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Abstract—Recognizing indoor scenes is still regarded an open
challenge on the Computer Vision field. Indoor scenes can be
well represented by their composing objects, which can vary
in angle, appearance, besides often being partially occluded.
Even though Convolutional Neural Networks are remarkable
for image-related problems, the top performances on indoor
scenes are from approaches modeling the intricate relationship
of objects. Knowing that Recurrent Neural Networks were
designed to model structure from a given sequence, we propose
representing an image as a sequence of object-level information
in order to feed a bidirectional Long Short-Term Memory
network trained for scene classification. We perform a Many-
to-Many training approach, such that each element outputs a
scene prediction, allowing us to use each prediction to boost
recognition. Our method outperforms RNN-based approaches on
MIT67, an entirely indoor dataset, while also improved over the
most successful methods through an ensemble of classifiers.

I. INTRODUCTION

The ability to recognize the environment around us might
seem effortless for humans, but research on scene recognition
shows otherwise for computers. According to [1], a scene is
defined as any place a human being can act within or to which
one could navigate, ranging from house rooms to islands,
stadiums, cathedrals, among many others. Different from other
classification tasks, such as recognizing objects or faces,
scenes can be quite difficult. Besides the usual challenges such
as lighting, angle of image acquisition, occlusion, to name a
few, the image of a scene can be abundant in highly variable
local information. This is specially true for indoor scenes,
since their global structure can be very ambiguous among
classes (e.g., house rooms), while local information from
objects allows to distinguish between them. Each object can
present itself in a variety of manners, and their disposition in
the environment can also be very diverse, putting indoor scene
recognition as an even harder challenge, requiring approaches
specially tailored for the task.

With the rise of Convolutional Neural Networks (CNN) [2]
as the most promising approach for classification on images,
many attempts have been made to apply such networks to
tackle the issue of scene recognition. With the introduction of
a large scale scene-centric dataset [3] the expectations were
even higher for a CNN to be the best solution. However,
even though the results were promising, future works gained
greater prominence by taking advantage of high level semantic
knowledge, usually conveying object-level information and
their intricate relationship [4]–[6].

More recently we witnessed the surge of Recurrent Neural
Networks (RNN) and its variations. The ability to correlate
information from parts of a sequence was designed to solve a
whole new class of problems, mainly the ones that presented
temporal dependencies. Text [7], audio [8], and time sequences
such as stock market prices [9] were the primary types of
data in which an RNN was applied. And, as expected, they
benefited a lot from the behaviour of that type of model.
However, any data that can be divided into interdependent
parts is eligible to exploit the advantages of recurrent models.
Hence, in this paper, we propose to classify scenes using
a methodology based on a RNN. Specifically, we exploit
the advantages of a Bidirectional Long Short-Term Memory
(BiLSTM), an advanced recurrent unit [10] that provides
predictions of higher quality compared to its unidirectional
counterpart [11]. Our assumption is that scenes can be well
represented by their composition of objects, therefore we lever-
age object-level information to compose the input sequence.

The main idea is to use a Region Proposal approach to
select Regions of Interest (ROI) from the image, belonging
to object parts. Then, extract highly semantic features from
each ROI, composing a collection of object features. By
training a BiLSTM to perform classification over the sequence
of features, it will learn the underlying structure of object
parts, building a semantically meaningful representation that
is able to distinguish between classes. We perform a Many-to-
Many (M2M) training procedure, seeing that it will produce
a prediction for each object part relative to the remaining
context, allowing us to boost recognition performance by
considering how each part relates to the remaining image.

We are also interested in knowing if our proposal can
improve over the most successful methods on the literature
by pairing our work to a few of them in an ensemble of
classifiers. That will allow us to analyze the performance
of our method relative to each approach comparing it to a
joint strategy of methodologies. As showed by our results,
the proposed ensemble boosts classifcation performance for
all approaches. We evaluate our method on three datasets,
Scene15 [12], MIT67 [13], and SUN397 [1], each presenting
different types of scenes and levels of difficulty.

II. RELATED WORK

Scene Recognition has been an active field for over a couple
of decades. Early proposals were inspired by the field of
image retrieval [14], [15], while others borrowed knowledge



from human psychology as their main influence [16]. Such
approaches relied solely on low-level features from the image,
composing a global representation of the scene, which was
found by the authors to perform poorly on indoor scenes, since
they neglect the importance of local information for recog-
nition. Other approaches proposed mid-level representations,
bringing up the concept of Bag-of-Features composed by local
information [12]. One of the highlights from the literature is
the work of [17], a Spatial Pyramid Matching approach that
produced multiple Bag-of-Features from three scales. Even so,
indoor scenes remained as a greater challenge for such works.

The popularization of deep Convolutional Neural Networks
raised the bar on average performance for scene recognition.
Early CNN approaches were directed to the problem of object
recognition, specially after the release of a large-scale object-
centric dataset, ImageNet [18]. Still, researchers attempted to
apply such models to the problem of scene recognition, a more
distant domain, reaching promising results [19]. After a large-
scale scene centric dataset was released, entitled Places [20],
there was a lot of investment in CNN approaches as the
solution to the problem of scene recognition. Models pre-
trained on Places (Places-CNNs) showed great improvement
over the state of the art. And although the debut of Places was
groundbreaking, researchers were still providing solutions tai-
lored to the specific task of recognizing indoor environments.

Combining local information of a given scene was shown
very promising in the literature, specially for indoor scenes.
[5] proposed a joint strategy of object features for local scales
and scene-level features for the entire image, outperforming
Places-CNNs. Nascimento et al. [6] followed the same premise
on combining scene-level and object-level information on
different scales, only now proposing a more robust dictionary-
based representation with sparse coding of features. There is
also the work of Wang et al. [4], proposing an architecture
entitled PatchNet to model the appearance of local patches,
and an encoding approach called VSAD as a global descriptor.
All three of those methods share the premise of composing a
representation with rich local information, such that indoor
scenes would not represent a weakness for their approaches.

A. Recurrent Neural Networks

When RNNs gained popularity for image-related problems,
it was common to see them applied to inherently sequential
data. But soon enough researchers started applying recur-
rent methodologies to challenges such as multi-label image
classification [21], or scene labeling [22], to name a few.
For images, modeling the structure of parts is equivalent to
learning contextual dependencies, which is highly valuable for
problems requiring correlation of local information.

With the success of composing local information to classify
scenes, the power of RNNs to model the structure of parts
was considered suitable for the problem of scene recognition,
specially for indoor scenes. One reference that stands out
is the work of Zuo et al. [23], one of the first reports
applying a combination of Convolutional and Recurrent layers
to correlate semantic features for scene classification. Their

method, entitled C-RNN, adopted a quad-directional RNN to
correlate intermediate convolutional features, and was entirely
pre-trained on object-centric data, being highly competitive to
the state of the art at the time. Extending the work of Zuo
et al., in 2016 the authors attempted a hierarchical approach
[24], entitled C-HRNN. They followed similar steps as their
previous attempt, but with a more complex multi-directional
RNN along with a hierarchical RNN to correlate information
from different scales. It is also worth mentioning the work
of Javed and Nelakanti [25], a recent proposal for scene
recognition that assumes object features as an ideal source
of information to recognize scenes, reinforcing our premise.
Their work relied on a method of region proposal to select ROI
from the image, and composed a sequence of object features
with all ROI from an image. On their experiments the number
of ROI was fixed to 10, arguing that it was sufficient as a
proof of concept to validate the methodology. Since recurrent
models allow inputs of variable size, fixing the number of
ROI omits an important aspect of the scene. The amount of
object information present in each scene by itself conveys
relevant knowledge regarding its category, i.e., some classes
can be typically more crowded than others. And although
our approach resembles the work of Javed and Nelakanti
on the step of sequence composition, our model supports
variable length sequences. Additionally, there is little effort
towards exploiting the multiple outputs provided by a recurrent
approach, which we intend to explore in this work.

III. METHODOLOGY

This section describes in details the proposed methodology,
as illustrated by Figure 1. In order to build an approach for
scene recognition based on a recurrent model, we represent
an image as a sequence of elements. Thus, step (a) (refer to
Figure 1) of the methodology is dedicated to dividing the
image of a scene into parts of scene objects, ordered by
significant criteria in the interest of composing a sequence.
Then, since our premise is based on representing an image
by its composition of objects, for each part we extract high-
level object features from a deep CNN, constituting step (b) of
our method, composing a sequence X = {x1,x2, ...,xn} of
features xt ∈ Rd where d is the dimension of our chosen deep
feature, as it will be detailed later. The composed sequence is
used as input to our recurrent model, step (c). We propose
a Many-to-Many training approach for a Bidirectional Long
Short-Term Memory such that each sequence element xt

produces an output yt based on the current input along with
accumulated context of the remaining parts. Since we only
have scene-level labels, all outputs are an attempt at predicting
the category y of the input scene.

At test time we add steps (d) and (e). The first steps gener-
ates a single prediction y′our from the recurrent model through
a weighted majority voting. We expect to boost classification
performance relative to a vanilla voting approach, since not
every part of the scene is equally relevant. The voting weights
are based on pre-calculated object weights representing the
relevance of each object class for a given scene category.



Fig. 1. Overview of our methodology. Steps (a) through (c) constitute
the training steps, respectively (a) dividing the image into object parts;
(b) extracting high level features from each part; and (c) training a M2M
BiLSTM to produce a prediction yt for each xt. At test time, step (d) is a
weighted majority voting to aggregate predictions, outputting y′our . Finally
the ensemble of classifiers, step (e), decides the final prediction between ours
and a paired classifier from the literature.

Finally, step (e) is an ensemble of paired classifiers, in which
our prediction is paired with a successful approach of scene
recognition from the literature that produces an output y′paired.
A switch criteria is proposed based on statistical measures over
our prediction, such that whenever our inference is determined
to be weak, the paired classifier’s output is considered as
the final prediction y′. This final step aims at improving
classification performance over each paired classifier.

A. Composing a Sequence of Object Parts

The goal of our first step is to compose an ordered sequence
of ROI from the image, with interdependent object parts.
Considering that we do not have available annotations on
object labels and bounding boxes for scene images, we chose
a well known algorithm for object proposals called Selective
Search [26], which yields 99% recall, meaning it selects nearly
all object information from the scene. Since the Selective
Search algorithm outputs object bounding boxes, it is intuitive
to infer that depending on the characteristics of the scene, the
number of output regions can vary drastically. For classes such
as deli, scenes are usually crowded with delicacies up for sale,
while categories like pool inside present fewer objects other
than the pool itself. This is relevant because it means the output
sequence based on a region proposal approach has variable
length. To the best of our knowledge, there is a couple of
references on the topic of scene recognition that exploits such
an approach to represent an image as a sequence, and they
choose to fix the sequence length despite the aforementioned
behavior of region proposal methods [25], [27].

Fig. 2. Step (a) of our methodology, filtering bounding boxes proposed by
Selective Search for a feasible model training.

It should also be noted that the number of ROI proposed
by Selective Search can reach hundreds or even thousands of
bounding boxes, which would be intensely time consuming for
a recurrent training due to the difficulty of modeling very long
sequences. Therefore, as illustrated in Figure 2, to compose
a smaller and more feasible sequence we filter the proposed
bounding boxes by their size relative to the entire image. The
idea is to define two thresholds tlower and tupper representing
the lower and upper percentage limits of patch size. Selective
Search provides the size of each segment in pixels, which we
call spatch, as an attribute of the output. Thus given the image
size simg as the product of its width and height, we allow
patches within the following range:

simg ∗ tlower < spatch < simg ∗ tupper. (1)

The output of Selective Search is decreasingly ordered by
the likelihood of a region to contain an object, which we
call objectness. We maintain the algorithm’s order of elements
when composing our sequence, meeting the requirement of a
consistent order of elements throughout all samples. The final
output of this step is a sequence of bounding boxes from the
filtered output of Selective Search, decreasingly ordered by
objectness.

B. Feature Extraction

After selecting all ROI from the image, the next step is
the extraction of highly semantic features from each region.
Since our main goal is to input a recurrent model with a
sequence of object-level information from the image, the
process of feature extraction should convey information of
that nature. Deep learning approaches are powerful feature
extractors for many applications, and this is specially true
for object features. Residual nets were able to take object
classification performance even further by adding residual
functions to allow training of deeper networks [28]. We exploit
the advantages its 50-layer variation, entitled Resnet-50, to
serve as feature extractor of our methodology. We perform a
forward pass on Resnet-50 pretrained on ImageNet, and extract
the last convolutional layer, after average pooling, providing a
highly semantic and discriminative object feature of d = 2, 048
dimensions. After extracting features from each region, the
final output of that step is a sequence of object features
X = {x1,x2, ...,xn} with xt ∈ Rd, ordered according to
the objectness criteria, defined on the previous step.



C. Context Modeling with a BiLSTM

Once the input scene is represented as a sequence X of
features, our goal is to model the image context by correlating
all xt ∈ X . We propose to exploit the power of recurrent
models to represent the structure of the sequence. Therefore,
step (c), presented in Figure 1, consists in training a variation
of a Recurrent Neural Networks optimizing it for classification,
such that the model will learn the structure of scenes, pro-
ducing similar intermediate representations for samples from
the same category, i.e., the modeled structure will convey
semantically meaningful information of the scene. More gen-
erally, a recurrent unit is a function of the current input and
previous knowledge. Hence it is capable of remembering past
information and accumulate knowledge throughout iterations.
Although it was designed for data with inherent sequential
structure, when applied to images it correlates the given parts
just as it would for any other data. As long as the input has
structured dependencies between parts, a recurrent approach
is capable of modeling it.

On the choice of an RNN variation, gated units tend to
be superior than a simple unit, since they are capable of
modeling longer sequences due to their ability to avoid the
vanishing/exploding gradient problem. As for the difference
between the two advanced gated units, i.e.,Gated Recurrent
Unit (GRU) [29] and Long Short-Term Memory (LSTM) [10],
no significant performance gap was found. Thus, we chose
the LSTM variation due to the more extensive literature
successfully applying it to different kinds of data. We also
exploit the advantages of a bidirectional approach [11], which
can accumulate knowledge from more than one direction
and produce a better informed inference, as it has already
been evidenced by scene recognition approaches from the
literature [23], [24].

In practice, a BiLSTM approach means having two LSTM
units, each one accumulating knowledge from a different di-
rection, as illustrated in Figure 3. As a result, at every timestep
t there is information available from the entire image, the
sequence “past” (positive direction) and the “future” (negative
direction), which means an output produced at iteration t
is a function of the current input and the context of the
remaining sequence elements, parts of an image in our case.
Based on that, we use a synchronized Many-to-Many (M2M)
training procedure, producing a scene classification output yt
for every input xt. Since each element of our sequence has
meaningful semantic information from objects, each prediction
can potentially convey information of how such element relates
to its context.

As a synchronized M2M procedure, every hidden state ht

is forwarded through the fully connected layer and activated
with a softmax in order to produce one prediction for each
input. Likewise, the loss calculation should take into account
errors from all timesteps. Since we are optimizing our model to
perform classification and we only have scene-level labels, our
loss for each timestep t is a Cross-Entropy function between
the probability vector yt and a one-hot encoding representing

Fig. 3. Representing a Bidirectional Long Short-Term Memory to solve a
synchronized Many-to-Many problem. The hidden state output by each LSTM
unit is concatenated (⊕) composing a single hidden output for future layers.

the scene category y, as defined by

`(yt, y) = −
∑
i

(yit log(y
i) + (1− yit) log(1− yi)). (2)

The final loss is then calculated as an average of every
L(yt, y) calculated previously, as Equation 3 shows:

L(y′, y) = 1

n

n∑
t=1

`(yt, y). (3)

D. Weighted Majority Voting

Because our methodology generates n predictions, n being
the number of ROI selected from a scene, we still need to
output a single prediction to perform inference on test samples.
Since a BiLSTM produces an output for each corresponding
input relative to the remaining context, each yt has the
potential to predict the correct scene category. However, the
prediction can vary throughout timesteps, since any yt is a
function of how the corresponding xt relates to its context.
Thus, we aggregate yt as a weighted majority voting, taking
into account the relative importance of each patch for the
image.

To calculate the weights, we use a validation set to build a
weight matrix W obj of size nc x no, respectively the number
of scene classes on the dataset and the number of all possible
objects, for which we considered all no = 1, 000 categories
from Imagenet. The goal of this matrix is to contain the
relationship between each scene i and each object j. To build
W obj , we initialize it with all zeroes, and for each xt from
an image we want to increment cell (i, j) with a weight
representing how relevant is the object from that patch to the
scene category. We know the scene class i since we work with
a validation set, and to find j, we predict the object class from
xt using Resnet-50 predictive ability. Then, we forward xt
through our trained BiLSTM producing a probability vector yt
of size nc, representing the activation strength for each scene
category. Finally, we increment cell (i, j) by the probability of
class i according to yt, defined by yit. The rationale is that yit
corresponds to the probability of object j belonging to class i.
Once W obj is entirely filled by all samples from our set, as a
normalization approach we divide the weights from each cell



by the number of patches from the correspondent class used
to fill each row of the matrix. This benefits objects that occur
more often, which is also an important aspect on the relevance
of such object.

At test time, we perform a weighted majority voting be-
tween predictions from all timesteps, using matrix W obj to
provide the weights. Given an input X = {x1,x2, ...,xn}
of features, from each xt we predict the object class j, and
the corresponding recurrent prediction yt of size nc. Let wj

t

represent the jth column of W obj at timestep t. Our weighted
prediction will then be defined by Equation 4,

ŷt = yt � wj
t , (4)

where � represents the element-wise product of both vectors.
Afterwards, the strongest activation from each ŷt contributes
as the vote for class i at iteration t. After all iterations, the
majority voting of weighted outputs will provide the final
prediction y′our.

E. Ensemble of Classifiers

The prediction y′our from the previous step is sufficient to
perform scene recognition, however we are also interested in
knowing if our method adds any information over the state of
the art. For that purpose, we propose to pair our own approach
with methods from the literature, based on a switch criteria
that will determine for a given image which of the paired
approaches should be considered the final output prediction.
We chose successful approaches as paired classifiers since our
goal is to see if our reliable predictions can improve over a
few of the best approaches in literature. Figure 4 shows an
overview of our proposal. It is important to notice that we
only apply the switch criteria over our own method, hence
our ensemble can be paired with any classifier regardless of
their particularities.

Our switch criteria is a random forest trained on a bi-
nary problem, with labels {0, 1} respectively indicating a
correct prediction and a misclassification of our approach.
As input, first we build a unidimensional vector pmax of
maximum activations throughout timesteps. Given a set of
outputs Y = {y1,y2, ...,yn} each pmax

t corresponds to
max yt from timestep t. From pmax

t we extract statistical
measures which then feed the random forest. We perform

Fig. 4. Overview of ensemble approach. The random forest is a switch criteria
to determine prediction reliability. Green circles represent a reliable inference
while red circles indicate the paired approach should provide the prediction.

two rounds of training. First, with several empirically chosen
metrics to extract the feature importance of each one, and
then we choose the best metrics to perform the final round of
training that will generate the switch criteria.

IV. EXPERIMENTS

We tested our approach on three datasets widely known
as benchmark for scene recognition, namely Scene15 [12],
MIT67 [13], and SUN397 [1]. Scene15 is a small dataset,
compared to the MIT67 and SUN397, and it was one of the
earlier datasets dedicated to scene recognition. It is composed
of 15 classes of indoor and outdoor environments. MIT67
was created due to the need to tackle the specific issue of
indoor scenes, and it contains 67 classes of a wide variety
of indoor environments. Finally, SUN397 is a dataset of
indoor and outdoor enviroments comprising 397 classes. It was
motivated by the lack of large-scale scene-centric datasets on
the literature, attempting to capture the full variety of scenes.

A. Parameter Settings

For the step of ROI extraction, Selective search mainly
requires two parameters: σ and k corresponding respectively
to a Gaussian filter parameter and a scale parameter. We use
the default values defined as σ = 0.8 and k = 300. Then,
to filter larger and smaller patches, we set tlower = 0.1 and
tupper = 0.8 empirically, i.e., patches that account for less
than 10% or more than 80% of the image area were discarded.
We are aware that such parameters might require optimization,
however the intuitive choice drastically decreased the sequence
length while maintaining over 90% image coverage.

The input that feeds our BiLSTM has three dimensions:
batch size× seq len× feat size, representing respectively
the batch size, sequence length and feature size. The first
parameter was fixed to 1 to avoid the need to pad our data,
since seq len varies per sample with the amount of selected
ROI. feat size = 2, 048 as defined by the architecture of
Resnet-50. There is also a free parameter on the recurrent
layer concerning its hidden size. Considering that we tested
different architectures and training approaches, ht was fixed to
512 as proposed by the work of [25]. It is worth reminding that
our recurrent layer is bidirectional, which means that although
ht = 512, the actual outputs is 2×ht since the output of both
recurrent units (one for each direction) will be concatenated
before feeding the next layer.

As for training settings, we used Adam [30] with its
default parameters, except for its initial learning rate that
was empirically set as 1e − 7. The train/test split is already
defined on the reference of each dataset. However, we needed a
validation set in order to generate our weight matrix W obj and
to train the switch criteria on the ensemble of classifiers. We
created a validation set for each dataset by randomly selecting
15 samples from each class, removing them from training.

B. Ablation Analysis

This subsection unpacks some aspects of our methodology.
First, on the choice of recurrent approach, we tested four



configurations shown in Figure 5, varying the training pro-
cedure (Many-to-One (M2O) vs Many-to-Many) and output
composition. Variations I and II produce a single output from
the recurrent hidden states (M2O), with variation I using a
unidirectional LSTM and variation II a BiLSTM. Variations
III and IV produce multiple outputs (M2M) with a BiLSTM,
but they differ on the voting approach, while III uses a simple
majority voting, IV is our final proposal with the weighted
voting of predictions.

The results for all configurations on Scene15 and MIT67
are presented in Table I. Due to its simple nature, results on
Scene15 show slight improvement on performance between
configurations. However, it is possible to detect the contribu-
tion of each new aspect added by our methodology. Whereas
MIT67 allows a more insightful analysis of performance
improvement. The greatly improved behavior of a BiLSTM
compared to the unidirectional equivalent is consistent with
early findings in the literature regarding the benefits of accu-
mulating knowledge from different directions whenever the
problem allows it [11]. More importantly, on variation IV,
the positive results by weighting the predictions supports our
claim that image regions are not equally relevant to inference,
and the individual predictions can offer valuable insight to the
reasoning process.

For a further understanding of how the weighted majority
voting contributes to the prediction process, Figure 6 shows
the accuracy performance of our weighted voting relative to a
simple voting approach. It is noticeable that for most classes
the weights contribute positively, improving accuracy up to
25 percentage points. Figure 6 also highlights the classes that
we achieve greatest improvement. They are composed of a
large population of inconclusive information, e.g., moviethe-
aters are crowded with chairs, while distinctive objects are
underrepresented on the input sequence, e.g., theater curtain.
Our matrix of object weights increases the importance of
distinctive object parts, and reduces the activation strength for
inconclusive patches, serving as a solution for scenarios in

Fig. 5. Variations of recurrent approaches for scene recognition. First, a M2O
unidirectional LSTM, followed by variation II, a M2O BiLSTM. Variation III
is a M2M BiLSTM with vanilla majority voting, and finally our method adding
a weighted majority voting to aggregate predictions.

M2O M2M

LSTM BiLSTM BiLSTM
M. V.

BiLSTM
W. V.

Scene15

Accuracy 92.00% 93.50% 94.06% 94.29%
Recall 92.17% 93.50% 94.15% 94.47%
Precision 92.31% 93.61% 94.29% 94.75%
F1 Score 92.23% 93.55% 94.19% 94.57%

MIT67

Accuracy 59.66% 72.94% 75.18% 79.52%
Recall 59.51% 72.85% 75.20% 79.60%
Precision 47.90% 74.65% 76.09% 80.13%
F1 Score 53.07% 73.74% 75.64% 79.86%

TABLE I
COMPARING PREDICTION PERFORMANCE ON SCENE15 AND MIT67 OF
THE FOLLOWING RECURRENT APPROACHES: UNIDIRECTIONAL LSTM,
BILSTM, BILSTM WITH A SIMPLE MAJORITY VOTING (M. V.) AND A

BILSTM WITH OUR WEIGHTED VOTING (W. V.).

which the sequence is dominated by non discriminative parts.
Next, we experimented with the ensemble of classifiers.

Three methods from the literature were chosen to act as
paired classifiers for our ensemble. They were chosen either
for providing a source code or a trained model. First, a
VGG16 [31] pretrained on Places [20] and fine-tuned on
each test dataset, a strong baseline proposed by Nascimento
et al. [6]. The second method was [5], following the same
premise as ours regarding the relevance of objects. And finally
[6] one of the best performances on the literature, proposing a
sparse coding based methodology. Table II shows our results
with the proposed M2M BiLSTM with a weighted voting
but without any ensemble, and compares it to each of the
paired methods by themselves and as part of our ensemble.
We improved the classification accuracy over each method,
showing that our methodology contributes positively on the
improvement of successful approaches from the literature. We
find quite relevant that the best improvement happened on a
dataset dedicated to indoor scenes (MIT67), since our work
was modeled towards that problem.

C. State-of-the-art Approaches

On this subsection we compare our work to state-of-the-art
approaches, presenting works of two different natures: CNN-
based and RNN-based. Table III shows the accuracy of all

Scene15 MIT67 SUN397

M2M BiLSTM
Weighted Voting 94.29% 79.52% 54.00%

VGG16 (Places) 93.87% 80.88% 66.90%
Ensemble (VGG16) 94.40% 84.60% 68.08%

Herranz et al., 2016 [5] 95.18% 86.04% 70.17%
Ensemble (Herranz) 95.96% 86.47% 71.35%

Nascimento et al., 2017 [6] 95.73% 87.22% 71.08%
Ensemble (Nascimento) 96.30% 88.25% 71.81%

TABLE II
ACCURACY RESULTS FOR THE ENSEMBLE OF PAIRED CLASSIFIERS. OUR

METHOD WAS PAIRED WITH THREE LITERATURE APPROACHES,
IMPROVING OVER EACH OF THEM.
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Fig. 6. Weighted voting accuracy performance relative to a simple voting, highlighting classes with the highest gains.

methods including the two possible outputs produced by our
proposal: M2M BiLSTM with a weighted majority voting, and
the best result with an ensemble of paired classifiers presented
on Table II, which for all cases is by pairing with [6].

Our method, even without the ensemble, performs better
than any other RNN-based approach on MIT67, which is an
entirely indoor dataset. That result is very positive since all
approaches rely on the same premise of correlating interde-
pendent image parts. None of the RNN approaches presented
results for Scene15, but they did for SUN397, which showed
interesting results in comparison to ours. The work of Zuo et
al. [24], presented twice at Table III, pretrains its model on two
different datasets: ImageNet (ILSVRC), with object-centric
samples, and Places, a scene-centric dataset. Our performance
is better than its ILSVRC variation for both datasets (MIT67
and SUN397), whereas the scene-centric pretraining beats
our accuracy on SUN397 by a large margin. From that, we
can infer that since SUN397 has over half of its samples
dedicated to outdoor scenes (55.41%), a methodology based
on correlation of object parts has little capacity to compete
with features that encode global structures.

As for CNN-based approaches, Table III starts by present-
ing the performance of an Support Vector Machine (SVM)
classifier trained and tested with features from a Resnet-
50 pretrained on object images (ILSVRC) and scene images
(Places). Our method outperforms both of them without any
ensemble on Scene15 and MIT67. As for SUN397, scene-
centric features seem to have higher quality than correlat-
ing object features, serving as further evidence that outdoor
scene recognition benefit from global scene-centric features.
Following, we show competitive results to VGG16 (Places),
the baseline proposed by [6], without any ensemble, showing
that correlating object information can be as valuable as fine-

Scene15 MIT67 SUN397

CNN-based

Resnet-50 (ILSVRC) 90.87% 69.13% 53.70%
Resnet-50 (Places) 92.03% 74.73% 60.33%
VGG16 (Places) 93.87% 80.88% 66.90%
Herranz et al., 2016 [5] 95.18% 86.04% 70.17%
Wang et al., 2017 [4] - 86.20% 73.00%
Nascimento et al., 2017 [6] 95.73% 87.22% 71.08%

RNN-based

Zuo et al., 2015 [23] - 65.07% 51.14%
Zuo et al., 2016 [24]
(ILSVRC) - 69.25% 52.78%

Zuo et al., 2016 [24]
(Places) - 75.67% 60.34%

Wang et al., 2017 [27] - 71.86% 57.72%

Our Method
M2M BiLSTM
Weighted Voting 94.29% 79.52% 54.00%

Ensemble 96.30% 88.25% 71.81%
TABLE III

COMPARING THE ACCURACY OUR PROPOSED APPROACH WITH METHODS
FROM THE LITERATURE. RESULTS WERE SEPARATED BY THE MAIN

METHODOLOGY NATURE: CNN-BASED AND RNN-BASED.

tuning a CNN on the target dataset.
The remaining CNN-based approaches showed in Table III

are more sophisticated methodologies, some of them used
as paired classifiers on our ensemble. Their performance are
outstanding on all three datasets. That could be attributed to
the more extensive history of applying CNN approaches to
the problem of scene recognition, allowing the field to grow
on a fast pace throughout the years relative to RNN-based
methods. Essentially, there is much yet to be researched on
recurrent approaches, which rose after CNNs. Judging by the
performance increase of RNN-based methods throughout the
years, it is important to unravel the full potential of recurrent



methods for image classification problems. By experimenting
with CNN approaches as part of our ensemble, we found that
there is still room for improvement on such methods that can
be provided by high quality correlation of local information.

V. CONCLUSIONS

In this paper, we presented an approach for scene classifica-
tion through context modeling of indoor scenes. Our proposal
was based on the assumption that an RNN-based method is
suitable for the problem of indoor scene recognition, since
it can correlate object information, learning the underlying
structure of scenes. Even though there are other approaches on
the literature fundamentally based on the same premise, ours
achieve the best result amongst RNN-based methods relying
solely on object-level features, without adding information
from global structures. We performed an extensive ablation
analysis of individual aspects of our method, unraveling the
advantages of each step of the prosed context modeling. In the
future, earlier steps relative to sequence composition should
be explored just as much, to evaluate its impact in the overall
performance. Finally, our method can improve over state-of-
the-art approaches, surpassing their performance by pairing
each method with our own in an ensemble of classifiers.
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[7] J. A. Pérez-Ortiz, J. Calera-Rubio, and M. L. Forcada, “Online text
prediction with recurrent neural networks,” Neural processing letters,
vol. 14, no. 2, pp. 127–140, 2001.
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