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Abstract—Ultrasound (US) images are highly susceptible to
speckle-like noise which makes imperative to use specific tech-
niques for image smoothing. However, this process can lead
to undesirable side effects such as the degradation of the real
contour of the region of interest (ROI). In such context, this paper
presents a new methodology for computer aided diagnosis (CAD)
systems whose heart is the combination of a method for speckle
noise reduction, with histogram equalization and a technique for
image segmentation that uses the bio-inspired firefly algorithm
and Bayesian model. The segmentation approach and the equal-
ization are applied in two distinct stages: globally and locally.
The global application produces an initial coarse estimate of the
ROI, and the local application defines this region more precisely.
In the classification step we carried out experiments which show
that the combination of features computed both within and below
the lesion strongly influences the final accuracy. We show that
the gray-scale distribution and statistical moments within the
lesion together with gray-scale distribution and contrast of the
region below the lesion is the combination that produces the
better classification results. Experiments in a database of 250 US
images of breast anomalies (100 benign and 150 malignant) show
that the proposed methodology reaches performance of 95%.

I. INTRODUCTION

Breast cancer is the second leading cause of death, due to
cancer diseases, in women. With the improvement of tech-
nology, computer aided diagnosis (CAD) systems, based on
ultrasound (US) images, have contributed to early diagnosis.
Generally speaking, these systems are composed of several
stages that take as input an image of a specific region and
provides as output a diagnostic prediction. In general, con-
ventional CAD systems can be split into four main parts: pre-
processing, segmentation, feature extraction and classification.
CAD approaches based on deep neural networks have the
advantage of reducing the burden of feature selection by
learning a set of transformation functions that computes image
features directly from the data [1].

All the mentioned stages are affected by speckle noise, very
common in US images. This noise type arises due to the

reverberation of the sound signal on the embedded surface
and is composed of very small light and dark spot regions
throughout the image. To reduce this problem, in the first
stage, US images have been pre-processed using low-pass
filters based on Gaussian functions, although they degrade
the contrast [2]. One way to recover the contrast after noise
elimination is through the use of histogram equalization which
can be applied globally or locally [3]. However, in order to
apply equalization in a specific region, it is necessary to know
this region beforehand. Thus, it is usual to apply histogram
equalization only globally. Still in the first stage, we find
multiresolution strategies based on pyramid and wavelets [2],
[4], fuzzy logic approaches [5], thresholding and mathematical
morphology [2], [6].

Speckle noise interferes especially in segmentation which
results in splitting of the region of interest (ROI) or its merge
with the background. The ROI may be heterogeneous or
almost homogeneous, depending on the type of lesion and
its evolution. For example, malignant tumors tend to have
several layers with different textures and widths. Hence, even
with specific methods for reducing speckle noise, the final
segmentation result may still be not adequate. The combination
between multiresolution techniques, active contour models,
like level sets, or graph cuts, is a way to increase the robustness
[2], [7].

In all the mentioned works, we have noticed that global
segmentation methods may not fully reveal the whole informa-
tion embedded in a lesion’s neighborhood. In order to address
this challenge, in this paper we propose a method that applies
image processing in two stages: initially in a global basis, as it
is done in most of the projects studied in the literature, to get
an estimate of the ROI through noise reduction, equalization,
bio-inspired firefly algorithm and a Bayesian model. Then,
these operations, except noise reduction, are applied again but
now as local processes. We show that this iterative strategy
defines the ROI more precisely. Finally, the lesion’s features



are extracted and used as training data of a support vector
machine (SVM) classifier with cross-validation technique.

The proposed method consists of nine steps: (i) Pre-
processing with speckle noise reduction [8]; (ii) Histogram
equalization; (iii) Global firefly segmentation [9]; (iv) Coarse
segmentation of the ROI through Bayesian method [10]; (v)
Local histogram equalization; (vi) Local firefly segmentation;
(vii) Final Bayesian ROI definition; (viii) Feature extraction;
(ix) SVM classification. This methodology is the main con-
tribution of this paper. As other contributions, we analyze
seven traditional features, extracted from both the lesion and
its surrounding regions [11]. We investigate the contribution
of each feature on classification performance to reduce the
computational complexity by rejecting irrelevant features. It
is found that gray-scale distribution and statistical moments
within the lesion together with gray-scale distribution and con-
trast of the region below the lesion give the combination that
achieved the best overall performance, which is competitive
with the state-of-the-art in the area that is composed by deep
learning strategies (see section II).

The results obtained on a base of 250 images of breast
cancer, manually annotated by experts, indicate the efficiency
of the proposed model that reaches a maximum performance of
95%, measured as the area under the ROC curve, constructed
with the SVM classifier.

The remainder of the paper is organized as following.
Section II describes related works. Section III reviews some
background for our methodology. The proposed CAD system
is then detailed in section IV. Next, section V describes the
computational experiments. Then, in the final part of the
paper, we discuss relevant findings in section VI and present
conclusions/future works in section VII.

II. RELATED WORKS

In this section, we analyze related methods, supported
by recent surveys [12], [13], highlighting their strengths,
weaknesses and significant observations. The work [3] em-
ployed Markov Random Field (MRF) for detecting breast
lesions in US images, feature extraction from segmented
images followed by classification using fuzzy SVM. The
technique achieved overall accuracy of 94.25% but using a
small database comprising of 36 malignant and 51 benign
cases.

Liu et al. [5] reported an automatic segmentation and a
classification method that uses local texture features of breast
US images. The image was divided into small lattices and local
texture information was used for classifying image lattices us-
ing SVM. In [6] it is presented an automated cancer detection
method for women with dense breast. Initially, it is applied
adaptive thresholding and k-means clustering to detect tumor
candidate regions. Then, 18 features are extracted from tumor
candidates for characterization using Markov-Chain Monte
Carlo Bayesian neural network. The method achieved median
detection sensitivity of around 50%.

The topographic watershed technique was applied in [14]
for segmentation and abnormality extraction in breast US

images. The approach determined the probability of a seg-
mented object being tumor region using features related to
morphology, texture and intensity. In [2] we find a combination
of Gaussian smoothing, histogram equalization, mean shift
filtering and graph cuts for detecting breast lesions. This
method achieved a true positive rate of 91.7% and false
positive rate of 11.9% respectively. However, the data size used
for evaluation was also limited in this study (31 malignant and
38 benign tumors).

In [15], Zhou et al. employed thresholding and disk expan-
sion method for segmentation of breast lesions in US. Their
technique extracted half contour features for discriminating
sample groups with overall classification accuracy of 74%. In
[4], the authors proposed multiresolution analysis for detecting
breast tumors in US images. They calculated the undecimated
discrete wavelet transform of the image followed by feature
extraction and dimensionality reduction using principal com-
ponent analysis. Lastly, they used Fuzzy c-means clustering
for segmentation. This technique reported a Dice coefficient of
0.8595 in a test database with 150 breast ultrasound images,
including 60 malignant and 90 benign cases. The work [7]
transformed the image into neutrosophic domain followed by
computation of neutrosophic similarity score (NSS), that is
used as measure of belongingness to the true tumor. A level
set method is finally used to segment the tumor using the NSS
value in a database with 66 samples.

These reviewed approaches have some limitations: (1) The
data size used in most of the studies is limited. Thus, it
is difficult to evaluate the generalization ability of these
techniques; (2) Except [15], none of the reported studies
included images with artifacts such as acoustic shadowing and
acoustic enhancement. (3) None of these studies evaluated the
impact of pre-processing techniques such as noise reduction,
enhancement etc. on the performance of segmentation and
classification techniques; (4) It is also found that most of the
reported techniques use only features extracted from region
inside the lesion.

More recently, literature results have demonstrated the po-
tential of deep learning methods to perform automatic US
image analysis tasks such as lesion classification [13]. In
this line, the work [16] reports a neural networks accuracy
of 0.96, measured as the area under the ROC curve on
a training set with 445 samples, using an image analysis
software (ViDi Suite v. 2.0; ViDi Systems Inc, Villaz-Saint-
Pierre, Switzerland). However, the performance on the vali-
dation set (192 samples) was 0.84. In [17] a biopsy-proven
benchmarking dataset was built from 5151 cases containing a
total of 7408 US breast images, with 4254 benign and 3154
malignant lesions. The developed method includes histogram
equalization, image cropping and margin augmentation. The
GoogLeNet convolutional neural network was trained using
the database to differentiate benign and malignant tumors
achieving area under the ROC curve of over 0.9 for training
data with and without augmentation.

Our study has attempted to fill the research gaps mentioned
in items (1)-(4) above related to traditional (non deep learning)



CAD systems. Regarding the deep learning based techniques,
the goal is to get a CAD approach with proven generalization
capability without the need of a huge training data sets, like the
one used in [17]. The next sections describe how we achieve
such goals.

III. TECHNICAL BACKGROUND

Let I : Ω ⊂ R2 → [0, 1] the observed image which
corresponds to another image u : Ω ⊂ R2 → [0, 1] corrupted
by speckle noise. The variational approach presented in [8]
for image smoothing considers the functional:

F (u, I) = gJ (u) + λ (1− g)Ffidel (u, I) , u ∈ C2 (Ω) ,
(1)

where C2 (Ω) is a space of two times continuously differ-
entiable functions, J : C2 (Ω) → R is a smoothing term,
Ffidel : C2 (Ω) × C1 (Ω) → R is the fidelity term, which
establishes a compromise between the observed image I and
the smoothed one u, and λ is a constant. The function g is a
smooth non-increasing function, such that 0 ≤ g ≤ 1.0 and
g (s) −→ 0 when s→∞.

The procedure proposed in [8] tackles the speckle noise
reduction by solving the problem:

min
u∈C2(Ω)

F (u, I) . (2)

The functionals J and Ffidel are defined, respectively, by:

J (u) =

∫
Ω

‖∇u (x, y)‖2 dx dy,

Ffidel (u, I) =

∫
Ω

(I − u)
2

u
dx dy,

where ∇u is the gradient operator and ‖·‖ means norm-2. The
usual choice for the function g in expression (1), imported
from the anisotropic diffusion literature, is given by:

g (‖∇I (x, y)‖) =
1

1 + k ‖∇GσI (x, y)‖2
, (3)

where Gσ is a Gaussian function with variance σ.
The numerical solution for problem (2), is obtained through

an iterative scheme yielded from the associated Euler-
Lagrange equations and traditional finite difference techniques
[8].

Regarding the firefly algorithm presented in [9], its back-
ground is the non-extensive Tsallis entropy (Sq), that is the
generalization of Shannon’s entropy (S1), given, respectively
by:

Sq =
1−

∑L−1
i=0 pqi

q − 1
, S1 = −

L−1∑
i=0

pi log (pi) , (4)

with pi being the relative frequency of intensities i =
0, 1, 2, ..., L − 1, and L is the number of gray-levels of the
image field.

We can show that Tsallis entropy reduces to the Shannon’s
one when q tends to 1. The main characteristic observed in
the Tsallis statistic is the use of a real parameter q, called

the non-extensive parameter. One property of Tsallis entropy,
called pseudo-additivity, is formulated as:

Sq(A⊕B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B), (5)

where Sq(A⊕B) is the global entropy of the system A⊕B and
Sq(A) and Sq(B) are the individual entropies for subsystems
A and B, respectively.

The focused firefly algorithm [9] uses an objective function
given by expression (5). The general idea behind the firefly
algorithm for multi-segmentation of images is to associate to
each firefly a possible solution to the problem of partitioning
the gray-scale distribution of the image (histogram). Thus,
considering a swarm of fireflies with random guesses, the
best solution is associated with firefly brightness and it is
found through an attractiveness process between them. The
kernel of the algorithm is its evaluation function Z, which
depends on the current problem. Each firefly is considered
a d-dimensional variable, where each dimension is a distinct
threshold, partitioning the histogram space. The d-level firefly
solution is a set of d thresholds that defines d + 1 regions,
possibly disconnected, in the image. In the firefly imple-
mentation described in [9], the setup includes the following
parameters: absorption coefficient (γ); step of motion (α);
attractivity factor (β). The histogram equalization applied uses
a traditional implementation of Matlab.

IV. PROPOSED METHODOLOGY

As described in the introduction, the methodology proposed
in this paper contains nine steps, three of them (equalization,
bio-inspired firefly algorithm and Bayesian model) are applied
twice at different times: globally and locally. The whole
pipeline is: (i) Pre-processing with speckle noise reduction [8];
(ii) Histogram equalization; (iii) Global firefly segmentation
[9]; (iv) Coarse segmentation of the ROI through Bayesian
method [10]; (v) Local histogram equalization; (vi) Local
firefly segmentation; (vii) Final Bayesian ROI definition; (viii)
Feature extraction; (ix) SVM classification.

Each of these nine steps is detailed below. The presentation
is divided into two major blocks: ROI segmentation and SVM
classification.

A. ROI Segmentation

As previously stated, the US images are severely affected
by the speckle noise as observed in the Figure 1.(a). Because
of this, in the first step we apply the noise reduction method
formulated through equation (2). By using the function in
expression (3), the smooth process becomes stronger than
fidelity in regions containing weaker edges and in parts of the
image with stronger edges the opposite occurs. Figure 1.(b)
shows the solution u of problem (2) where the image I is the
one in Figure 1.(a).

Despite of the desired image smoothing, we also notice
in Figure 1.(b) the side effect of contrast reduction which
in turn influences the ROI extraction. This unwanted effect
is mitigated through the use of global histogram equalization
process. The result can be visualized in Figure 1.(c), which



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. (a) Original Image. (b) Speckle noise reduction. (c) Global histogram
equalization. (d) Global firefly segmentation. (e) Mask from the Bayesian
model. (f) Local histogram equalization inside window around the mask shown
in (e). (g) Local firefly segmentation. (h) Final ROI and boundary of region
bellow it. (i) Boundary of ROI over the original image.

shows improvement of the global contrast although local
details may be lost because all images regions influence one’s
each others. Notwithstanding, we can apply the segmentation
approach, the firefly algorithm (section III), to get a coarse
ROI segmentation, as shown in Figure 1.(d).

The decision to use multi-segmentation instead of the tra-
ditional binary segmentation is motivated by the fact that the
US of breast images have ROIs in a broad intensity range
that can not be segmented through only one threshold. For
example, images of malignant lesions are frequently heteroge-
neous, containing lighter shades around the center and darker
shades on the boundaries. Thus, when labeling the lesions
interior, the use of more than one threshold makes easier the
extraction and analysis of the whole lesion. Thus, a process
of multi-segmentation is more suitable. However, this process
may generate multiple regions which must be subsequently
evaluated in order to achieve which of them is the ROI. In
fact, in Figure 1.(d), the multi-segmentation firefly algorithm
generates regions with white intensity, light gray, dark gray
and black tones.

In the proposed methodology, all regions labeled white
as output of segmentation step are called candidate regions
and are processed in the next stage by estimating the joint
probability of size and location. In this research, an important
fact is observed for each database image W . Each candidate
region Rc, generated in the segmentation, occurs near the
central point WC of the image W , which in turn is a cropping
window defined by a specialist at clinical inspection time.
The size of W must be enough to include the lesion and
a certain amount of neighboring pixels. Thus, it is expected
that the lesion occupies most part of the central area inside

the W when compared to all other candidate regions around.
Therefore, we define P (Rc|A,C) as the probability of a
candidate region Rc to be a ROI, while its area A is observed
with the centroid C, generating the following expression [10]:

P (Rc|A,C) = 1− ((1− P (Rc|A))× (1− P (Rc|C))), (6)

where the conditional probability P (Rc|A) is defined as the
ratio between the observed area A and the area of W and the
term P (Rc|C) is defined as the ratio between the Euclidean
distance between C and WC and half of the diagonal of the
image W . Finally, we define the coarse ROI within the image
W as the one that maximizes the observed P (Rc|A,C) among
all candidate regions.

Figure 1.(e) shows the result of such ROI computed with
Figure 1.(d) as input. This ROI estimation is used as a
mask to a further new local processing. This strategy is used
to allow only a region around the lesion to influence the
contrast enhancement, highlighting local details that could
not be noticed under global equalization and segmentation.
The Figure 1.(f) shows the final effect of such histogram
equalization, re-scaled to the original patch size, applied inside
a bounding box of the region shown in Figure 1.(e).

Then, the bounding box of the mask shown in 1.(e) can also
be used to locally apply the firefly segmentation process over
the image in Figure 1.(f) , given the result of Figure 1.(g). As
before, the output of the local segmentation processing is a
set of candidate regions, but with more accuracy. Each one of
these regions is then submitted to the same joint probability
model described by equation (6). Finally, the region most
likely to represent the final ROI is taken, which ends step (vii).
Figure 1.(h) shows this final ROI and the boundary (dashed
lines) of the region bellow it that will be used to compute
image features outside the ROI. The boundary of the ROI is
pictured in Figure 1.(i) in order to allow a visual evaluation
of the final result.

B. SVM Classification

In the step (viii), we use the ROI achieved in step (vii) as
a mask over the corresponding original image to extract the
seven lesion features reported in Table I.

TABLE I
LABELS FOR THE SEVEN BREAST LESION FEATURES USED IN OUR

EXPERIMENTS.

Label Feature
F1 Circularity
F2 Gray-scale distribution bellow lesion
F3 Gray-scale distribution within lesion
F4 Contrast below lesion
F5 Contrast within lesion
F6 Statistical moments below lesion
F7 Statistical moments within lesion

To compute the circularity we take a set of uniformly
distributed points in the mask boundary and compute the 10-
bins distribution of their distance respect to the ROI centroid.
We apply the Shannon’s entropy, computed by S1 in equation
(4), to get a measure of the contrast of a target region.



The statistical moments associated to a ROI are computed
by:

µn =

L−1∑
i=0

(i−m)
n
pi, (7)

where m is the mean intensity inside the ROI and n = 0, 1, .., 5
(analogous for the region bellow the ROI, whose mask is
represented in Figure 1.h )

The circularity means how close the shape is to a circle.
Once benign lesions generally have more circular areas com-
pared with the malignant ones, this quantity can be a good
discriminant. The feature F2 is directly linked to acoustic
shadow and acoustic enhancement. The former is a visual
characteristic common in benign areas while the latter occurs
in malignant lesions.

The features F4 and F5 link the contrast with the homogene-
ity of the intensity patterns of the lesion. Malignant lesions
tend to be less homogeneous than benign ones indicating
less organization, or, more formally, a histogram closer to
the uniform distribution than benign tumors. Therefore, as
higher entropy is then more heterogeneous is the lesion region
and, consequently, the chance to be a malignant lesion is
higher. Features F6 and F7 are histogram features, computed
by equation (7).

The feature vectors generated are used as input for a SVM
classifier that finally defines the class to which each lesion
belongs to, in this case, malignant or benign. The SVM model
is the non-separable one [18], available in the Matlab, with
linear kernel and relaxation parameter C = 0.8 .

V. EXPERIMENTAL RESULTS

This section shows the experimental results regarding the
methodology presented in section IV. Specifically, we want
to demonstrate the impact of each stage of the proposed
pipeline in the final SVM classifier and the sensitivity of the
methodology under combinations of the seven lesion features
described in Table I.

The database used is available in [19] and it consists of
250 gray level (8-bits) US images with low pixel resolution,
being 150 malignant lesions and 100 benign. Each image is
a cropping window made by experts around the breast lesion.
The high resolution US images were acquired by the Voluson
730 (General Electric, USA) scanner with a Voluson small part
transducer S-VNW5-10.

Firstly, the performance of speckle noise reduction ap-
proach, presented in section III, is evaluated. Figures 2.(a),(c)
show clearly the phenomenon of acoustic shadow (darker area
below central lesion) and reinforcement (brighter area below
lesion), respectively. In the second row, this phenomenon is
highlighted after the application of speckle noise reduction
strategy. These results of noise reduction are achieved with
300 iterations of the numerical scheme developed to solve
problem (2) (see [8], for details). When the global histogram
equalization is applied at every image of the second row of
Figure 2, the results can be seen in Figures 2.(g)-(i). The

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. (a)-(c) Example of three US input images. (d)-(f) Speckle noise
reduction outputs. (g)-(i) Results after histogram equalization of smoothed
images.

histogram equalization improves the contrast inside regions
with narrow range of gray-scale patterns.

The firefly segmentation results, for two threshold levels,
can be evaluated in Figure 3. The images in Figures 3.(a)-(c)
show the results with the original images shown in Figures
2.(a)-(c), respectively, as inputs. The achieved thresholds are
shown below each image. The second row (Figures 3.(d)-
(f)) pictures analogous results when both noise reduction
and histogram equalization were applied before segmentation,
showing the improvement in the bio-inspired segmentation due
to the pre-processing steps.

The firefly segmentation was running with the same
parametrization proposed in [9]: β = 1.0, γ = 1.0, α = 0.97,
q = 0.35, using 50 fireflies and 100 iterations. With the
multi-segmented images as input, each ROI is defined by the
Bayesian model formulated by expression (6). Figures 3.(g)-(i)
show the obtained ROIs.

The influence of denoising and histogram equalization on
the ROI extraction can be visually analyzed in the following
example. Figure 4-(a) shows an image from the database. This
image was processed using the proposed methodology but
in three different ways: (A) Without speckle noise reduction
(Figures 4.(a)-(c)-(e)-(i)); (B) Removing the global histogram
equalization and noise reduction (Figures 4.(a)-(f)-(j)); (C)
Using all the nine steps (Figures 4.(a)-(b)-(d)-(g)-(k)). The
parameters for firefly heuristic were the same as those used to
obtain the results of Figure 3.

A visual inspection shows that there may be greater impact
on the results after the inclusion of each stage, especially over
histogram equalization with speckle noise reduction as pre-
processing. Notably, without noise reduction, the segmentation
process produced non-smooth boundary and wrong ROI topol-



(a) 57, 111 (b) 59, 117 (c) 67, 118

(d) 83, 174 (e) 86, 172 (f) 82, 172

(g) (h) (i)

Fig. 3. Three examples of two level segmentation outputs with obtained
thresholds. (a)-(c) Segmentations without pre-processing. (d)-(f) Results after
speckle noise reduction followed by histogram equalization. (g)-(i) The final
ROIs achieved through the maximization of expression (6) over images (d)-(f).

Fig. 4. (a)-(c)-(e)-(i) Segmentation without noise reduction. (a)-(f)-(j) ROI
extraction without global histogram equalization and noise reduction. (a)-(b)-
(d)-(g)-(k) Segmentation with the whole pipeline.

ogy, as observed by comparing Figures 4-(i)-(j) with Figure
4-(k).

When the final result produces no region of interest, or the
final region can not be considered a lesion region (such as a
noise or a small region around the ROI), we call such result
as a “degenerate case”. These cases degrade the accuracy of
SVM classifier. In order to reduce the number of degenerate
cases, steps (v), (vi) and (vii) are each one a repetition of steps
(ii), (iii) and (iv), respectively, but now as local processing.
The strategy here is to increase the impact of segmentation
and equalization operations, giving more accuracy to Bayesian
classifier in the selection of the final ROI.

To quantify the influence of global operations, a general
quantitative result was achieved when 250 images from the
database were processed. When it was not applied any speckle
noise reduction neither histogram equalization (see example
in Figure 4-(j)) we noted 25/250 (10.0%) degenerate cases.
However, when it was included global histogram equalization
(see example in Figure 4-(i)), the total degenerated cases
decreased to 5/250(2.0%), giving a clear improvement of
80% compared to the case without any pre-processing. On
the other hand, when we did not apply the global histogram
equalization but only the speckle noise reduction we noted
12/250(4.8%) degenerate cases, an improvement of 5.2%
considering only original image. Finally, when we applied
the speckle noise reduction combined with global histogram
equalization, we observed no degenerated cases (Figure 4-(k)
is an example). These results show that the speckle noise
reduction combined with histogram equalization is effective
to minimize the number of degenerated cases in the output of
the Bayesian model for ROI extraction.

The next tests were carried out with four different configura-
tion scenarios: (i) Original images without any pre-processing
(called scenario 1, labeled SC1); (ii) global histogram equal-
ization alone (called scenario 2, labeled SC2); (iii) speckle
noise reduction alone (called scenario 3, labeled SC3), and
(iv) speckle noise reduction and histogram equalization to-
gether (called scenario 4, labeled SC4).

The ROI obtained in step (vii) of the methodology is used
as a mask over the original image to compute the features
of Table I in the step (viii). Those features were combined
one by one, two by two, · · ·, six by six, and all of them
together generating 127 possible features combinations. Thus,
127 feature spaces are yielded and each of them was tested
under all four described scenarios SC1, SC2, SC3, and SC4.
So, for each one of the 250 images from the database we
calculate 127 feature vectors. Therefore, we build 4 × 127
databases of feature vectors, each one composed by 250
feature arrays.

In the final step of the proposed methodology, each database
is then submitted to a classification process with a SVM
implementation made in Matlab. In this paper, following
related works [16], we use 5-fold cross-validation technique
with 200 vectors for training and 50 for tests. So, we train the
SVM using 4-folds and use the remaining one to compute the
true positive and false positive rates. We repeat this procedure



a number of times to generate the whole ROC curve [20].
Table II shows the comparative performance results, com-

puted as Az area under the SVM ROC curve computed for
the four proposed scenarios. The first column reports the
feature space dimension, the other columns provide the best
classification performance and the corresponding feature space
for each scenario.

TABLE II
BEST PERFORMANCE, COMPUTED AS Az AREA UNDER THE SVM ROC

CURVE, AND CORRESPONDING FEATURE SPACE FOR EACH SCENARIO. IN
BLACK, THE MAXIMUM AREA/FEATURE SPACE FOR EACH LINE.

Dim. SC1 SC2 SC3 SC4

1 0.85
2

0.91
3

0.88
2 or 3

0.93
3

2 0.910
24

0.915
35

0.912
36

0.942
36

3 0.903
124

0.912
345

0.926
234

0.948
356

4 0.904
1245

0.912
3456 or 3567

0.925
1236

0.950
2347

5 0.910
12345

0.905
34567

0.930
12345

0.948
23457

6 0.903
123457

0.892
123457

0.925
123456

0.948
134567

For instance, the second line of Table II, with Dim. equal
to 1, shows that the best performance (0.93) when only one
feature is used in the proposed CAD system is achieved with
the F3 feature (gray-scale distribution within lesion) used in
scenario SC4.

The third line of Table II shows the results when the seven
features are combined in pairs. In this experiment, the best
overall performance (0.942) was achieved in SC4 scenario
with the combination of features F3 (gray-scale distribution
within lesion) and F6 (invariant moments bellow lesion),
which is higher than the best previous achieved, suggesting
that the combination of two characteristics improves the pro-
posed method.

The fourth line of Table II reports the result for three-
dimensional feature spaces generated by the combination of
the 7 features taken 3 at a time. In this case, the scenario
SC4 with the features F3F5F6 gives the best performance
of 0.948.

The results for experiments using four-dimensional features
spaces are shown in fifth line of Table II. Like the already
reported tests, the scenario SC4 achieves the best perfor-
mance. The best feature space in this case is F2F3F4F7 and
the obtained accuracy (0.950) is higher than in the previous
experiments.

Table II shows in the sixth line the experimental results
when the feature vectors are combinations of five character-
istics. In this experiment, again the SC4 scenario reached
the best global performance (0.948), with the combination of
F2F3F4F5F7 features.

In turn, seventh line of Table II shows the comparative
performance results when the features are combined six by six.
In this experiment, the best performance among all was again

the SC4 scenario, which achieved the best overall performance
(0.948), with the combination F1F3F4F5F6F7.

When all seven characteristics (F1F2F3F4F5F6F7) are
used together, the best overall performance (0.941) is also for
the SC4 scenario, followed by scenarios SC3, SC2 and SC1,
in this order.

VI. DISCUSSION

The computational experiments consider four different con-
figuration scenarios: SC1, SC2, SC3 and SC4. Clearly, the
SC4 was the one with the best overall performance among
all, demonstrating that the speckle noise reduction process
combined with the histogram equalization algorithm improved
the proposed CAD system.

Regarding to firefly segmentation algorithm, we note in
Figure 4 that this algorithm is strongly affected by noise
reduction and the equalization stages reducing the number
of degenerate cases from 25 in SC1 scenario to zero in
SC4 scenario. This difference of degenerate cases in favor of
SC4 scenario allows a better assessment of the ROIs and is
responsible for the SVM better performance in the latter stage
of the proposed CAD system. The Figures 4.(e)-(f) show that
without both noise reduction and equalization the firefly tends
to generate over-segmentation yielding many regions.

The firefly+Bayesian model efficiency can be measured by
the SVM classification rate. In fact, the performance of 95%
is a strong indication of the segmentation efficiency.

On the other hand, the results reported in Table II allow
to compare the efficiency of each feature alone. From the
second line it can be seen that the best one is feature F3 in
scenario SC4. The feature F2 achieves the second place with
superior performance in SC1 and SC3. This indicates that the
gray-scale distribution inside the region lesion was the most
discriminant feature followed by the gray-scale distribution
below the lesion. However, by comparing the second line with
the other ones in Table II, we can notice that, in general,
the use of only a single feature gives the worst overall
performance.

At the other extreme, the combination of features that led
to best overall performance (0.95, Table II) was F2F3F4F7
in SC4 scenario. Therefore, the use of features F1, F5 and F6
does not add discriminant information since it was not verified
an increase in the system efficiency.

This work addresses the research gaps (1)-(4) mentioned in
section II for non deep learning CAD systems. In fact, respect
to gap (1), we shall highlight that our database has 250 US
breast cancer images that is a number considerably larger than
the mentioned in [3], [4], [7]. Also, it includes some cases with
acoustic shadow and acoustic reinforcement (Figure 2.(a),(c))
to demonstrate the capabilities of our segmentation method
against such artifacts (gap (2)). Moreover, we evaluated the
consequences of our pre-processing techniques on the overall
system performance (see Figure 4 and Table II), addressing
gap (3). We have observed that the mentioned artifacts are also
suggestive of lesion characteristics. So, we introduce features
F2, F4, and F6 to take into account this fact. The obtained



results show that such strategy effectively helps efficiency of
the method which addresses gap (4).

In the proposed pipeline there is no assumptions related to
probabilistic models like in [3], or the need of large training
datasets like in deep learning approaches [13]. Different from
our technique, the method proposed in [14], that attained
maximum sensitivity of 100%, may not be suited to images
corrupted by acoustic shadow and acoustic enhancement,
since these characteristics may distort the local texture of
the lesions. Regarding the work [2], though computationally
faster, this technique is sensitive to blurring resulting in unclear
tumor contour. The application of the noise reduction method
proposed in [8] and histogram equalization avoids blurring
problems inside our methodology. Although each tested image
is a cropping window holding the ROI we can notice in
the Figures 1.(a) and 2.(a)-(c) that they present other tissues
besides the ROI. So, the task is more than to delineate the ROI
boundary because the methodology should extract the lesion
from its surrounding background (see section VII).

Up to the best of our knowledge, the maximum deep learn-
ing performance reported in the literature (see the penultimate
paragraph of section II) for breast US classification is 0.96
[16]. Our methodology gets a performance of 0.95 which is
close to 0.96, without problems regarding transfer learning and
data augmentation that usually deep learning methods undergo
when only a small data set is available for training (see [21],
section 2.2). Hence, we believe that we have achieved our goal
of getting an efficient CAD approach without the need of huge
training data sets.

VII. CONCLUSIONS AND FUTURE WORKS

This paper proposes a CAD system for automatic diagnosis
of US images of breast lesions and evaluates its performance
using a test database with 100 images of benign and 150 of
malignant lesions. The average area under the ROC curve is
used to measure the SVM classifier performance. The results
highlighted the importance of all stages of proposed pipeline
behind the CAD system. In particular, the speckle noise
reduction followed by a histogram equalization strategy allows
the generation of better lesion boundaries in the subsequent
stages (Figure 4).

To prove the efficiency of the method, the SVM classifier
is used with 250 US images represented by seven lesion fea-
tures (Table I) showing that the combination of F2F3F4F7
features in SC4 scenario gives the best classification result
of 95.00%. In further works, we could apply the course
segmentation method proposed in [5] to compute the cropping
window for a high resolution US image. Moreover, with the
goal of comparison, we intend to employ the proposed method
on datasets used elsewhere as well as to apply related methods
on the same dataset used in this paper.
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