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12247-014, São José dos Campos, SP – Brazil

Email: {felipe.samuel, jurandy.almeida}@unifesp.br
2Dept. of Information Engineering and Computer Science

University of Trento – UniTn
38123, Trento, TN – Italy

Email: niculae.sebe@unitn.it

Abstract—Action recognition in videos has gained substantial
attention from the computer vision community due to the wide
range of possible applications. Recent works have addressed this
problem with deep learning methods. The main limitation of
existing approaches is their difficulty to learn temporal dynamics
due to the high computational load demanded for processing
huge amounts of data required to train a model. To overcome
this problem, we propose a Compressed Video Convolutional 3D
network (CV-C3D). It exploits information from the compressed
representation of a video in order to avoid the high computational
cost for fully decoding the video stream. The speed up of the
computation enables our network to use 3D convolutions for
capturing the temporal context efficiently. Our network has
the lowest computational complexity among all the compared
approaches. Results of our approach in the task of action
recognition on two public benchmarks, UCF-101 and HMDB-51,
were comparable to the baselines, with the advantage of running
at faster inference speed.

I. INTRODUCTION

Over the past decade, the problem of recognizing actions in
a video has received considerable attention from the computer
vision research community. One of the reasons of such grow-
ing interest is due to the comprehensive range of applications,
from surveillance, medical, and industrial environments to
smart homes [1].

One of the main issues concerning the action recognition
problem refers to the extraction of proper representations ca-
pable of encoding valuable information from video content [2].
Many prior approaches rely on hand-crafted features, where
low-level appearance or motion cues, such as color, texture or
optical flow, are computed based on space-time interest points
detected in a video, which are then utilized to train classifiers,
like support vector machines (SVM) [3]–[6]. These features
are designed by hand and usually require high expertise for
domain-expert knowledge [7].

Recently, data-driven features have emerged as an alterna-
tive to overcome those shortcomings. They are learned directly
from the data without the necessity of incorporating any
domain knowledge, as in deep learning methods, which aim at

learning feature hierarchies, where features from lower levels
are composed to form higher level features. Feature learning
at different levels of abstraction enables to model complex
functions mapping the input data directly to the outputs [8].

A variety of deep learning methods for action recognition
can be referred in the literature [2], [7], [9]–[12]. In most
of them, a video is parsed frame by frame with convolutional
neural networks (CNNs) designed for images [13], [14]. Other
methods process videos as image sequences using 2D CNNs,
3D CNNs, or recurrent neural networks (RNNs) [15], [16].

In spite of all the advances, the temporal structure of videos
poses some challenges for training deep learning models [17].
First, the computational costs are expensive, as a huge amount
of videos is required for training and they need to be decoded
during this process. In addition, the number of learnable
parameters is high, increasing the complexity of the model
and, consequently, the chances of overfitting. These aspects
are crucial for the performance of deep learning methods [10].

To address the aforementioned issues, we propose a Com-
pressed Video Convolutional 3D network (CV-C3D). Our
approach exploits relevant information pertaining to visual
content available in the compressed representation used for
video storage and transmission. This enables to save high
computational load in full decoding the video stream and
therefore greatly speed up the processing time.

We evaluated our approach on two action recognition
benchmarks: UCF-101 and HMDB-51. Results point that our
network is efficient for it has the lowest computational com-
plexity. For action recognition, our approach performed similar
to the other methods on the UCF-101 dataset and achieved the
second best performance on the HMDB-51 dataset. Despite
CoViAR performs better than CV-C3D in terms of classifica-
tion accuracy, CV-C3D is one order of magnitude faster than
CoViAR for inference.

The remainder of this paper is organized as follows. Sec-
tion II introduces some basic concepts, like action recognition
and video compression. Section III discusses related work.



Section IV describes our CV-C3D network. Section V presents
the experimental protocol and the results from the comparison
of CV-C3D with other methods. Finally, we offer our conclu-
sions and directions for future work in Section VI.

II. BACKGROUND

This section presents a brief overview about video action
recognition and video compression.

A. Action Recognition

A comprehensive review of methods for action recognition
is presented in [2], [7], [9]–[12]. In general, existing solutions
are based on a two-step approach: (i) extraction and encoding
of features, and (ii) classification of features into classes [9].

Prior approaches are generally based on hand-crafted fea-
tures, which are normally built on the pixel-level and carefully
designed to deal with challenging issues, such as occlusions
and viewpoint changes. They can be grouped into to four
categories: (1) spatial-temporal volume-based approaches, (2)
skeleton-based approaches, (3) trajectory-based approaches,
and (4) global approaches [11]. Even though these approaches
may achieve high performance, they are problem-dependent,
thus restricting their applicability in the real-world [7].

Over the last few years, data-driven features have become
a promising alternative in recent approaches thanks to signifi-
cant advances introduced by deep learning. These approaches
are capable of building a high-level representation of the
raw inputs automatically by learning features from multiple
layers hierarchically [7]. They can be grouped into to five
categories: (1) learning from video frames, (2) learning from
frame transformations, (3) learning from hand-crafted features,
(4) three-dimensional convolutional networks, and (5) hybrid
models [11]. The main limitation of such approaches is their
capacity in dealing with the temporal dimension [18].

The temporal structure of videos poses some challenges for
training deep learning models [17]. First, the computational
costs are expensive, as a huge amount of videos is required
for training and they need to be decoded during this process.
In addition, the number of learnable parameters is high,
increasing the complexity of the model and, consequently,
the chances of overfitting. These aspects are crucial for the
performance of deep learning methods [10].

B. Video Compression

Compression of video data aims to minimize the spatio-
temporal redundancies by exploiting image transforms and
motion compensation [19]. Therefore, a lot of superfluous in-
formation can be discarded by processing compressed videos.

In most video compression algorithms, a video is splitted
into three main types of pictures: intra-coded (I-frames),
predicted (P-frames), and bidirectionally predicted (B-frames).
Those pictures are organized into sequences of groups of
pictures (GOPs) in video streams.

A GOP must start with an I-frame and can be followed
by any number of I and P-frames, which are usually known

as anchor frames. Between each pair of consecutive anchor
frames can appear several B-frames.

Each video frame is divided into a sequence of non-
overlapping macroblocks. For a video coded in 4:2:0 format,
each macroblock consists of six 8x8 pixel blocks: four lumi-
nance (Y) blocks and two chrominance (CbCr) blocks. Each
macroblock is then either intra- or inter-coded.

An I-frame is completely intra-coded: every 8x8 pixel block
in the macroblock is transformed to the frequency domain
using the discrete cosine transformation (DCT). The 64 DCT
coefficients are then quantized (lossy) and entropy (run length
and Huffman, lossless) encoded to achieve compression.

Each P-frame is predictively encoded with reference to its
previous anchor frame (the previous I or P-frame). For each
macroblock in the P-frame, a local region in the anchor frame
is searched for a good match in terms of the difference in
intensity. If a good match is found, the macroblock is repre-
sented by a motion vector to the position of the match together
with the DCT encoding of the difference (or residue) between
the macroblock and its match. The DCT coefficients of the
residue are quantized and encoded while the motion vector is
differentiated and entropy coded (Huffman) with respect to its
neighboring motion vector. This is usually known as encoding
with forward motion compensation. Macroblocks encoded by
such a process are called as inter-coded macroblocks.

In order to achieve further compression, B-frames are bidi-
rectionally predictively encoded using forward and/or back-
ward motion compensation with reference to its nearest past
and/or future I and/or P-frames.

The frame number, frame encoding type (I, P or B), the
positions and motion vectors of inter-coded macroblocks, the
number of intra-coded blocks, and the DC coefficients of each
DCT encoded pixel block can be obtained by parsing and
entropy (Huffman) decoding video streams. Those operations
take less than 20% of the computational load in the full video
decoding process [20].

III. RELATED WORK

Unlike pixel-level information, the transform coefficients
and the motion vectors from a compressed video provide
useful information about its visual content, like appearance
changes and motion information. These information can be
easily extracted by partial decoding the video stream and
used for recognizing actions. In this way, it is possible to
improve not only effectiveness by taking advantage of richer
information, but also efficiency by avoiding the full decoding
of the video stream [18].

A few methods have explored the compressed domain as an
alternative to speed up the computational performance [21]–
[23]. Most of them are based on hand-crafted features and
therefore their application is limited to specific domains.
Focusing on a particular domain helps to reduce levels of
ambiguity when analysing the visual content by applying prior
knowledge of the domain during the analysis process [19].

The use of compressed domain information by deep learning
methods is quite recent and has been exploit only by very few



works. The pioneering work of Zhang et al. [24], [25] extended
the two-stream architecture of Simonyan and Zisserman [26] to
use motion vectors instead of optical flow maps in the temporal
stream network. However, videos still need to be decoded,
since the spatial stream network is fed with RGB images.

The recent work of Wu et al. [18] has introduced CoViAR:
a deep learning model fully trained on compressed videos.
The key idea exploited by their work is to use RGB images
obtained by decoding I-frames and motion features computed
from P-frames as input to a multi-stream CNN, with one
stream for each input, which are trained separately and then
combined by a simple weighted average of their output scores.
Although this approach is efficient, its capacity to learn the
temporal structure is rather limited, since video frames are
processed independently.

IV. APPROACH

In this section, we present our approach for action recogni-
tion: the Compressed Video Convolutional 3D network (CV-
C3D). Section IV-A presents C3D: a tri-dimensional convo-
lutional network. Section IV-B presents CoViAR: a method
that uses information from compressed videos for action
recognition. Finally, Section IV-C shows how the advantages
of both C3D and CoViAR are exploited by our approach.

A. Convolutional 3D Network (C3D)

The Convolutional 3D (C3D) network [27] is capable of
learning spatio-temporal patterns of video data directly from
pixels. Basically, it extends the convolution along the temporal
dimension, thus maintaining a certain temporal structure. For
this, 3D filters instead of 2D ones are used in the convolutional
layer. In this way, the feature maps of a convolution layer
are connected to several continuous frames in the input layer,
enabling to learn discriminative features along both spatial and
temporal dimensions, like motion information. However, the
number of parameters and the computational complexity of the
model are inevitably increased, making them harder to train.

The C3D network is composed of 8 convolutional, 5 pool-
ing, 3 fully connected layers (2 with ReLu and 1 with softmax
activation). All the convolutional layers have a kernel of size
3×3×3 (temporal×spatial×spatial dimensions) with strides of
1×1×1. All the pooling layers are max-pooling with 2×2×2
kernels and strides of 2×2×2 (except for the first one that has
a kernel of size 1×2×2 with strides of 1×2×2). The name of
layers, number of filters for each of the convolutional layers,
and number of neurons for each of the fully connected layers
is presented in Figure 1. The input size of the C3D network is
fixed to 16 frames with spatial resolution of 112×112 pixels.

Fig. 1. The architecture of the C3D network [27].

B. Compressed Video Action Recognition (CoViAR)

The Compressed Video Action Recognition (CoViAR)
method [18] is a deep neural network capable to learn directly
from compressed videos. Basically, it extends the Temporal
Segment Networks (TSN) [28] to exploit three information
readily available in MPEG-4 compressed streams: (1) RGB
images encoded in I-frames (I), (2) motion vectors (MV) and
(3) residuals (R) encoded in P-frames.

Following TSN [28], CoViAR learns temporal dynamics
from multiple segments of a video. For this, uniform sampling
is used to take a set of frames. Then, frame scores are obtained
by feeding the network with one frame at a time. Finally, a
video score is obtained by averaging the frame scores.

In terms of architecture, CoViAR is a multi-stream network
containing three independent CNNs, one for each of the three
information (i.e., I, MV, and R) extracted from compressed
videos. To combine the individual CNNs, late fusion is per-
formed by the weighted average of their prediction scores.

C. Compressed Video Convolutional 3D Network (CV-C3D)

On one hand, C3D is more suitable than CoViAR for mod-
eling the temporal structure of videos, but the computational
complexity makes it often impractical. On the other hand,
CoViAR is much faster than C3D, but its capacity to capture
temporal dynamics is limited.

Motivated by the aforementioned observations, we pro-
pose a Compressed Video Convolutional 3D network (CV-
C3D). It combines the advantages of both C3D and CoViAR,
yielding significantly improved performance. Basically, CV-
C3D extends CoViAR by replacing CNNs with C3Ds. The
similarities and differences of C3D, CoViAR, and CV-C3D
can be observed in Figure 2.

Similar to CoViAR, the architecture of CV-C3D is a multi-
stream network composed of three independent C3Ds, instead
of CNNs, that are fed with the I, MV, and R information,
respectively, obtained from MPEG-4 compressed streams. In
this way, CV-C3D saves high computational load and mem-
ory usage in full decoding the video stream and also takes
advantage of 3D convolutions to model temporal dynamics.

Unlike C3D, in CV-C3D, our C3Ds are fed with 16 frames
obtained by uniform sampling, like in CoViAR, therefore they
are not continuous. Different from CoViAR, these frames are
passed all at once through the network, enabling CV-C3D
to capture the temporal context efficiently. Finally, only 16
frames of a video are processed by the C3Ds of our CV-C3D,
thus its computational complexity is acceptable.

V. EXPERIMENTS AND RESULTS

For benchmarking purposes, experiments were conducted
on two public datasets composed by a large and varied
repertoire of different actions [29]: UCF-101 and HMDB-51.

The UCF-101 dataset1 [30] is composed of 13, 320 videos
(27 hours) collected from YouTube. All videos are in MPEG-4
format (at 25 frames per second and 320×240 resolution), in

1http://crcv.ucf.edu/data/UCF101.php (As of June 2019)
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Fig. 2. Illustrations of (a) the C3D network [27], (b) the recent CoViAR [18] method, and (c) our proposed CV-C3D. Unlike CoViAR, where a video score
is computed by averaging frame scores obtained by feeding a CNN with one frame at a time, our CV-C3D takes advantage of 3D convolutions used by C3D
to compute a video score by feeding the network with all frames at once, enabling us to capture the temporal context efficiently.

color and with sound. They have large variations in camera
motion, object appearance and pose, illumination conditions,
etc. Those videos are distributed among 101 action classes and
their duration varies from 1.06 to 71.04 seconds. Each of the
action classes is divided into 25 groups containing 4-7 videos
with common features, like actors and background.

The HMDB-51 dataset2 [31] contains 6,766 videos (6 hours)
collected from various sources, such as movies and internet
sites like YouTube and Google. All videos are in MPEG-4
format (at 30 frames per second and with a fixed height of 240
pixels and width ranging from 176 to 592 pixels), in color and
no sound. Such videos were annotated with information about
camera motion, camera viewpoint, video quality, number of
actors, visible body parts, etc. They are categorized into 51
action classes containing at least 102 videos in each and their
duration varies from 0.64 to 35.44 seconds.

For evaluation, three training and testing splits are provided
with the UCF-101 and HMDB-51 datasets. In our experiments,
we follow the official evaluation protocol, which consists in
evaluating the default training and testing splits separately and
reporting the average accuracy over these three splits.

Following C3D [27], all videos were resized to 128×171
resolution. Then, we uniformly sample 16 frames from each
video to feed the CV-C3D network. During testing phase, the
action category is predicted by passing only a single center
crop with size 112×112 through the network.

2http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
(As of June 2019)

During training phase, we followed CoViAR [18] and ap-
plied three strategies for data augmentation: (1) color jittering,
(2) horizontal flipping with 50% probability, and (3) random
cropping with scale jittering, where the width and height of
the cropped region are randomly selected on different scales
(4 scales for I: 1, 0.875, and 0.75; and 3 scales for MV and R:
1, 0.875, and 0.75) and then resized to 112×112 resolution.
The CV-C3D models were pre-trained on the Sports-1M
dataset [32] and fine-tuned using Adam [33] with a batch size
of 20. Step-decay was used to reduce the initial learning rate
by a factor of 10 after a number of epochs. Table I presents
the initial learning rates, the total number of epochs, and the
step-decay scheduler setting used in our experiments.

The experiments were performed on a machine equipped
with a processor Intel Core i7 6850K 3.6 GHz, 64 GBytes of
DDR4-memory, and 4 NVIDIA Titan Xp GPUs. The machine
runs Ubuntu 16.04 LTS (kernel 4.15.0) and the ext4 file
system. Our approach was implemented in PyTorch (version
1.1.0) upon the CoViAR implementation3.

Table II presents the classification accuracy achieved by CV-
C3D in each of the three splits of the UFC-101 and HMDB-
51 datasets. We compare the results obtained by feeding the
network with different inputs and any combination of them.
Using only one type of input, I and R obtained similar satis-
factory results, while MV obtained inferior results, although
when combined with the other inputs it was able to increase
the performance, showing that MV offers complementary

3https://github.com/chaoyuaw/pytorch-coviar (As of July 2019)



TABLE I
THE HYPERPARAMETERS USED FOR TRAINING THE CV-C3D NETWORK.

Hyperparameter UCF-101 HMDB-51
I MV R I MV R

Initial learning rate 0.000075 0.0025 0.00125 0.00015 0.00125 0.00025
Total number of epochs 510 220 360 300
The step-decay scheduler setting 150, 270, 390 55, 110, 165 120, 200, 280 120, 180, 240

information to I and R. The best results were achieved by
combining all three inputs, obtaining gains up to 12.9%,
reaching classification accuracies of 83.9% on the UCF-101
dataset and 55.7% on the HMDB-51 dataset. These results
indicate that the use of the information contained on the
compressed video is promising.

TABLE II
CLASSIFICATION ACCURACY (%) ACHIEVED BY CV-C3D IN THE THREE

SPLITS OF THE UFC-101 AND HMDB-51 DATASETS. THE NETWORK WAS
FED WITH DIFFERENT INPUTS: (I) I-FRAMES, (M) MOTION VECTORS, AND

(R) RESIDUALS. WE COMPARE THE PERFORMANCE OF EACH MODEL IN
ISOLATION AND ALSO THEIR LATE FUSION (+) BY A WEIGHTED AVERAGE

OF THEIR OUTPUT SCORES. THE BEST AND THE SECOND BEST RESULTS
ARE HIGHLIGHTED IN BOLD AND UNDERLINING, RESPECTIVELY.

I MV R I+MV I+R I+MV+R (gain)
UCF-101
Split 1 74.5 49.2 74.6 79.3 81.3 83.1 (+8.5)
Split 2 75.0 50.2 76.9 80.3 83.0 84.7 (+7.8)
Split 3 75.9 48.2 76.4 81.1 82.4 83.9 (+7.8)

Average 75.1 49.2 75.9 80.2 82.3 83.9 (+8.0)

HMDB-51
Split 1 44.3 29.7 45.2 52.9 53.0 57.7 (+12.5)
Split 2 40.9 30.3 39.5 50.4 47.7 54.6 (+13.7)
Split 3 40.6 29.6 43.7 50.8 48.6 54.8 (+11.1)

Average 41.9 29.9 42.8 51.4 49.8 55.7 (+12.9)

Table III compares the computational complexity and classi-
fication accuracy of different networks. In terms of classifica-
tion accuracy, CV-C3D achieved the third best performance
on the UCF-101 dataset and the second best performance
on the HMDB-51 dataset. Notice that CV-C3D performed
better than C3D on both the datasets, indicating that the use
of motion vectors and residuals has benefited our approach.
On the other hand, the highest classification accuracies were
achieved by CoViAR. We believe that it is because, in the
testing phase, CoViAR is fed with 25 video frames chosen by
uniform sampling, from which are extracted 5 crops with flips.
By taking more frames and using data augmentation, CoViAR
benefits from much more information than CV-C3D in terms
of both appearance and temporal dynamics. In addition, the
CV-C3D architecture is based on C3D, which is a VGG [34]
alike structure. CoViAR is built on top of a ResNet [35]
architecture, which takes advantage of residual connections,
making the learning process easier. However, CV-C3D has
the lowest computational complexity among all the networks,
requiring only 12% GFLOPs used by CoViAR.

Table IV compares the classification accuracy of CV-C3D
and the state-of-the-art compressed video methods. Again, CV-
C3D achieved the second best performance on the HMDB-51

TABLE III
COMPARISON OF THE COMPUTATION COMPLEXITY (GFLOPS) AND

CLASSIFICATION ACCURACY (%) OF DIFFERENT NETWORKS. THE BEST
AND THE SECOND BEST RESULTS ARE HIGHLIGHTED IN BOLD AND

UNDERLINING, RESPECTIVELY.

Accuracy (%)
GFLOPs UCF-101 HMDB-51

ResNet-50 [36] 3.8 82.3 48.9
ResNet-152 [36] 11.3 83.4 46.7
C3D [27] 38.5 82.3 51.6
Res3D [37] 19.3 85.8 54.9
CoViAR [18]5 4.2 90.4 59.1
CV-C3D 0.5 83.9 55.7

5For a fair comparison, we considered the results reported by
CoViAR [18] using only information from compressed domain. To
improve its accuracy, CoViAR use optical flow besides motion vectors.

dataset, showing that it retains high accuracy while greatly
reducing computational cost. However, the results for CV-
C3D were slightly worse than EMV-CNN and DTMV-CNN on
the UCF-101 dataset. Unlike CV-C3D, in addition to motion
vectors, they also use optical flow during the training phase.
This feature can also be used by CV-C3D, but its computation
is significantly slower as video decoding is required.

TABLE IV
COMPARISON OF THE CLASSIFICATION ACCURACY (%) ON THE UCF-101
AND HMDB-51 DATASETS FOR STATE-OF-THE-ART COMPRESSED VIDEO

BASED METHODS. THE BEST AND THE SECOND BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND UNDERLINING, RESPECTIVELY.

UCF-101 HMDB-51
EMV-CNN [24] 86.4 51.26

DTMV-CNN [25] 87.5 55.3
CoViAR [18] 90.4 59.1

CV-C3D 83.9 55.7

6This result was reported in [25] and refers to the classification
accuracy obtained only on Split 1 of the HMDB-51 dataset. We
included here just for reference.

The key advantage of our approach is its computational
efficiency. To evaluate its efficiency, we measured the average
inference time per-frame, which refers to the time spent to
prepare data and pass through the network. For this, we sum
up the total time taken to feed the multi-streams sequentially.
To obtain a fair comparison, the forwarding time of CoViAR
was measured using the authors’ implementation4, upon which
we implemented CV-C3D using the same code optimization.

Figure 3 compares the classification accuracy, the network
computation complexity, and the inference time for CV-C3D

4https://github.com/chaoyuaw/pytorch-coviar (As of July 2019)



and CoViAR on the UCF-101 and HMDB-51 datasets. Over-
all, CV-C3D is one order of magnitude faster than CoViAR.
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Fig. 3. Comparison of the classification accuracy (%) and the inference time
(ms per frame) for CV-C3D and CoViAR on the UCF-101 and HMDB-51
datasets. Node size denotes the network computation complexity (GFLOPs).

VI. CONCLUSION

In this paper, we presented a Compressed Video Convo-
lutional 3D network (CV-C3D). Our approach combines the
advantages of both C3D and CoViAR. Following CoViAR,
our method is capable to learn directly from compressed
videos, speeding up the processing time. Similar to C3D,
3D convolutions are used in our network to model temporal
dynamics. Architecturally, CV-C3D is a multi-stream network
composed of three independent C3Ds, whose predictions are
combined by late fusion.

Our network has the lowest computational complexity
among all the compared approaches. In terms of classification
accuracy, our approach performed similar to the other meth-
ods on the UCF-101 dataset and achieved the second best
performance on the HMDB-51 dataset. For both the UCF-
101 and HMDB-51 datasets, the best results were achieved by
CoViAR. In contrast, CV-C3D is much faster than CoViAR
for performing inferences.

As future work, we plan to evaluate the use of other 3D
CNNs in our approach, like Res3D [37] or I3D [38]. In ad-
dition, we intend to evaluate different strategies for modelling
the temporal structure of videos (e.g., using recurrent neural
networks), as well as smarter fusion strategies for combining
the outputs from CNNs related to different streams. Also, we

want to perform an extensive analysis of the parameter-space
of our approach. The evaluation of CV-C3D in large-scale
datasets, like Kinetics [39], and in other applications besides
action recognition is also a possible future work.
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