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Abstract—Daily mobility data describes individual displace-
ments over 24-hours periods and are an important source of
information to understand the real rhythm of a city, to provide
appropriate transportation policies, and to support investment
decisions. Geovisualization researchers have designed multiple
coordinated views environments, combining spatial and temporal
dimensions, and providing indicators comparison. Daily mobility
analysis is complex and requires simultaneous exploration and
combination of different indicators at different spatial and tem-
poral granularity levels. The design of effective geovisualization
environments supporting this analysis evokes several challenges
due to the diversity and multiplicity of indicators, the granularity
of space and time, and time integration. In this paper, we propose
a geovisualization approach enabling the dynamic visualization of
diverse indicators, as well as the exploration of space, time, and
other attributes. We use multiple screens embedding customizable
dashboards and allowing the users to arrange views and compare
indicators as it better fits their analysis. It also integrates a mobile
device serving as a display and interaction tool to physically
control the evolution of the visualization on time.

I. INTRODUCTION

The study of the forms of settlements and the organization
of individuals’ activity programs in space and time is important
to understand and guide the development of better urban
environments. In the past few years, the rise of tracking
technology enabled the collection of different sorts of data
describing the population’s movements within a territory. The
spatiotemporal Triad scheme [1] is commonly used to analyze
this movement data since it enables the exploration of entities
of interest in time and space at different levels of aggregation.

Urban mobility data can be studied on the basis of three
entities: the flows and displacements, the territory settlement
dynamics, and the individual trajectories. While the flows
describe the number of displacements between two spatial
locations, the territory settlement dynamics consider the pres-
ence and mobility of the population. Individual trajectories
describe the sequence of activities performed by someone in
space and time. The analysis of these entities rely on the
derivation of indicators that can be used to provide information

Fig. 1. Our approach comprises customizable dashboards (top) embedded in
a multi-screen environment. A tablet holds the main interface (middle), which
interacts with the dashboards and support our movement-based technique
(bottom) for time animation.

to support decision-making for transportation policies and
investments; as a basis for comparisons among metropolitan
areas, and; as a sense of whether system performance is
improving or getting worse [2].

Along with the emergence of geovisualization techniques,
geographers began to work with computer scientists for de-
veloping conceptual frameworks and methodologies based on
a visual and exploratory analysis of spatiotemporal data [3].
These solutions often comprise dashboards with numerous
interactive and coordinated views with graphics and carto-
graphic representations of the data. It enables the interaction
with multiple dimensions of the represented phenomenon to



conduct spatial, temporal, and spatiotemporal analyses.
The design of existing geovisualization environments is

frequently driven by specific problems, such as traffic jam
detection [4], usage patterns of shared bicycles systems [5],
social segregation in metropolitan regions [6], and life or indi-
vidual trajectories analysis [7]–[9]. It would use data sources
suitable to answer the problem-related questions, which might
not require information on activity programs, for instance.
It likely to favor only one form of representation, which
is centered either on the territory settlement dynamics (e.g.,
through animated maps [10]), or the individual’s movements
(e.g., visualizing trajectories in 3D through the space-time
cube – STC [11]). To the extent of our knowledge, there is
not an unified environment (free and accessible) that gives the
user the possibility to, simultaneously, explore the indicators
summarizing aspects of displacements and flows, and to ana-
lyze and visualize the mobility dynamics at the individual and
population levels.

The design and development of such unified environment
evokes multiple challenges, such as conceiving visualization
techniques suited to represent urban mobility indicators and
to define interaction methods to handle the dialogue between
space and time, while exploring the data at different levels of
aggregation. This process should also consider the reasoning
mechanisms supporting the visual analysis, which are associ-
ated with a cognitive process, resulting in different ways to
which users perceive the visual representations. Hence, the
proposed environment should be evaluated to guarantee its
effectiveness, efficiency, and user satisfaction [12].

Our approach aspires the design and development of a
geovisualization tool for urban mobility analysis, such as the
one described above. We propose a multi-screen environment
composed of customizable dashboards and a movement-based
interaction technique for controlling the temporal evolution of
the data. A tangible interface supported by a mobile device was
designed to control space and time, and a novel visualization
technique (the mobility wheel) based on a circular double-
ring donut diagram was proposed to represent the mobility
practices of a population (see Fig. 1). We also present the
development and evaluation of a prototype that supports the
spatiotemporal analysis of flows and displacements and the
territory settlement dynamics.

The remainder of this paper is organized as follows. Sec-
tion II presents previous works on visual solutions for urban
mobility data; analytical dashboards, and the use of mobile
devices on information visualization. Section III presents the
specifications that guided our proposal while Section IV details
the eSTIMe prototype. Sections V and VI present the pilot
study and the first impressions of users, and the evaluation
process we used. Finally, Sections VII and VIII discuss our
results, limitations, conclusions and future work.

II. RELATED WORK

Studies on urban mobility have increased in the last years,
especially due to the diversity of data sources available,
providing information on individuals’ movements. In addition

to the visualization tools mentioned earlier, Shi et al. [10]
visually explore mobility metrics to identify vibrancy, fluidity,
commutation, and diversity patterns. Lu et al. propose a
ranking-based visual analysis method to explore vehicles travel
behavior [13], and use taxis trajectories to visually explore
origin-destination (OD) patterns [14] .

Since the analysis of the public transportation system (PTS)
passengers’ behavior is valuable for transportation researchers
and urban planners, visual solutions were designed to explore
this data [15], [16]. Zeng et al. [17] analyze the impact of
mobility-related factors (riding, transfer and waiting time), and
their temporal variations on the shape of passenger mobility.

Twenty-five years ago, bike-sharing systems were designed
and today’s technology provides usage data serving as com-
plementary information to understand urban mobility. Shi et
al. [5] propose a visual analytics system: to advice for optimal
bicycle dispatch via stations categorization based on their main
functions; to explore the spatial direction of biking moving via
flow correlations and differences among multiple stations; and
to visualize the influence of multiple factors on bicycle rental
numbers. Latent user activity patterns in bike-sharing and their
comparison in/between cities is also possible [4].

Ma et al. [18] visually explore flow crowd volumes, direc-
tional dynamics, and spatiotemporal patterns to inspect human
social relations and their physical movements, while Zeng et
al. [19] propose an interactive points-of-interest (POI) mobility
signature to illustrate how human mobility varies over POIs
in different categories and across different areas. Techniques
like Voronoi tesselations and stacked elliptical activity glyphs
are employed to visualize activity regions and to detect urban
regions sharing similar activity patterns [20].

These studies share the goal of exploring urban mobility
patterns. Their conception is often founded on hypotheses,
and they use databases describing mobility mostly through
spatiotemporal data, without taking into account attributes that
could explain why and how people move. Understanding the
reasons for people’s displacements and their modes of trans-
portation is as relevant for understanding the urban mobility
dynamics as for describing their trajectories in space and time.
Therefore, the relevance of an environment that enables the
exploration of every dimension of the data and their internal
relations is evident.

Faceted analytical dashboards are “a set of interactive charts
(primarily graphs and tables) that simultaneously reside on a
single screen, each of which presents a different view of a
common dataset, and is used to analyze that information” [21].
These powerful decision-support tools applied to geographic
information visualization have been proved to increase the
spatial thinking performance, and may also improve the user
performance [22].

Chitarro [23] discusses the challenges and advantages of
visualizing information on mobile devices’ screens, such as
the usefulness of mobile-map applications for navigation and
interaction. The transfer of multiple coordinated views (MCV)
visualizations from normal-size monitors to large displays is
a growing practice. Nonetheless, this requires new interaction



techniques, since using the traditional mouse might be neither
possible nor efficient. Langner et al. [24] and Kister et al. [25]
propose sets of interaction techniques for large displays using
mobile devices. Pahud et al. [26] use the mobile device as
a sort of portal through which the user can explore, interact,
and annotate n-dimensional data visualizations. Pietroszek et
al. [27] leverage the tilting movement of a mobile device to
interact into a 3D space by “casting” the 2D plane of the
device. Besanon et al. [28] use complementary tangible and
tactile inputs to achieve common 3D visualization tasks.

III. DESIGN RATIONALE

A. Assumptions

As stated by LeRoux et al. [6], the rhythm of a city
can change from day to nighttime. They studied the social
composition of different neighborhoods over 24-hours and
verified that it is similar during the night, but it evolves during
the daytime, as the most favored people would move towards
areas providing more local resources, while the disadvantaged
people would be retained at their residential neighborhood.
Therefore, the study of urban mobility through individuals’
daily activity-based trips can assist public agents, e.g., urban
planners, on targeting areas to implement interventions more
connected with the real rhythm of the city.

Daily mobility data describes the movements of individuals
throughout a studied territory along with 24-hours. It contains
information on displacements performed to achieve a set of
goals, such as going to work, to the school, or visiting some-
one. These goals describe people’s motivations to move from
one place to another, as well as their activities when staying
at their final spatial location. In this context, an individual
trajectory consists of a sequence of stops and moves. The
former described a time interval when the individual was
present in a spatial location performing a specific activity,
while the latter represents a spatiotemporal line defined by
two locations representing either two consecutive stops or a
trajectory beginning or end [29].

The mobility indicators should be easy to interpret, pre-
senting the actual situation through a representative picture,
and enabling comparisons with other indicators [30]. Data
exploration from the earlier mentioned entities of interest relies
on the derivation of complementary indicators. For instance,
indicators summarizing the flows and displacements can help
to understand the influence of population migrations on a
territorial settlement. The analysis of individual trajectories
through the activity-based approach [31] allows to identify
and characterize complex travel behavior, as well as extreme
profiles such as hyperactive and stationary individuals.

Many areas within urban policies benefit from daily mo-
bility analysis, supporting decisions on transportation offers,
accessibility, air quality control, public health, and well-
being. Thus, numerous experts (e.g., researchers, diagnostic
managers, local authorities) have to manipulate mobility data
to extract knowledge from it, without being transportation
specialists. They compose the profile of the end-users of

our geovisualization environment. Thus, our proposal should
enable these users to:

• describe the daily mobility according to three entities
of interest: the flows and displacements, the territory
settlement dynamics, and the individual trajectories

• analyze and compare complementary indicators in the
aggregate and individual levels

• explore the temporal dynamics of indicators to identify
the daily rhythms of the city and its population

• compose the analytical dashboard according to their
needs, choosing the indicators, spatial zones and periods

B. Our Approach

The integration of time and space dimensions is itself a chal-
lenge on cartographic and geovisual representations. Small-
multiples and animation are the foremost used techniques to
dynamically explore time. The first technique displays the
information changes side-by-side via time slices, which suffers
from spatial limitation and resolution since each slice reduces
as their number increases. The second option can be thought
as a movie presenting the information as time slices one
after another in a pre-defined order. Though animation does
not suffers from low spatial resolution, fast animations can
be difficult to understand, since the user must rely on their
memory to understand the data [32].

The interaction method proposed by us to explore time
relies on the animation concept. While we still present the
information changes in the form of consecutive time slices, we
allow the user to physically control it by tilting a tablet.Our in-
spiration comes from the use of mobile devices to interact with
visualizations and 3D applications [33], and the advantages of
using it as a second screen [34]. Intensive bodily interaction
is known to be more engaging [35], and proprioception (i.e.
the sense of self-movement and body position) could help the
user to retain information by using the position and orientation
of their hands and wrists as a recall reference. More than
interacting with the temporal dimension, the mobile device
also serves as a second screen holding map-based views and
a tactile interaction space to manipulate indicators and views.

Analytical dashboards are largely used in visualization,
being designed through a set of defined and effective views
to achieve the user’s goals. In this work, we want to give
the users a certain freedom so they can custom the dashboard
as they judge suitable to their analysis. Believing that larger
workspaces could improve the analysis, we adopt customiz-
able dashboards embedded into a multi synchronized screens
environment. Further, this approach provide enough space to
compare indicators at different spatiotemporal granularities.

As a proof of concept we developed eSTIMe (Fig. 1), a
prototype to explore daily mobility data in the aggregate level.

IV. ESTIME

A. Data Description

eSTIMe aims to support different datasets describing daily
mobility, regardless of their sources. Currently, we use the
data from a Household Travel Survey (HTS), since it provides



information on individual displacements in space and time,
including their motivations and transportation modes. This
enables us to derive the individual activity-based trips and to
aggregate presence and mobility of the population at different
spatial locations and time intervals, as well as to derive the
volume of flows between different locations. We recovered
the 2010 edition [36] of a survey regularly carried out in the
region of Grenoble, France, since 1976.

The data includes the displacements performed by all house-
hold members aged five and older during 24-hours, from
4am (the day before) to 4am (the survey day). It details
the departure and arrival location and time, transportation
mode and motivation for each displacement. The locations are
described by places (pulling sectors defined in the survey), and
the temporal dimension is discretized into one-hour intervals.
The survey provides data on about 63,000 trips performed on
weekdays from 7,600 households. We provide a diverse spatial
granularity through three territorial partitions (97, 39, and 12
sectors); they all contain smaller surfaces in inner Grenoble
and larger ones in the mountain area.

B. Map View

Indicators summarizing population’s presence in different
locations are visualized through a choropleth map, a well-
known technique used for geographical data representation.
We derived indicators of presence density per location, i.e.
present persons per square kilometer; fluctuation measures the
rising and falling of population along the day through the
difference between people present and the sector population,
and; attractiveness, which identify whether the real density of
a sector is equivalent to the population density [37]. Since
presence density and fluctuation can be explored over 24
hours and per time interval, their maps have two legends:
one explains the values for the current time interval, and
the other the values for the whole day. Fluctuation values
represent population gain and lost. Attractiveness indicates
equilibrium between real and population density as 1 (values
over 1 indicate greater real density and under otherwise).
Fluctuation and attractiveness are depicted through diverging
color scales, while density uses a linear color scale.

C. Mobility Wheel

Indicators summarizing the mobility practices of a popula-
tion complement the presence dynamics. They reveal active
persons’ routines along the day through the number of people
moving from one place to another at each time interval and
the distribution of these movements according to different
transportation modes. For each sector, the indicator represents
the number of persons moving towards this location, and the
transportation modes used to reach this destination.

Timewheels are often used to represent time-series data [38],
which inspired the design of our Mobility Wheel (Fig. 2).
We adapted the view of a double-ring donut chart, forming
each ring with 24 rectangles symbolizing 24-hours. Each time
interval on rings display: in the outermost, people in movement
per sector’s population; in the innermost, the partition of

Fig. 2. The Mobility Wheel displays the movement patterns of active people,
while the arc charts compare the usage of transportation modes across time
intervals.

movements per transportation mode. Arc charts displayed side-
by-side next to the wheel allow to zoom into the transportation
modes distribution, and to compare them across 6 time inter-
vals. This view helps to identify the mobility patterns of the
population over the day at a glance and to understand how
they move around the territory by matching the intensity of
movement and the transportation modes they engage.

D. Flows View

Representing flows without losing the spatial component
and avoiding occlusion is a challenging task [39]. Flow maps
are largely used to represent the volume of flows within a
territory, but they have constraints on the design of legible
maps. Therefore, we adopted the origin-destination (OD) pair
relationship view introduced by Shi et al. [5] to explore OD
flows between spatial locations. It uses a chord diagram, where
arcs represent spatial locations. The arcs are connected by
ribbons, which thickness describe the flows volume exchanged
between the locations. The ribbon color determine the flow
origin. We provide spatial information virtually binding the
chord diagram to the map view on the tablet display. Flows
filtering is available by selecting a location on the map. The
indicator can be explored over 24 hours or per time period. The
view can display flows exchanges within the entire territory,
or the user can choose a set of up to 10 locations (for the sake
of readability).

E. Interaction

eSTIMe supports regular interactions such as pan and zoom,
as well as spatiotemporal filtering. The angles produced via
the tablet tilting are mapped to slots in the time picker.
Since the daily mobility events generate everyday patterns,
a cyclic arrangement (timewheel) seems appropriate. The
existing environments often arrange time linearly in a timeline.
Our interface, for the other hand, provides both formats upon
choice. The user would tilt the tablet either counter- and
clockwise for selecting time intervals in the timewheel, or from
left to right and contrariwise in the timeline.

The main interface, so called Controller, provides a menu
to choose the indicators and customize them under differ-
ent spatiotemporal granularities before displaying them on



a dashboard. It can hold multiple customizable dashboards.
By default, each dashboard comprises four blank windows,
progressively fulfilled according to the user’s needs. Time and
space are explored via a time picker and a map available on
the Controller. The former is used to change time and to open
arc charts next to Mobility Wheels. The map view supports
pan and zoom; selection of locations to generate the Flows
View or the Mobility Wheel; and spatial filtering on the Flows
View. In case our prospect users want to create reports of
their exploration, we also provide them with the possibility to
download the views as an image.

F. Implementation Details

The basic setup of eSTIMe consists on instantiate it twice:
one instance holds the main interface and should be displayed
on the tablet, while the second one comprises a dashboard,
where the views are displayed and organized. It should be
displayed on a large screen for a better experience. The
prototype is a Web-based application. A server was devel-
oped in Java and uses WebSocket technology to manage the
communication between the Controller and the dashboards.
The client was developed in JavaScript and uses D3 (Data-
Driven Documents) and Leaflet libraries to generate charts and
cartographic representations, respectively. The raw data was
pre-treated through R scripts, and locally stored as geojson
for geographical information, json for the flows data, and csv
for the remaining.

V. PILOT STUDY AND REDESIGN

A first prototype was tried out by 13 volunteers aged 36
years old in average (SD = 10). This trial verified whether
the prototype was usable and could assist users on answering
questions on daily mobility analysis. Since the interface com-
prises two time pickers, we also assessed the users reaction to
our movement-based time interaction. We followed a within-
subjects study design to test two conditions: timeline and
timewheel. Participants were asked to answer two sets of 6
questions, one for each variable. The questionnaire contained
simple (e.g. which is the presence density in sector 5 between
7am and 8am?) and complex (e.g. where are people coming
from in the 3 most attractive sectors?) questions. We measured
users self-reported workload for each condition through the
NASA Task Load Index (TLX) [40], a multi-dimensional rat-
ing procedure which provides an overall workload score based
on a weighted average of ratings on six sub-scales: Mental
Demand (MD), Physical Demand (PD), Temporal Demand
(TD), Own Performance (OP), Effort (EF), and Frustration
(FR). A post-test questionnaire collected users’ subjective
assessment on usability through the SUS questionnaire [41],
and their preferences over the time arrangements.

For the sake of reproducibility, the output data of the user
studies and the scripts treating it are available as supplemental
material. Data was submitted to a mixed design with the
experimental conditions as within-subjects and the user profile
as a between-subjects test. We performed a Shapiro-Wilk
Normality test to verify if the data comes from a normal

distribution and a Fligner-Killeen test to verify if the variances
in each group are the same. When the data passes both tests
we performed an One-Way ANOVA. Otherwise, we submitted
the data to non-parametric tests, Friedman for paired and
Kruskal-Wallis for unpaired groups. When finding statistical
significance in multiple variables comparisons we ran Tukeys
range test for One-Way ANOVA, and Nemenyi test for the
others. We analyzed whether variables were related through
Pearson correlation.

Response time and accuracy were similar in both condi-
tions: around 26 minutes and 86% of correct answers. These
variables are 56% correlated in the timewheel condition (p =
0.058). Both timeline and the timewheel induced a mean self-
reported workload of 63 and were high mentally demanding.
In the timewheel, the MD was significantly stronger than
PD, TD, and FR (p < 0.001). For both conditions, PD
was lower than EF and OP (p < 0.001). The timeline was
found less frustrating than effortful (p < 0.001). The more
mental demanding the task, the less physical effort it requires
(R = 0.6, p < 0.05). Though PD received the lowest scores, it
seems to worsen response accuracy as it increases (R = 0.69,
p < 0.001). Mental demand appears to reduce users’ self-
perceived performance (R = −0.83, p < 0.001 for the
timewheel, and R = −0.51, p = 0.078 for the timeline), yet
it does not seem to affect response accuracy.

Older participants took longer to finish the experiment in
the timewheel condition (R = 0.72, p < 0.01). In the same
way, the mental demand is higher for older participants in the
timeline (R = 0.65, p < 0.05), and it appears to happen
also in the timewheel (R = 0.5, p = 0.085). Great prior
knowledge on the territory mobility also increased mental
demand (R = 0.58, p < 0.05) in the timeline. The longer
the response time, the less frustrated users felt (R = 0.58,
p < 0.05). We suppose users got comfortable with the
prototype, decreasing frustration feelings. The usability of our
prototype was assessed on 48/100 (SD = 8.66). The timeline
was favored over the timewheel (M = 3.53, SD = 1.19 in a 5-
points Likert scale). Users are more familiar to it and the lower
degrees-of-freedom make the timeline easier to manipulate.

Users provided satisfactory answers to the proposed ques-
tions in the pilot study, yet their response time was longer
than desirable for everyday use and they reported high work-
load scores. The interface lacked on intuitiveness, specially
regarding interaction with dashboards. To display a view,
the user should select the territorial partition, the indicator,
the dashboard and submit the choices. The view would be
displayed in the next blank window, re-assorting the views
each time the user deleted or added something. We then
transformed it into a slider menu interface, where each slide
corresponds to a dashboard, holding four “windows” as in
the dashboard interface, and the user can directly control
where and how the indicators are viewed (Fig. 3A). The
charts supporting the analysis and comparison of modes of
transport used by active people were designed as bar charts,
which was hard to understand at a glance. We modified it
into arc charts (Fig. 3B), following the color code of the



Fig. 3. Main modifications on the prototype after the pilot study results. The menu (A) have been remade into a more intuitive interface. The charts displaying
the distribution of transportation modes (B) were changed from bars to arc, which also link the modes to their respective colors. The Flow View (C) was
upgraded into a more intuitive and informative diagram.

wheel’s inner ring, fastening information assimilation. We
have represented flows exchanges through a simple chord
diagram, which was hard to understand since flows direction
was only pointed by ribbons color and it did not provide
information on flows volume. We upgraded it to a more legible
and intuitive diagram [5] (Fig. 3C).

VI. USER EVALUATION

The new version of eSTIMe was submitted to a two-part
evaluation (below): to assess the movement-based interaction
technique; and to evaluate effectiveness with prospect users.

A. Experiment I: Time Animation

Seventeen unpaid persons, researchers and PhD students,
aged 33 years old in average (SD = 11.18), took part in
a within-subjects experiment to compare 4 conditions: time-
wheel (A) or timeline (B) controlled by tilting, and traditional
animation controlled by mouse (C) or touch (D), hypothesizing
the (H1) animation performance is similar with mouse and
touch interactions; (H2) tilting movement provides better
answers than the traditional interaction; and (H3) movement-
based interaction is preferred over the mouse.

We gave the participants four (one per condition) 3-
questions sets regarding different conditions (either presence
density or fluctuation rate) and spatial locations (x, y, z):
how the variable vary along the day in sector x?; which are
the periods in sector y when the variable value decreases?;
which are the periods in sector z when the variable value
increases? Subjective usability of each technique was assessed
via UMUX-Lite questionnaire [42]. The post-test question-
naire gathered users’ preferences over the proposed techniques
through a pair-wise comparison and a 4-item rating assessing
the agreeableness of each technique in a 5-point Likert scale.

Response time was around 6 minutes for each experimental
condition, progressively decreasing from the first to the last
question (p < 0.01). Condition A (timewheel) provided a 50%
response accuracy, significantly lower than the other conditions
(around 85%, p < 0.05). Overall, users preferred to control
animation via touches. From the pair-wise comparison, condi-
tions B (linear movement) and C (traditional animation) were

similarly appreciated, and condition D is preferred over C.
The assessed usability was not significantly different between
the techniques (42/100 in average). Users found the timewheel
was the most frustrating and difficult to use. As expected, the
traditional animation was considered easy to use, since it is
well-known for time exploration and users are more familiar
with mouse interaction.

Participants’ prior experiences on non-conventional inter-
action appear to increase response accuracy (R = 0.35,
p = 0.013) in condition D, and to reduce response time
in condition B (R = 0.28, p < 0.05) and D (R = 0.24,
p = 0.087). Similar to the pilot study, older people provided
less accurate answers (R = −0.29, p < 0.05, condition D),
and took longer to finish (R = 0.35, p < 0.05, condition A)
it.

The cyclic tilting movement was found unnatural and the
rectangles in the timewheel too small, challenging the pointer’s
placement. The timewheel takes about 25% of the screen’s
height for the sake of the map readability, which became a
limitation in our approach, since we use a 9.7-inch screen
tablet. Participants found hard to interpret the fluctuation map
because of its diverging color scale and the proportional values
(to the population). The legends changing at each time interval
disturbed some participants.

In summary, since we have found similar response times
and accuracy between interactive animation via mouse and
touches, we accept H1. Response accuracy was lower while
using the cyclic movement, but linear movement provided
similar response accuracy and time as the traditional anima-
tion. We reject H2, because performance with the movement-
based technique was not better, but rather similar to traditional
animation. However, users enjoyed the linear movement, as
well as the tangible animation, finding it easy to use. We
accept H3 and consider to merge both techniques to enable
the user to play the animation via device tilting and to select
time intervals via touch.

B. Experiment II: The Environment

Twenty-four volunteers (21 valid), aged 22 years old in
average (SD = 1.82), students with satisfactory knowledge on



the target domain took part in this experiment. We followed an
one-group posttest-only design to evaluate the effectiveness of
our environment on assisting the analysis of daily mobility
data. Participants in the pilot study mentioned one need a
longer training time to master the interface. Therefore, we
designed it as a two-part experiment. The first part comprised
two 3-hours sessions in which users worked in pairs to answer
a set of 16 questions. In these sessions, a PC monitor displayed
the Controller, and a mouse supported the interaction.

The experimental (collective) sessions took place two weeks
later, where 12 participants worked in parallel to answer 14
analytic questions. An automatic training phase was performed
through 16 interaction-related questions. A post-test question-
naire included the SUS and a reduced version of the NASA
TLX, containing only the ratings part in a 10-point scale.
Scores for each sub-scale were determined as the average
rating times 10, and the general score was the mean score
of sub-scales. It also measured users’ preference on using a
PC monitor or a tablet as second screen.

Assessed usability is still moderate (40/100), while self-
reported workload decreased (M = 33.3, SD = 6.8). Users
strongly scored MD (M = 41.4, SD = 9.10) and OP
(M = 54.3, SD = 9.78). However, no correlation was
observed between OP and neither response time nor accuracy.
Responses were 81% accurate, varying across spatial locations
and indicators. The responses regarding the 4th location were
less accurate than the remaining (p < 0.001 against the 2nd,
and p < 0.05 against the 1th and 3rd). Accuracy on ques-
tions about attractiveness was higher than presence density
(p < 0.05), which also got less correct answers than flows
(p < 0.001). The latest was also more accurate than fluctuation
rate (p < 0.01) and population mobility (p < 0.001).

Response time was about 35 minutes (SD = 12.9), with an
average of 2.49 minutes (SD = 2.26) per question. Small
correlations suggest response time appears to increase FR
(R = 0.12, p < 0.05), EF (R = 0.16, p < 0.01), and PD
(R = 0.2, p < 0.001), and to reduce accuracy (R = −0.12,
p < 0.05). Participants’ prior knowledge on mobility appears
to increase OP (R = 0.49, p < 0.001), and total work-
load (R = 0.26, p < 0.001). More experienced on non-
conventional interaction users reported higher PD (R = 0.3,
p < 0.001), MD (R = 0.34, p < 0.001), and total workload
(R = 0.2, p < 0.001). However, it does not seem to affect
response time and accuracy. Users enjoyed the tablet as a
second screen (M = 3.95, SD = 1.43) and preferred using
it rather than a PC monitor (M = 4, SD = 1.22), since they
could display the views on a large screen while interacting on
the tablet, which facilitates data exploration.

VII. DISCUSSION

We designed and developed a multi-screen geovisualization
environment embedding customizable dashboards to assist
daily mobility analysis. The main interface consists of a tablet
integrating a movement-based interaction technique to dynam-
ically explore time varying data. Even though the timewheel
was outperformed by every other animation technique, the

timeline controlled by our method was proven to be as efficient
as the traditional animation (i.e. via mouse interaction), while
being more engaging. Using touch to control animation was
equally enjoyed by users, thus we combined physical and
touch to provide more control and engagement to explore
the indicators over time. Time exploration could benefit from
the customizable dashboards approach. As an example, the
user could view the same indicator at different time intervals
side-by-side on the dashboard, as via small-multiples. Our
prototype provides indicators of flows and displacements, as
well as territory settlement dynamics. Despite not analyzing
activities neither individual trajectories, it allows to understand
how people move around on urban area. Our user studies
intended to evaluate whether our design choices are useful
to explore daily mobility, before fulfill the indicators.

Fifty-one volunteers, which 21 were knowledgeable on
geography and mobility, used our prototype and have found
it promising. Our approach is effective for assisting the visual
analysis of daily mobility data (at least in the aggregate level).
Participants could provide satisfactory answers to the proposed
analytical questions, even those with none experience on the
domain. The changes we made in our prototype from the pilot
study to the evaluation phase improved efficiency, since the
users answered 14 analytical questions in about 1/3 the time
the participants in the pilot study took to answer 12 questions
with about the same accuracy (80%).

We also interviewed a few public agents who explore HTS
data to support decision-making in urban development. We
demonstrate our prototype and let them test it. Though, they
were excited with the idea of customizing the dashboard and
using their own movement to explore time, they pointed out
using a second screen (i.e. the tablet) could be a constraint
in their everyday work, since it requires extra material, not
needed for other tasks.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a geovisualization approach to sup-
port the (1) description of daily mobility through flows and
displacements, territory settlement dynamics and individual
trajectories; (2) analysis and comparison of complementary
indicators in the aggregate and individual levels; (3) explo-
ration of the time dynamics of indicators, and; (4) custom
composition of the dashboard according to the user’s needs,
while choosing the spatial and temporal granularity to com-
pose the indicators. eSTIMe uses a multi-screen environment
embedding customizable dashboards, and a movement-based
interaction to support time animation via mobile devices.

In a prototype level, it is limited by not including yet
indicators on activities and individual trajectories. The explo-
ration of the latter, while performed via survey data would
not violate the data protection laws, since the spatial locations
are defined by great areas, not involving specific geographical
coordinates revealing individuals residences and work places,
for instance. Usability issues are being solved towards a user-
friendly environment. The evaluation process could demon-
strate the efficacy of our approach, yet it does not evaluate the



effectiveness of using customizable dashboards in comparison
to the traditional ones. Therefore, future work also includes
user studies to evaluate this aspect, and a validation of eSTIMe
by domain experts.
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mobilité au cœur des emplois du temps des citadins,” in La mobilité qui
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