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Abstract—Decreasing magnetic resonance (MR) image ac-
quisition times can potentially make MR examinations more
accessible. Compressed sensing (CS)-based image reconstruction
methods decrease MR acquisition time by reconstructing high-
quality images from data that were originally sampled at rates
inferior to the Nyquist-Shannon sampling theorem. Deep-learning
methods have been used to solve the CS MR reconstruction
problem. These proposed methods are able to quickly reconstruct
images in a single pass using an appropriately trained network.
A variety of different network architectures (e.g., U-nets and
Residual U-nets) have been proposed to tackle the CS recon-
struction problem. A drawback of these architectures is that they
typically only work on image domain data. For undersampled
data, the images computed by applying the inverse Fast Fourier
Transform (iFFT) are aliased. In this work we propose a hybrid
architecture, termed W-net, that works both in the k-space (or
frequency-domain) and the image (or spatial) domains. Our
network is composed of a complex-valued residual U-net in
the k-space domain, an iFFT operation, and a real-valued U-
net in the image domain. Our experiments demonstrated, using
MR raw k-space data, that the proposed hybrid approach can
potentially improve CS reconstruction compared to deep-learning
networks that operate only in the image domain. In this study
we compare our method with four previously published deep
neural networks and examine their ability to reconstruct images
that are subsequently used to generate regional volume estimates.
Our technique was ranked second in the quantitative analysis, but
qualitative analysis indicated that our reconstruction performed
the best in hard to reconstruct regions, such as the cerebellum.
All images reconstructed with our method were successfully post-
processed, and showed good volumetry agreement compared with
the fully sampled reconstruction measures.

I. INTRODUCTION

Magnetic resonance (MR) is a key medical imaging modal-
ity that has critical roles in both patient care and medical
research. MR scanner installations, however, are expensive.
Another major limitation to MR imaging is the comparatively
long image acquisition times, especially when compared to
other modalities like computerized tomography. Lengthy ac-
quisition times make MR less patient friendly and increase the
per patient examination cost. MR-based compressed sensing
(CS) methods seek to leverage the implicit sparsity of medical
images [1], potentially allowing for significant k-space under-
sampling during acquisition, and by consequence, reducing
examination times.

Traditional MR CS reconstruction techniques are iterative
algorithms that usually require a sparsifying transform that
when combined with regularization parameters are able to find
a solution for these ill-posed inverse problems [1], [2]. The
drawback of these iterative approaches, however, is that they
are time-consuming, making them more difficult to incorporate
in a near real-time MR imaging scenario (i.e., where images
are reconstructed and displayed on the scanner during the
procedure). Deep learning [3] is considered a new frontier
in image reconstruction [4]. It has the advantage of being
able to rapidly reconstruct images in a single-pass using a
suitably trained network. Some deep-learning based recon-
struction methods have arguably surpassed traditional iterative
CS reconstruction techniques [5].

A few different deep learning approaches have been recently
proposed to tackle the CS reconstruction problem. Jin et al.
[6] proposed to use a U-net [7]. Lee et al. experimentally
showed that residual U-nets can potentially improve image
reconstruction. Residual blocks have subsequently been in-
corporated in the majority of the latest studies (cf., [5], [8],
[9]). Yang et al. [5] proposed a deep de-aliasing generative
adversarial network (DAGAN) that uses a residual architecture
as the network generator responsible for reconstructing the
images associated to a loss function that has four components:
an image domain loss, a frequency domain loss, a perceptual
loss, and an adversarial loss. Quan et al. [8] proposed a
generative adversarial network (GAN) with a cyclic loss [10].
Their method consists of a cascade of a reconstruction network
followed by a refinement network with a cyclic loss component
that tries to enforce that the model is bijective. Schlemper
et al. [9] proposed a deep cascade of convolutional neural
networks (CNNs) that has data consistency (DC) blocks be-
tween consecutive subnetworks in the cascade. The DC blocks
potentially reduce the issue of overfitting, therefore allowing
the training of deeper models. The aforementioned techniques
principally work in the image domain, with a few exceptions,
where k-space domain information is used in the loss function
and/or to implement DC layers. All of these networks [5],
[8], [9] receive as input the undersampled k-space zero-filled
reconstruction, and output an unaliased image.

Zhu et al. [11] recently proposed a method that tries to
learn the domain transform. Their method first processes the



undersampled input data in k-space, learns the inverse discrete
Fourier transform (iDFT), and then refines the result in the
image domain. In the case of CS reconstruction, the domain
transform can be considered as learning an approximation
for the iDFT for undersampled k-space data. The domain
transform is modeled as a sequence of connected layers,
and the image domain refinement is modeled as a series of
convolutional layers. A disadvantage of this approach is that
the domain transform has a quadratic complexity with respect
to the size of the input image. For example, when dealing with
256× 256 images, the number of learned parameters in their
model would be greater > 1010. The quadratic order of the al-
gorithm makes it challenging to use their model for typical MR
image sizes due to current hardware limitations. Recent work
[12], [13] has tried to decompose the 2-dimensional transform
into two 1-dimensional transforms, therefore mitigating the
parameter complexity problem.

Eo et al. [14] developed a hybrid architecture named KIKI-
net that cascades flat unrolled sub-networks that alternate
between k-space and image domains. A similar approach has
also been used for computed tomography reconstruction [15].
In a further investigation of KIKI-net [16], other possible do-
main configurations for the sub-networks in the cascade were
investigated and their results indicated that starting the cascade
with an image-domain sub-network may be advantageous.

Based on these studies, we hypothesize that a hybrid ap-
proach that works with both information as presented in k-
space domain and image domain can improve MR CS recon-
struction. In this work, we propose a model, termed hybrid
W-net, that consists of a cascade of a k-space domain network,
which is implemented through a residual U-net, and an image
domain network, implemented through a U-net, connected by
the magnitude of the iDFT operation. Our model does not need
to learn the domain transform, which essentially reduces our
model parameter complexity by a factor of 103 compared to
[11]. Our proposed method takes advantage of information as
presented in k-space and image domain, as opposed to other
image domain only approaches [3], [5], [6], [8], [9]. K-Space
and image domain information are equivalent, because they are
related by a global linear transformation. Operating in both
domains with non-linear methods, however, can potentially
be advantageous and improve the network learning. Another
potential practical advantage is that our hybrid formulation is
compatible with MR parallel imaging approaches due the fact
that multi-channel coil sensitivity introduces data correlation
and every data sample may be represented by the convolution
of the neighboring samples, which can potentially be learned
by a k-space CNN [17].

In this work, we compare our proposal against four re-
cently published, publicly available, deep learning-based re-
construction methods [5], [6], [8], [9]. These approaches
were evaluated at 75% and 80% undersampling levels (corre-
sponding to acquisition acceleration factors of 4× and 5×).
The experiments were done using MR raw-data acquired
from subjects scanned using a volumetric T1-weighted MR
imaging sequence. The proposed reconstruction code and the

dataset used in the experiments are publicly available at https:
//github.com/rmsouza01/Hybrid-CS-Model-MRI and https://
sites.google.com/view/calgary-campinas-dataset [18], respec-
tively.

II. HYBRID NETWORK

The flowchart of our proposed method is depicted in Figure
1. There are three main components to our approach: 1) a k-
space (or frequency-domain) network that essentially tries to
fill missing k-space samples, 2) the magnitude of the iDFT, and
3) an image-domain network that acts as an anti-aliasing filter.
Topographically our implementation consists of two U-Nets
[7] connected by the iDFT; we also describe this arrangement
as a W-Net (Figure 2). These components along with the
proposed network loss function are described in the following
subsections.

A. Frequency-domain Network

The frequency-domain network, fcnn1
, attempts to recover

a fully sampled k-space, F̂norm(kx, ky), given undersampled
k-space data, Fu. This can be mathematically formalized as:

F̂norm(kx, ky) = fcnn1
[Funorm

], (1)

where Funorm
is the normalized undersampled k-space data

given by:

Funorm
=
Fu − µFutrain

σFutrain

, (2)

where µFutrain
and σFutrain

are the average and standard-
deviation of undersampled k-spaces in the training set. The
specific architecture used for the frequency-domain network
is a residual U-net (Figure 2, left side). The input complex
k-space image is split in two-channels: one for the real and
other for the imaginary components of the k-space data.

B. Magnitude of the iDFT

Before applying the iDFT, we have to undo the previous k-
space normalization step. Adding a constant to the k-space
data results in superposition of an impulse, δ(·), signal to
the image after transformation. Undoing the normalization is
accomplished by:

F̂ (kx, ky) = Funorm × σFutrain
+ µFutrain

. (3)

The next step is to transform from the frequency domain to
the image domain using the iDFT and magnitude operations:

f̂0 = ||F−1(F̂ )|| (4)

where F−1 represents the iDFT operation and f̂0 is the initial
estimate of the reconstructed image.

This component of our model has no trainable parameters,
and the iDFT is efficiently computed using the fast Fourier
transform (FFT) algorithm running on a graphics processing
unit (GPU).



Fig. 1. Flowchart of the proposed methodology. The frequency domain network can be seen as k-space interpolation to fill the missing values. The image
domain network acts as an anti-aliasing filter to further improve the image reconstruction obtained from the first network.

C. Image Domain Network

The last component of our method is the image domain
network (fcnn2

). In order to improve training convergence of
the network, we again normalize the initial estimate of the
reconstructed image obtained in the previous step:

f̂0norm
=
f̂0 − µf0train

σf0train

. (5)

where µf0train
and σf0train

are the mean and standard-
deviation of the reconstructed images in the training set. The
normalized image f̂0norm

is fed as input to the image domain
network:

f̂(x, y) = fcnn2
[f̂0norm

]. (6)

The final reconstructed image is f̂(x, y). The architecture used
for the image domain network is a U-net (Figure 2, right side).

D. Loss Function

Our loss function was a weighted sum of normalized root
mean squared errors (NRMSE) in each domain given by:

L =
1

N

N∑
i=1

w×NRMSE(Fi, F̂i)+(1−w)×NRMSE(fi, f̂i),

(7)
where Fi and fi are the reference fully sampled k-space and
image reconstruction, respectively, of the i-th sample in the
training set, and N is the number of training samples. In our
experiments w = 0.001. These values were chosen to ensure
greater weight is applied to the final network output.

III. EXPERIMENTAL SETUP

A. Network Implementations

We compared our method, which we will refer to simply
as Hybrid method, against 1) a plain vanilla U-net [7] with a
residual connection, referred to as UNET; 2) RefineGAN [8];
3) DAGAN [5]; and 4) Deep-Cascade [9] with a cascade of five
CNNs and five DC blocks, which is the network configuration
that the authors reported best results.

We used the Keras application program interface [19] using
TensorFlow as backend [20] to implement our hybrid network
and the UNET. For RefineGAN, DAGAN and Deep-Cascade,
we used the source code provided by the authors. All networks
were trained using our data for acceleration factors of 4× and

5× using two-dimensional Gaussian undersampling patterns.
The networks were trained and tested on Amazon Elastic
Compute Cloud services using a p3.2xlarge1 instance, which
has a NVIDIA Tesla V100 GPU.

B. Training, Validation and Testing Dataset

Our dataset consists of 45 volumetric T1-weighted, fully
sampled k-space datasets acquired on a clinical MR scan-
ner (Discovery MR750; General Electric (GE) Healthcare,
Waukesha, WI) that were collected as part of the ongoing
Calgary Normative Study [21]. The data was acquired with
a 12-channel imaging coil and an acquisition matrix of size
256 × 218 × 170. Data were zero-filled to an image matrix
size of 256 × 256 × 170. The multi-coil k-space data was
reconstructed using vendor supplied tools (Orchestra Toolbox;
GE Healthcare). Coil sensitivity maps were normalized to
produce a single complex-valued image set that could be
back-transformed to regenerate complex k-space samples. In
our experiments, we performed retrospective undersampling,
effectively simulating a single-coil acquisition scenario. Our
train/validation/test data split was 25/10/10, equivalent to
4,524 slices/1,700 slices/1,700 slices. There was no overlap
of same subject slices in the train, validations and test sets.

C. Performance Metrics

The performance metrics used to assess the networks were:
• NRMSE

NRMSE(f̂ , f) =

√
1
M

∑M
i=1[f̂(i)− f(i)]2

max(f)−min(f)
, (8)

where M is the number of pixels (or voxels) in the image.
• Structural Similarity (SSIM) [22]

SSIM(f̂ , f) =
(2µfµf̂

+ c1)(2σff̂ + c2)

(µ2
f + µ2

f̂
+ c1)(σ2

f + σ2

f̂
+ c2)

, (9)

where c1 and c2 are two variables used to stabilize the
division and µ and σ2 represent mean and variance values
of the gray-level intensities of the images.

• Peak Signal to Noise Ratio (PSNR):

PSNR(f̂ , f) = 20log10(
max(f)√

1
M

∑M
i=1[f̂(i)− f(i)]2

).

(10)

1https://aws.amazon.com/ec2/instance-types/p3/



Fig. 2. Architecture of our hybrid model. The k-space network uses a 5× 5 convolution kernel size and the image domain network uses a 3× 3 kernel. Due
to its topography consisting of two U-Nets, we term this hybrid method a W-Net.

These metrics were used because they are commonly used
to assess image reconstruction. The higher the SSIM and
PSNR values the better the result. For NRMSE, smaller values
represent better reconstructions.

D. Volumetric Assessment

For the top two performing reconstruction techniques, we
performed volumetric analysis with a commonly used software
for neuroimaging analysis (FreeSurfer [23]). We considered
the fully sampled reconstruction results as our gold-standard.
Only the ten test volumes were analyzed. We recorded number
of processing failures and analyzed the average absolute
deviation of total intra-cranial, white-matter, gray-matter, hip-
pocampus, and amygdala volumes. This analysis is similar to
the semantic interpretability score proposed in [24].

E. Statistical Methods

We report mean and standard deviation of all average
measures. We used a one-way analysis of variance (ANOVA)
to determine statistically significant changes and post-hoc
paired t-tests to determine statistically significant pair-wise
differences. A p-value < 0.01 was used to determine statistical
significance.

IV. RESULTS

A. Quantitative Assessment

The reconstruction metrics are summarized in Table I. Deep-
Cascade achieved the best quantitative results followed by our
Hybrid approach across all performance metrics. The one-
way ANOVA tests showed statistically significant differences
(p < 0.01) across all metrics and acceleration factors. The
paired t-tests showed that Deep-Cascade was statistically better

Fig. 3. Average NRMSE distribution along the slices. Edge slices that do not
have much signal have higher average errors.

(p < 0.01) than the other methods in the comparison and
our Hybrid, while worse than Deep-Cascade, was statistically
better than UNET, DAGAN, and RefineGAN (p < 0.01). We
note that the absolute differences between Deep-Cascade and
Hybrid networks, while statistically significant, were small.

The average NRMSE across the slices in the ten test vol-
umes is depicted in Figure 3. Over the central slices NRMSE
followed a predictable pattern. Towards the edges, where
little of the brain was present, the error increased. Sample
reconstructions for each technique are shown in Figure 4.
Qualitatively the Hybrid network produces the most pleasing
image, particularly in regions with large signal differences
like the cerebellum. This finding was consistent across all
reconstructions in the test set.



(a) Fully sampled (b) UNET (c) DAGAN

(d) RefineGAN (e) Deep-Cascade (f) Hybrid

Fig. 4. Sample reconstructions with a special highlight on the cerebellum region, where differences are more noticeable.

B. Volumetric Analysis

Volumetric analysis results are summarized in Table II. An
example of a subject where processing failed for the fully
sampled reconstruction and the Deep-Cascade network (for
both 4× and 5× acceleration factors) is presented in Figure
5. Box-plots of the estimated volumes of total intra-cranial
volume, white-matter, gray-matter, hippocampus, and amyg-
dala volumes are shown in Figure 6. These plots represent the
distribution of eight volumes from only eight subjects in the
test set (because volumetric analysis failed to process two fully
sampled image sets). Due to the reduced sample size (n = 8)
and because of reduced statistical power, we did not perform
statistical tests on the volumetric data.

V. DISCUSSION

Our hybrid method operates in frequency domain using a
residual U-net and image domain using a U-net. The two
networks are connected through the magnitude of the iDFT
operation, and the model is fully trained end-to-end. An
example for one subject of the input, intermediary and output
results of our model are depicted in Figure 7. Improvement
in the image quality and NRMSE is noticeable at the output
of the frequency domain network (NRMSE = 1.9%), and
further improvement can be seen at the output of the image
domain network (NRMSE = 1.6%). NRMSE for the input
image was 3.2%.

TABLE I
SUMMARY OF THE RESULTS FOR THE DIFFERENT ARCHITECTURES AND
DIFFERENT ACCELERATION FACTORS. THE TOP TWO RESULTS FOR EACH

METRIC AND ACCELERATION FACTOR ARE EMBOLDENED.

Model SSIM NRMSE (%) PSNR
Speed-up: 4×

UNET 0.977± 0.062 2.33± 1.04 33.28± 3.14
DAGAN 0.963± 0.105 2.93± 1.47 31.33± 3.11

RefineGAN 0.979± 0.068 1.90± 1.30 35.44± 3.71
Deep-Cascade 0.986 ± 0.054 1.20 ± 1.06 39.51 ± 3.35

Hybrid 0.985 ± 0.055 1.36 ± 1.01 38.23 ± 3.32
Speed-up: 5×

UNET 0.966± 0.096 2.73± 1.17 31.88± 3.13
DAGAN 0.949± 0.110 3.87± 1.44 28.69± 2.66

RefineGAN 0.973± 0.082 2.27± 1.40 33.84± 3.83
Deep-Cascade 0.982 ± 0.068 1.45 ± 1.11 37.67 ± 3.20

Hybrid 0.981 ± 0.060 1.65 ± 1.09 36.50 ± 3.23

TABLE II
SUMMARY OF VOLUME ANALYSIS PROCESSING FAILURES.

Model Acceleration factor # failures (%)
Fully sampled 1× 2 (20%)

DEEP-CASCADE 4× 2 (20%)
5× 1 (10%)

Hybrid 4× 0 (0%)
5× 0 (0%)

Our Hybrid model achieved the second best metrics in
the quantitative assessment, losing only to Deep-Cascade.



Fig. 5. Sample result of volumetric analysis failures in one subject. Processing failed for the fully sampled reconstruction, and Deep-Cascade (acceleration
factors of 4× and 5×). * represents an analysis that failed.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 6. Summary of volume analysis processing results.

RefineGAN was the third best method. It is important to
mention that in the original RefineGAN paper the authors
did not use a test set. They reported results on a validation
set. The poorest performing technique was DAGAN, though
it still had NRMSE < 4% and SSIM > 0.94. It is also
important to highlight that in the original DAGAN paper, the
authors did not use MR raw k-space data in their experiments.
They computed the FFT of magnitude images followed by
retrospective undersampling. This is not a realistic scenario,
because when applying the FFT operator to magnitude images,
the output is a k-space with Hermitian symmetry, while raw
k-space is not Hermitian.

Visual assessment of the reconstructions (Figure 4) indicate
that Hybrid and Deep-Cascade reconstruction are the best at

preserving fine details as can be more noticeably seen in
the cerebellum region. With the Hybrid reconstruction edges
seem smoother, which might be an explanation to the fact that
volumetric analysis software was able to successfully process
all ten image dates sets, while it failed twice when processing
the fully sampled reconstruction, and three times with Deep-
Cascade. A similar finding was found in [24], and can be
explained by the fact that the smooth appearance of the Hybrid
reconstructions can be advantageous for the segmentation task.
The quality of the brain structure segmentations vary according
to the reconstruction. This is specially noticeable in the brain
extraction step (Figure 5).

The deviation of the volumes estimated from the fully sam-
pled reconstruction measurements were used as gold-standard



Fig. 7. Illustration of the images and their corresponding k-spaces at different stages of the Hybrid network. From the left to the right: Input undersampled k-
space reconstruction (NRMSE = 3.2%), result of the frequency domain U-net (NRMSE = 1.9%), result of the image domain U-net (NRMSE = 1.6%),
and fully sampled reference reconstruction.

(reference) measure for the eight successful subjects. Good
agreement was found between the reference and volumetric
results for Deep-Cascade and Hybrid image sets. For total
intra-cranial volume the average absolute volume deviation
was < 0.1% in all subjects. For cerebral white-matter the
absolute volume deviation was < 6% in all subjects, and
for gray-matter, it was < 4% in all subjects. The average
differences for the hippocampus and amygdala volumes was
between 2% and 3%. These results are a suggestive of the
feasibility of incorporating a 5× acceleration factor in a
clinical or research imaging setting.

In terms of processing time, we did not perform a systematic
comparison due to the fact that the different methods were
implemented in different deep learning frameworks and many
of the networks were not optimized. Nevertheless, all five
techniques assessed take only a few seconds to reconstruct
an entire MR volume using a cloud-based GPU (Amazon
Elastic Compute Cloud). In terms of processing times, UNET,
DAGAN, Deep-Cascade and Hybrid took < 6 hours to train,
while RefineGAN training time was ≈ 72 hours.

VI. CONCLUSION

In this work, we proposed a hybrid frequency domain/image
domain CS MR reconstruction method that leverages the
information of the iDFT mathematical formulation, essentially
reducing the number of parameters of our model by orders
of magnitude (for a 256 × 256 image, the Hybrid W-net
model required 103× fewer coefficients compared to [11]).
Our model method was the second best in the quantitative
comparison and it was the only one that did not fail in the

volumetric analysis processing pipeline. Also, our Hybrid W-
net model produced the most visually pleasing images (Figure
4).

As future work, we would like to investigate the use of DC
layers in our architecture and add an adversarial component
for potentially improving reconstruction of high-frequency
contents of the image. We will also extend our model to a more
generic framework that can potentially deal with the parallel
imaging scenario (cf., [25], [26]).
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