fig. 2c (in magenta), we estimate the inside
annotation using morphological operations [31] in four steps:
Step I: represent the manually annotated outside region of Si

as a 2D binary mask ki. Considering that the region in



k0 is always a closed boundary, fill this boundary with
ones (white pixels), as exemplified in Fig. 2d.

Step II: set k0 as the initial interior annotation and t0 as the
total number of white pixels in k0 and apply an erosion
operation over k0 using a 5×5 square structuring element,
which results into a new mask k1. As a consequence,
the number of white pixels in k1 is reduced to t1. The
5×5 square structuring element allows a smooth erosion
without losing the main shape of the region.

Step III: apply the same erosion over k1, which results in
k2 with t2 white pixels. Repeat the erosion process until
the i-th iteration, resulting in the mask ki with ti white
pixels. The erosion process stops when the percentage of
remaining white pixels in the eroded mask (ki) associated
to the initial mask k0 is lower than a threshold ∆:

∆ >
ti
t0

(2)

Step IV: finally, use the ki mask as the inside annotation. The
whole erosion process is depicted in Fig. 2e to Fig. 2g,
in which ∆ was set to 20%, yielding the estimated inside
annotation shown in Fig. 2h (in yellow).

C. Clever Segmentation – CleverSeg

In our proposed CleverSeg method (Algorithm 1), for the
sake of simplicity, initially, we segment grayscale volumes into
foreground and background. However, the algorithm works
for more than two regions, and the difference between voxels
intensities may be easily adapted for color images.

Considering a volume V and a matrix L of corresponding
annotations/seeds, both with dimensions M × N × Z, repre-
senting the number of rows, columns and slices, respectively.
The total number of voxels in V is represented by n. The
entries of L may have values 0 (unlabelled), 1 (background or
outside annotation) or 2 (foreground or inside annotation).

The method is divided in three steps:
Step A: a weighted matrix W is initialized, so that every

entry ∀wi ∈ W is filled with ones for corresponding
labelled entries li ∈ L (inside/outside annotation) and
zeros otherwise as in Eq. 3 (lines 1 to 2). The maximum
voxel intensity is calculated/represented as m (line 3).

wi =

{
1.0 if li 6= 0,
0.0 otherwise. (3)

Step B: every voxel vi ∈ V, i = {1, 2, 3, ..., n} and each of
its 26 neighbors vji ∈ V, j = {1, 2, 3, ..., 26} is analyzed
(line 4) as follows. The absolute difference between the
voxel intensity (vi) and its neighbor's (vji ) is calculated
and subtracted by the maximum voxel intensity (m).
The result is represented as h (line 5). A strength s is
calculated (line 6) normalizing h by m and multiplying
with the current voxel strength wi.

Step C: if the difference between s and the neighbor's current
strength wn

i (line 7) is greater than a threshold (θ), then,
the strength wi

n is averaged with the new strength s (line
8) and its label lji is updated (line 9).

Input: Image V and annotation/labels matrix L.
Output: Segmented image (grown regions in L).
/* Initialization */

1 if li 6= 0,∀li ∈ L then
2 wi ← 1.0

3 m← max vi, ∀vi ∈ V, i = {1, 2, 3, ..., n}
/* For every voxel and its 26

corresponding neighbors */
4 for ∀vi ∈ V and ∀vji ∈ V, j = {1, 2, 3, ..., 26} do
5 h← m− |vi − vji |
6 s← wi × h/m
7 if (s− wj

i ) > θ then
8 wj

i ← mean(s , wj
i )

9 lji ← li

Algorithm 1: CleverSeg method overview.

Steps A and B repeat for a maximum number of iterations or
until the algorithm converges. The threshold θ avoids iterations
that do not contribute to a better segmentation. For example, it
avoids balancing (averaging) values that only change the third
or fourth decimal place.

IV. MATERIALS AND METHODS

In order to evaluate the performance of our proposed
CleverSeg method, due to space limitations, we present only a
meaningful dataset of lumbar muscles. Next, we compare our
method with the state-of-the-art semi-automatic segmentation
techniques, such as Balanced Growth and GrowCut, consider-
ing default parameters settings for each method. Then, we con-
sider the measures of Jaccard Coeficcient, Dice Score, Haus-
dorff's Distance and F-measure to analyze the segmentation
results. To further validate the results, we employ statistical
testing. Table I shows a summary of acronyms used throughout
this work and Section IV-E explores the computational setup.
We highlight that no deep-learning approaches were applied
due to the limited number of available exams.

TABLE I
SUMMARY OF SYMBOLS/ACRONYMS USED IN THIS WORK.

Acron. Description Acron. Description

DSC Dice Score Coeff. 3DBGrowth 3D Balanced Growth
JAC JAccard Coeff. CleverSeg Clever Segmentation
HD Hausdorff's Distance FM F-Measure

RT Running Time (processing time)
PAS Percentage of manually Annotated Slices
ANT ANnotation Time (time spent in manual annotation)

G Ground-truth
S Segmentation yielded by a semi-automatic method

A. Image Dataset

In the work [12], the authors present a manually segmented
dataset, called MyoSegmenTUM spine. This dataset contains
segmented lumbar muscle groups and vertebral bodies, from
MRI scans of 54 healthy volunteers. Each exam contains the



muscles erector spinae left and right as well as psoas left and
right muscles with corresponding manual segmentation. Sum-
ming up, there are 54× 4 = 216 muscles. The exams have an
average resolution of 334×334×67.4±135×135×5.02 voxels
and a spatial resolution of 1×1×3.6±0×0×0.5 mm. In order
to assure the best conditions to all segmentation algorithms,
the grayscale intensities of the exams are normalized into 256
gray levels (8 bits/pixel):

V = 255× V −min vi
max vi −min vi

,∀vi ∈ V, i = {1, 2, 3, ..., n}

in which V represents the data volume of the exam, with
resulting entries vi (voxel intensities) within [0, 255]. The
volumes are not normalized to isotropic resolution to avoid
adding noise to the image and manual segmentations. We
employed MyoSegmenTUM spine in the validation of our
method, as it provides the ground truth to support testing and
refining computer vision methods and is fully available at [12].

B. Segmentation algorithms and parameters settings

In order to evaluate our proposed method for the segmenta-
tion of spinal muscles, we compared it with 3DBGrowth [23]
and GrowCut [26]. Since Fast GrowCut presents a lower
accuracy than Growcut [27], it was not considered in the
analysis. The maximum number of iterations was set to 500 for
all algorithms considered in the analysis. However, in general,
the algorithms take less than 500 iterations to converge.

For CleverSeg, the threshold θ, which controls the ap-
proximate roundness’ of the averaged weights during the
balancing of region expansion, was set to 1% and avoids
averaging values on the third decimal place. In order to allow
a simple or sloppy-like annotation, the ∆ threshold was set
to a small value, 20%. Thus, imprecise external annotation do
not compromise the estimated internal annotation.

For the η threshold, we considered an initial value of 0,
increasing by 1.5, up until 10.5, which sums up to 8 thresholds.

C. Comparison measures

We considered four well-known measures to compare the
resulting segmentation yielded by a segmentation method (S)
and the ground-truth (G) as follows.

Jaccard Coefficient (JAC): calculates the intersection of the
manual (G) and semi-automatic (S) segmentation, and divides
it by the union of them as in Eq. 4. This indicates the similarity
between the segmentations, in which 0 indicates no similarity
and, the closer JAC is to 1, the more alike the segmentations
are [32].

JAC(G,S) =
|G ∩ S|
|G ∪ S|

(4)

Dice Score Coefficient (DSC): measures, in voxels, the spatial
overlap of several segmentations of the same object, i.e,
quantifies the overlap degree between two segmented objects,
as in Eq. 5. A DSC close to 0 indicates very low overlap,
while a DSC closer to 1 indicates a higher overlap [33], [34].

DSC(G,S) =
2× |G ∩ S|
|G|+ |S|

(5)

Hausdorff's Distance (HD): indicates how far away (in
voxels) G and S are, as in Eq. 6. A HD of 0 indicates
comparable segmentations [35].

HD(G,S) = max{mm1,mm2}
mm1 = max

gi∈G
( min

si∈S
{d(gi, si)} )

mm2 = max
si∈S

( min
gi∈G

{d(si, gi)} )

(6)

in which d denotes the Euclidean distance [36]:

d(gi, si) =
√

(sxi − gxi )2 + (syi − g
y
i )2 + (szi − gzi )2

F-measure (FM ): calculates the harmonic mean between
precision (P ) and recall (R) as in Eq. 7.

FM = 2× P ×R
P +R

, (7)

in which P and R are defined, respectively, as: P =
TP/(TP + FP ), R = TP/(TP + FN), considering that
True Positive (TP ) represents the number of voxels correctly
segmented as part of the foreground (G), False Positive (FP )
represents the number of voxels miss-segmented as belonging
to G and False Negative (FN ) represents the number of voxels
incorrectly segmented as part of the background.

D. Statistical tests

According to [25], if the data present several similar values,
the Kolmogorov-Smirnov [37] is the most suitable normality
test. Then, in order to analyze if there are significant statistical
differences, the Wilcoxon [38] test may be employed. In
this test, the null hypothesis is that data from two paired
sample groups were selected from populations having the same
distribution, against the opposite alternative [23].

E. Computational setup

Every experiment used a 2.40GHz Intel(R) Core(TM) i7
CPU and 8GB RAM machine, using Matlab(R) version 2018a.
To assure the same conditions for all segmentation methods,
no pre or post-processing techniques were applied.

V. EXPERIMENTS, RESULTS AND DISCUSSION

In our experimental design, three main parts are analyzed,
as depicted in Fig. 3. First, we analyze the segmentation of
each muscle, considering that all slices are annotated on the
outside and we estimate the inside annotation. Then, we vary
the number of slices annotated, based on the error (η) between
slices. Finally, we statistically evaluate the results.

Experiment A
Individual muscle

segmentation

Experiment B
Varying # of

annotated slices

Validation
Statistical
evaluation

Fig. 3. Experimental design.



A. Muscle segmentation

We performed the segmentation of each muscle considering
the manual annotation of all slices on each MRI exam. Fig.4
shows the average results for all muscles. Note that, CleverSeg
presented better results than GrowCut for the measures DSC,
FM , JAC and RT , while keeping a similar HD. CleverSeg
presented better results for the measures FM , JAC and RT
than 3DBGrowth, while keeping comparable DSC and HD.

CleverSeg 
3DBGrowth    
GrowCut

x Average value

Fig. 4. Comparison between the segmentation approaches.

In average, CleverSeg presented a running time of 377ms,
while 3DBGrowth took 1202ms and GrowCut 565ms. The
number of iterations were 32± 6.5, 99± 22.6 and 49± 13.2
for CleverSeg, 3DBGrowth and GrowCut, respectively. In the
original work [23], 3DBGrowth was tested with 18 slices (in
average) and a maximum of 50 iterations. In our experimental
dataset, in average, there are 67 slices for each exam.

3DBGrowth requires more iterations to converge as the
number of slices increases, consequently, increasing the pro-
cessing time. On the other hand, CleverSeg presented results
comparable or better than the competitors, while managing a
faster processing time (RT ). To better illustrate this, Fig. 5a
shows the segmentation results for a single muscle. Note that,
CleverSeg presented the fastest running time and a comparable
or better DSC than the competitors. For this example, the
interior annotation took 96s (ANT ) while the estimation of the
interior annotation was considerable faster (5.2ms). In average,
the interior estimation for all muscles took 4.5±3.6 ms. If the
inside annotation was to be manually given, the time spent on
manual annotation (ANT ) would possible double.

Analyzing the segmentation results in Fig. 5a, GrowCut pre-
sented spiculated borders with a lower DSC, while CleverSeg
and 3DBGrowth presented smooth borders and equal DSC.
However, CleverSeg had the lowest number of iterations, and
presented the fastest processing time (RT ). To further validate
CleverSeg and, at the same time, reduce the annotation time
(ANT ), on the next experiment we vary the number of slices
with exterior annotation for each muscle.

CleverSeg
DSC = 90% RT = 0.49s

3DBGrowth
DSC = 90% RT = 1.21s

GrowCut
DSC = 87% RT = 0.64s

Iterations = 50Iterations = 88Iterations = 36

Ground-Truth
Outside annotation
ANT = 96s (all slices)

Estimated Inside annotation
Time = 5.2ms (per slice)

(a) All slices annotated (PAS = 100%).

Iterations = 50Iterations = 123Iterations = 36

CleverSeg 
DSC = 90% RT = 0.54s

3DBGrowth
DSC = 90% RT = 1.80s

GrowCut
DSC = 87% RT = 0.64s

Outside annotation
ANT = 50s (50% annotated)

Estimated Inside annotation
Time = 2.8ms (per slice)

(b) η = 4.5 (PAS = 50%).

Fig. 5. Segmentation results for a single muscle: exam 52, psoas left.

B. Varying the number of annotated slices

For this experiment, we use the error η between slices as
a threshold in order to find which slices should be annotated.
The average results for all muscles are summarized in Fig. 6,
and analyzed as follows. The DSC starts dropping at η = 4.5
(Fig. 6a), while ANT fastly drops at η = 1.5 (Fig. 6b) along
with the PAS slices (Fig. 6c). For the running time, CleverSeg
was the fastest method for all thresholds (Fig. 6d).

According to the results reported, η = 4.5 presented the
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(a) Dice Score Coefficient (DSC).
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(b) Annotation Time (ANT).
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(c) Percentage of Annotated Slices (PAS).
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Fig. 6. Results for varying the mean absolute error (η) threshold.

best trade-off between DSC and ANT . For this threshold,
the PAS drops to approximately 50% and the ANT drops
from 72 to 40 seconds (almost 2x faster), losing just a tiny
bit of DSC (from 87%, 87% and 83% to 85%, 84% and
81% for CleverSeg, 3DBGrowth and GrowCut, respectively).
Fig. 5b illustrates this, in which, compared to Fig. 5a, ANT
drops almost to a half, while DSC drops 1% for GrowCut. To
further validate the results presented herein, in the next section
we perform statistical testing.

C. Statistical evaluation

As the data for all measures presented several similar values,
the Kolmogorov-Smirnov [37] test was applied at the 5%
significance level. The null hypothesis was rejected for all
measures, which indicates the data do not follow a normal
distribution. Therefore, the Wilcoxon [38] test was employed
at the 5% significance level.

The Wilcoxon test results are reported in Table II. Note that,
CleverSeg presented significantly better running time (RT )
than 3DBGrowth and GrowCut. Compared to 3DBGrowth,

TABLE II
WILCOXON TEST RESULTS:D MEANS THAT CLEVERSEG WAS
SIGNIFICANTLY BETTER AND × MEANS THAT NO SIGNIFICANT

DIFFERENCE IS OBSERVED.

CleverSeg η

against Meas. 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5

3DBGrowth

DSC × × × D D D D D
JAC × × × D D D D D
HD × × D D D D D D
RT D D D D D D D D

GrowCut

DSC D D D D D D D D
JAC D D D D D D D D
HD × × × × × × × ×
RT D D D D D D D D

CleverSeg presented better results for DSC, JAC and HD
from η = 4.5 to 10.5. In general, CleverSeg presented
comparable or significantly better results than the competitors,
while always achieving a faster processing time.

VI. CONCLUSION

The semi-automatic segmentation of muscles in larger vol-
umetric MRI exams is a challenging task. In general, too
much time is spent on manual annotations of each slice of the
exam, both inside and outside the object of interest (muscles
in this work). For this reason, allowing a fast and accurate
segmentation of slices is crucial in order to obtain a proper 3D
reconstruction of the muscle. Aimed at overcoming this issue,
we used the mean absolute error to remove not needed slices
from the manual annotation process. Furthermore, we esti-
mated the inside annotation based on the outside annotation,
not requiring manual inside annotations, while the competitors
demand the annotation of both inside and outside seeds.

The experimental results showed that, on average, only 50%
of the slices required outside annotations. Moreover, the time
spent on overall annotations is 50% faster by using only the
outside annotation and quickly estimating the interior annota-
tion with our approach. As a final remark, we highlight that
CleverSeg presented better or similar results than 3DBGrowth
and GrowCut while managing a statistically significant lower
processing time. As a future work, we intend to exploit the
segmentation of temporal images sequences.
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