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Abstract—The Tangram is a dissection puzzle composed of
polygonal pieces which can be combined to form different
patterns. Solving the Tangram is a two-dimensional irregular
shape packing problem known to be NP-hard. Tangram pat-
terns may be composed of multiple connected components, and
assembling them may require the reflection transformation and
unconstrained rotations of the pieces. In this work, we propose a
novel approach for the automatic solution of the Tangram based
on a raster representation of the puzzle. In order to adapt the
geometrical techniques that are applied to the prevention of piece
overlapping and the reduction of space between pieces, we use
morphological operators and representations commonly used in
the discrete domain such as the dilation operator, the distance
transform and the morphological skeletonization. We investigate
the effects of the raster representation in the puzzle assembly
process and verify the effectiveness of the proposed method in
solving different Tangram puzzles.

I. INTRODUCTION

The Tangram is a geometric puzzle composed of seven
polygonal pieces: a square, a parallelogram, and five triangles
of different sizes. The main objective of the Tangram is to
rearrange the seven pieces using rigid body transformations to
fit them into a given pattern composed of a single or multiple
connected planar regions [1]. All pieces must be used and
cannot overlap. In Figure 1, the pieces are shown in their initial
square configuration. The constraint of seven pieces may be
relaxed, and multiple sets of Tangram can be combined to
allow for the assembly of more elaborate patterns.

Fig. 1: Tangram pieces in the initial configuration.

Computationally, the Tangram relates to a more general
class of combinatorial NP-hard problems such as Cutting and
Packing (C&P) problems [2]. The geometrical techniques that
are applied in C&P problems to identify and prevent overlaps
between shapes can be easily adapted to deal with the same
task in Tangram puzzles. The irregular C&P problem consists
of a task involving the placement of irregularly-shaped pieces
into a container while optimizing an objective function, such

as minimizing waste of area. The pieces must not overlap and
must stay within the limits of the container [2]. Dissection
puzzles are particular cases of the irregular C&P problem in
which the number of pieces is fixed and, at the end of the
pieces placement process, there is no space left in a container
of limited size [3].

It is common for C&P problems to restrict transformations
to translations and rotations constrained to multiples of 180o,
90o or 45o, and make use of a single rectangular container.
In general, the Tangram assembly process requires irregularly-
shaped containers, unconstrained rotations of the pieces, and
the additional reflection transformation for the parallelogram.

To better differentiate the complexity of Tangram puzzles,
we define simple Tangram puzzles as puzzles that can be
fully characterized by a set of translations and rotations
constrained to multiples of 45o to form a pattern composed of
a single connected component. In contrast, we define complex
Tangram puzzles as the ones which present at least one of
the following characteristics: (1) are composed of multiple
connected components; (2) contain holes within the puzzle
area; (3) require unconstrained rotations for the pieces; (4)
require the reflection transformation of the parallelogram.
Figure 2 exemplifies complex Tangram puzzles with different
attributes.

Fig. 2: Examples of complex Tangram puzzles. The cat’s tail
(top left) is a parallelogram rotated by an angle that is not a
multiple of 45o. The boat (top right) is composed of multiple
connected components. The bird (bottom left) uses a reflected
parallelogram, and the letter B (bottom right) contains holes.



In this paper, we propose a novel approach for the automatic
solution of Tangram puzzles. Our method takes advantage
of operators and representations of raster-based mathematical
morphology to allow for fast placements of the pieces and
support for complex Tangram puzzles. During assembly, the
puzzle area and pieces are represented as raster masks, which
can be combined using bit blit operations to support patterns
with holes and patterns composed of multiple connected
components. The geometrical techniques that are commonly
applied in the solution of C&P problems in vector format are
adapted to the raster format. For instance, the computation
of no-fit polygons and collision-free areas to avoid overlaps
between pieces and the boundaries of the puzzle area are
performed using raster-based morphological dilations. This
allows using Tangram patterns and pieces described solely by
binary raster masks. Similarly, we propose a new placement
position strategy based on minimizing a placement cost func-
tion that uses the distance transform computed in the empty
region. The evaluation of the cost function at the endpoints of
the morphological skeleton of the collision-free area quickly
determines the positions of potentially minimum cost. We
show that this strategy competes well with existing placement
strategies in terms of efficiency, and outperforms them in the
number of puzzles solved. Therefore, this paper brings the fol-
lowing contributions: (1) an automatic Tangram puzzle solver
which can use puzzle patterns and pieces described solely in
raster format; (2) a new distance transform placement position
strategy that is capable of solving a more extensive variety of
puzzles when compared to existing placement strategies used
in raster-based C&P techniques, while maintaining efficiency.

The vector-to-raster conversion is accompanied with infor-
mation loss because the boundaries of the polygons often do
not coincide with the boundaries of raster cells. However,
we found that this loss in the representation accuracy during
assembly does not have a significant impact on the puzzles
since it is enough for the Tangram to create patterns that
visually resemble symbols and objects. Even if the pieces are
not perfectly arranged, the solution may be accepted as correct
if the resulting pattern resembles the desired symbol or object.

In Section II, we present a synthesis of the literature of
computational Tangram solving techniques and a literature
review of the raster representations that are applied to the
solution of C&P problems. Our method is presented in Sec-
tion III. In Section IV, we present and discuss the results of
the application of our method on different Tangram puzzles.
Finally, in Section V, we present our final considerations and
future works.

II. RELATED WORK

While the literature about irregular C&P problems is vast,
there are only a few works devoted to methods for the
automatic solution of Tangram puzzles [4]. Deutsch & Hayes
presents a method for solving Tangram puzzles using heuristic
programming [5]. Oflazer follows a connexionist approach
and solves Tangram puzzles by representing the placement
and orientation of the pieces as a non-restricted Boltzmann

machine [6]. Among the methods dedicated to jigsaw [7]
and edge-matching [8] puzzles, the method by Bartoněk [9]
based on genetic algorithms includes an extension to dissection
puzzles such as the Tangram. More recently, Kovalsky et al.
proposed a method based on the solution of systems of poly-
nomial equations derived from the pieces of the puzzle. This
method can be used to solve simple Tangram puzzles [10]. All
these approaches show limitations concerning the orientation
of pieces, usually limiting the angles of rotations to multiples
of 45o. Also, they cannot be applied to patterns with multiple
connected regions. Only the methods by Deutsch & Hayes [5]
and Oflazer [6] allow the reflection transformation for the
parallelogram, and only the method by Oflazer solves patterns
with holes.

Besides the methods dedicated to the Tangram and the
methods that include extensions to the Tangram, traditional
methods applied to C&P problems were proved to be efficient
to avoid overlaps among polygons using the concept of no-
fit polygons, inner-fit polygons and collision-free areas [2],
[3]. In the following, we focus on works using a discrete
representation for the shapes and container.

Toledo et al. [11] propose the dotted-board model, in which
the container is represented as a grid, and the no-fit polygon
is transformed into a no-fit raster represented by a binary
matrix. Binary variables are associated with a piece type and
a grid dot, where the pieces can be positioned inside the
container [12].

MirHassani & Jalaeian Bashirzadeh [13] present a greedy
randomized adaptive search metaheuristic based on the no-
fit raster and use the constraints of the dotted-board model
defined by Toledo et al. [11] to guarantee that the shapes do not
overlap. This method takes up to 300 seconds to solve simple
problems. Mundim et al. [2] point out that this time could
be reduced considerably by using directly the information
provided by the no-fit raster.

Mundim et al. [14] present the no-fit raster and the inner-fit
raster for free form pieces. The no-fit polygon and the inner
fit polygon are converted to binary masks. The quality of the
solutions obtained for irregular C&P problems using the raster
format depends on the resolution of the discretization used to
generate the raster representations of the polygons.

Rodrigues & Toledo [12] propose a clique covering mixed-
integer programming model for the irregular strip packing
problem based on the dotted-board model proposed by Toledo
et al. [11] in which the board is represented by a grid.
The authors state that the proposed model obtained better
performance than the dotted-board model for most instances
and solved larger instances to optimality in comparison to
other works of the literature.

Finally, Mundim et al. [2] propose a heuristic to solve the
two-dimensional version of the C&P problems with irregular
pieces and limited-size containers. Also, the authors used no-fit
raster and inner-fit raster concepts to prevent overlaps between
pieces. The computational experiments show that the proposed
heuristic improved on the best solutions available in the
literature for three problems: the placement, the knapsack, and



the cutting-stock problems. The authors compare the proposed
method concerning the automatic solution of placement and
maximization problems with the techniques proposed by Valle
et al. [15], Dalalah et al. [16], Fischetti & Luzzi [17], Alvarez-
Valdes et al. [18], Gomes & Oliveira [19]. Considering the
current scenario of the usage of discrete representation in
computational methods for the automatic solution of the C&P
problems, the authors do not mention the application of
morphological operations in the discrete representation as an
approach to detect and prevent the occurrence of overlaps
between shapes, as well as to reduce the distance between
shapes. Therefore, we consider that our method brings some
contribution concerning the use of discrete representation in
general two-dimensional C&P problems and presents a new
approach for the prevention of overlaps between shapes.

III. THE METHOD

Our method starts with the inputs necessary to execute the
assembly process of the Tangram pattern: a Tangram pattern
(detailed in Section III-A) and a placement position strategy
(Section III-B). As a preprocessing step, the method generates
a list of all the possible configurations that each piece can
assume considering orientations and reflection transformation.
After that, the method proceeds to the placement procedure
(Section III-C) responsible for positioning the pieces inside the
puzzle area. As each piece is inserted into place, the method
performs a validation process (Section III-D) responsible for
verifying whether an obtained intermediate solution of the
puzzle allows the positioning of the remaining pieces.

A. Tangram puzzle representation

The desired Tangram pattern is represented as a rectangular
binary mask which will be referred to as pattern mask. At the
beginning of the assembly process, we consider that, in the
pattern mask, the empty puzzle area is represented by black
pixels (0), and the area outside the puzzle region is represented
by white pixels (1). During the placement process, if a piece
is placed in a black area, all pixels corresponding to the raster
conversion of that piece turn white in the pattern mask. Thus,
after applying our method in the Tangram puzzle, it is expected
that all of the pixels of the pattern mask (or at least most of
them) will be white. This representation can easily describe
complex Tangram patterns by assigning the regions with holes
and spaces between closed contour regions to white pixels.
Figure 3 shows examples of binary masks corresponding to
complex Tangram patterns.

Fig. 3: Examples of complex Tangram patterns. Pattern with
a hole (left), and with multiple connected components (right).

Each Tangram piece is represented as a list of vertices in a
local coordinate system where the origin is at the piece center.
Each piece contains the following attributes: translation, angle
of rotation, and a flag indicating whether the piece is reflected.
Rotation and reflection are performed locally. The translation
is performed with respect to the coordinate system of the
pattern mask. At the end of the assembly process, these
attributes correspond to the set of transformations required to
produce a feasible solution for the Tangram puzzle.

B. Placement position strategies

The placement position strategies aim to guide the posi-
tioning of the Tangram pieces according to a pattern that
avoids placing the pieces at random inside the puzzle area.
We consider the placement position strategies described by
Mundim et al. [2] that sweeps the puzzle area based on the
patterns illustrated in Figure 4: Bottom Left (BL), Left Bottom
(LB), Horizontal Zig-Zag (HZZ), Vertical Zig-Zag (VZZ),
Spiral (S), Anti Spiral (S−1).

Fig. 4: Paths generated by each placement position strategy.

In our method, the pattern obtained from each placement
position strategy is converted to a matrix that has the same
size as the pattern mask. Each entry of the matrix represents
a placement cost. Figure 5 illustrates the matrices generated
from each placement position strategy using intensity values to
depict the cost. The role of this cost in the placement procedure
is detailed in Section III-C.

We also introduce a new placement position strategy based
on the distance transform. The distance transform maps each
pixel of the empty area of the pattern mask to its shortest
Euclidean distance with respect to the outside puzzle area.
We consider the distance values as placement costs in order
to place the pieces as close as possible to the outside area of
the puzzle while avoiding overlapping. Figure 6 exemplifies
a matrix generated from the proposed approach based on the
distance transform. Similar to the matrix obtained from the
placement position strategies [2], the values from the distance
transform are normalized to be between 0 and 1.

C. Pieces placement procedure



Fig. 5: Matrices of placement position strategies with values
in grayscale, from black (lowest cost), to white (highest cost).

Fig. 6: A pattern mask (left) and the corresponding distance
transform (right) with distances shown in grayscale.

Our method applies the largest-first heuristic, in which the
Tangram pieces are sorted according to their area, and the
largest pieces are placed first [20]. Algorithm 1 presents the
pseudocode of the pieces placement procedure.

At the beginning of the pieces placement procedure, the
method selects a Tangram piece following the largest-first
heuristic (Line 1). Then, it selects the possible configurations
of the current piece one at a time to execute the pieces
placement procedure (Line 4). The next step consists of finding
a position for the current piece in the current configuration
inside the puzzle area (Line 5).

In order to determine the feasible positions, the raster
collision-free area is calculated. The collision-free area rep-
resents all possible translations for an item to be placed.
Since the pattern mask contains the union of all the placement
obstacles (placed pieces, holes and exterior areas), to obtain
the collision-free area, the pattern mask is dilated using
the reflected configuration mask of the current piece as the
structuring element of the dilation.

To reduce the number of positions to be considered, the
method computes the endpoints of the morphological skeleton
of the collision-free area. These correspond to concave corners
of the collision-free area, which provide a better interaction
between the piece corners and the corners of the non-empty
areas (limits of the Tangram pattern and pieces placed inside
the puzzle area). Some corners may be missed by this method,
but this is traded off by efficiency.

If any collision-free area could not be found (Lines 6, 7 and
8), the method returns to the possible configuration selection

Algorithm 1:
1 Set current piece;
2 while all pieces not placed do
3 if list of possible configurations of the current piece

is not empty then
4 Get next configuration of current piece;
5 Find feasible positions of current piece;
6 if feasible position not found then
7 continue;
8 end
9 Execute placement on the lowest cost position;

10 if following pieces can be placed in the empty
regions then

11 Set the following piece as the current piece;
12 continue;
13 end
14 else
15 Remove the current piece;
16 continue;
17 end
18 end
19 else if there are pieces in the puzzle area then
20 Reset the list of possible configurations of the

current piece;
21 Remove the previous piece;
22 Set previous piece as the current piece;
23 end
24 else
25 return Empty Solution;
26 end
27 end
28 return Solution;

step, and attempts to get the next possible configuration of the
current piece.

Figure 7 (a–e) presents the process for obtaining the feasible
positions of a piece. Figure 7 (f–g) illustrates the process
of placing the piece at the lowest cost position according
to our distance transform placement position strategy. The
computation of the cost is discussed in the following.

During the endpoints evaluation process (Line 9), we use
a cost function to determine the cost associated with each
feasible positioning of the current piece in the current con-
figuration, taking into consideration the puzzle area, and the
other pieces that were already placed. Our cost function is
defined as:

c( #»x) =

n∑
i=1

m∑
j=1

(M( #»x))i,j , (1)

where c is the cost function, #»x is an array representing a pos-
sible placement for the current piece, M( #»x) is the placement
cost matrix that represents the placement cost associated with
#»x , n and m are the number of rows and columns of M( #»x).



(a) (b) (c) (d)

(e) (f) (g)

Fig. 7: Computing feasible positions for a piece and placing it
at the lowest cost position: (a) Pattern mask; (b) Configuration
mask of the current piece (origin marked in red); (c) Reflected
piece; (d) Collision-free area obtained by dilating (a) with (c);
(e) Endpoints of the morphological skeleton of the collision-
free area shown as white dots. For reference, the skeleton
and collision-free area shown in gray; (f) Composite image
showing the distance transform inside the pattern mask and
the endpoints which correspond to feasible positions for (b);
(g) Resulting pattern mask after placing (b) at the lowest cost
position, which in this case corresponds to the bottom right
endpoint in (e-f).

In order to determine the placement cost matrix associated
with a feasible position found for the current piece in the
current configuration, it is necessary to take into consideration
the placement position strategy that was determined at the
beginning of the method execution. The process for obtaining
the cost function for instances using the placement position
strategies described in the work of Mundim et al. [2] is
illustrated in Figure 8 using the Left Bottom strategy.

Fig. 8: Process for obtaining the placement cost matrix of the
current piece using a placement position strategy. Pattern mask
(left), current piece configuration mask (center-left), element-
wise multiplication of current piece configuration mask and
placement position strategy mask with the centroid represented
as a red dot (center-right), and final placement cost matrix
(right).

Aiming to obtain the placement cost matrix associated with
the current piece positioning, it is necessary to perform an
element-wise multiplication between the current piece mask
and the matrix generated from the placement position strategy

determined at the beginning of the method execution. After
that, the current piece centroid is calculated to determine the
value of the element located in the current piece center. Finally,
the value of this central element is extended over the elements
of the piece area in the current piece mask to obtain the
placement cost matrix M( #»x) that represents the placement
cost associated with the possible placement #»x .

The process for obtaining the cost function for instances
using the distance transform approach proposed in this study
is presented in Figure 9.

Fig. 9: Process for obtaining the placement cost matrix of the
current piece using the distance transform. Pattern mask (left),
distance transform (center-left), current piece configuration
mask (center-right), and final placement cost matrix (right).

In order to obtain the cost associated with the current piece
positioning, it is necessary to calculate the distance transform
mask that determines the distance between each element in
the puzzle area, and the obstacles represented in the pattern
mask, i.e., placed pieces, holes and exterior areas. Then, an
element-wise multiplication is executed between the current
piece mask, and the distance transform mask to obtain the
placement cost matrix M( #»x) that represents the placement
cost associated with the possible placement #»x .

In C&P problems, the objective of the placement position
strategies is to define a sequence of positions to be tested one
after another aiming to guide the shapes positioning process.
In general, the shape placement process is executed by placing
the center of the shape on the positions, following the sequence
established by the placement position strategy. The process for
obtaining the placement cost matrix of the current piece using
the mask generated from the placement position strategy gives
preference to the positions that come first in the placement
position strategy path by assigning them a lower cost value.
On the other hand, the distance transform approach aims to
approximate the current piece to Tangram pattern borders, as
well as other Tangram pieces already placed inside the puzzle
area. In this approach, we consider the cost associated with
the whole area occupied by the current piece in the puzzle
area, not just the center of the piece.

D. Validation

After the current piece placement, the method proceeds
to a validation process (Lines 10 to 17 in Algorithm 1),
which is responsible for verifying whether the empty regions
can accommodate all the subsequent pieces in the largest-first
heuristic. In this validation process, the following conditions
have to be satisfied: (1) the largest empty region must be
greater than the largest piece in number of pixels and (2)
the maximum value of the distance transform considering the



largest piece must be shorter than the maximum value of the
distance transform considering the empty regions. This verifi-
cation is used in the proposed method to determine whether an
intermediate solution is feasible, taking into consideration the
following iterations of the proposed method. If the placement
validation process considers that the current piece placement
does not prevent the placement of the subsequent pieces,
then the method proceeds to the placement procedure of
the following piece determined by the largest-first heuristic.
Otherwise, the method removes the current piece from the
puzzle area and returns to the step in which it attempts
to get the next possible configuration of the current piece.
Figure 10 shows examples in which the validation verified
that the following pieces would not be able to fit inside the
empty regions. In both cases, the puzzle considered is the
initial configuration of the Tangram puzzle, and the pieces
that were still not placed inside the puzzle area were the two
small triangles and the medium triangle.

Fig. 10: Cases in which the placement validation considered
that the following pieces would not fit in the empty areas.

Furthermore, if the method gets to the point in which all
the possible configurations of the current piece were already
considered, and none of them produced a feasible placement
for the current piece, the method verifies if there is at least
one piece placed inside the puzzle area (Lines 19 to 26 in
Algorithm 1), and if there are pieces placed inside the puzzle
area, the method resets the list of possible configurations of
the current piece, removes the previous piece considering the
largest-first heuristic, and attempts to find a new placement
for that piece considering another possible configuration. Oth-
erwise, if there is not any piece left in the puzzle area, the
method finishes its execution with none of the pieces placed
inside the puzzle area, indicating that it was not possible to find
a solution for the given Tangram pattern. Finally, the method
considers that the Tangram puzzle was successfully assembled
if the heuristic places all the Tangram pieces inside the puzzle
area (Line 28 in Algorithm 1).

IV. RESULTS

In our dataset, we considered Tangram puzzles with differ-
ent features, including patterns with holes, patterns composed
by multiple connected components, and patterns in which
the pieces are not limited to a discrete set of 45o multiple
orientations. Figure 11 presents the Tangram patterns included
in our dataset.

Concerning the reflection transformation, it is not possible
to easily ascertain whether a Tangram puzzle demands the
reflected parallelogram. Even if one of the solutions of a

Fig. 11: Tangram patterns that compose our dataset.

particular Tangram puzzle is known, other solutions for the
same puzzle might exist, since different arrangements of pieces
can result in the same pattern [21]. Thus, for a single Tangram
puzzle, it is possible to find either feasible solutions that
contain the reflected parallelogram and solutions that do not
contain the reflected parallelogram. Therefore, to test the
reflection transformation requirement in the Tangram patterns
included in our dataset, we conducted different experiments,
including the implementation and the non-implementation of
the reflection transformation.

We elaborated three different experiments considering:
(1) unconstrained rotations and reflection transformation, (2)
constrained rotations, and reflection transformation, and (3)
constrained rotations and no reflection transformation. The
purpose of executing these experiments in succession is to
progressively reduce the complexity of the Tangram puzzle
solution problem, in terms of the number of configurations
a Tangram piece can assume during the Tangram puzzle
assembly process. We start testing our proposed method on
the most complex scenario, in which it is expected from the
algorithm to be able to solve Tangram puzzles with rotations
that are not multiples of 45o, and Tangram puzzles that might
require the reflection transformation. The number of angles
of rotation has a more significant impact on the number of
Tangram pieces possible configurations than the reflection
transformation, which is just performed on the parallelogram.
Finally, the execution of these experiments permits the analysis
of the influence of the progressive complexity reduction on the
obtained solutions and on the average running time necessary
to assemble the Tangram patterns included in our dataset.

The number of Tangram puzzles considered in each experi-
ment is different. In the first executed experiment, in which we
consider unconstrained rotations, the Tangram puzzles tested



are described by patterns 1 to 30 in Figure 11. In the following
experiments, in which we consider constrained rotations, the
Tangram puzzles considered are described by patterns 1 to 18
in Figure 11. This difference occurs because patterns 19 to 30
of Figure 11 are composed of rotations that are not limited to
multiples of 45o.

Furthermore, in the first executed experiment, to implement
the rotations that are not multiples of 45o without increasing
the solution space of our problem to impracticable proportions,
we implemented the rotations in a range from 0o to 359o

with increments of 1o. Since the main objective of a Tangram
puzzle is to find an arrangement of Tangram pieces that
visually reassembles the correspondent Tangram pattern, we
consider that the precision of 1o is sufficient to establish a
visual resemblance between them, as well as to maintain a
feasible solution space.

The method was implemented in MATLAB with the Image
Processing Toolbox. The tests were performed on an Intel Core
i5-5250U 1.6 GHz, 4GB of RAM, using a single thread. We
considered the running time as a measure of the performance
of the method, and establish a time limit of 360s for the
method to find a feasible solution for a Tangram puzzle. We
assume that 360s is the maximum time a user is willing to
wait for a feasible solution for a given Tangram puzzle.

Table I presents an overview of the proposed method
execution, taking into consideration the number of solved
Tangram puzzles according to each conducted experiment and
each placement position strategy applied.

TABLE I: Number of puzzles solved in each experiment.

Placement
position strategy

Solved
Tangram

puzzles in
experiment 1

Solved
Tangram

puzzles in
experiment 2

Solved
Tangram

puzzles in
experiment 3

BL 19 8 2
LB 21 11 6

HZZ 20 10 6
VZZ 20 9 2

S 19 8 2
S−1 19 8 2
DT 23 15 7

The obtained results show that: in the first experiment, the
method was able to solve 141 Tangram puzzles (79 composed
of constrained rotations and 62 composed of unconstrained
rotations); in the second experiment, the method was able to
solve 69 Tangram puzzles; and in the third experiment, the
method was able to solve 27 Tangram puzzles. Since different
numbers of Tangram patterns were considered during the exe-
cution of the experiments, Table II presents the percentage of
Tangram puzzles solved in each experiment and the percentage
of Tangram puzzles solved following the placement position
strategies presented in the work of Mundim et al. [2] and the
percentage of Tangram puzzles solved following the proposed
distance transform approach.

Table III presents an overview of the proposed method
execution. It considers the average running time the method

TABLE II: Percentage of puzzles solved in each experiment.

Experiment
Solved

Tangram
puzzles

Solved Tangram
puzzles using

placment
position

strategies

Solved
Tangram

puzzles using
the distance
transform
approach

Exp. 01 67.14% 65.56% 76.67%
Exp. 02 54.76% 50.00% 83.33%
Exp. 03 21.43% 18.52% 38.89%

took to solve the Tangram puzzles according to each conducted
experiment and each placement position strategy applied.

TABLE III: Average running time to solve a Tangram puzzle
in each experiment and their correspondent standard deviation.

Placement
position
strategy

Experiment 1 Experiment 2 Experiment 3

BL 98.90s (93.85s) 5.75s (7.51s) 15.38s (12.52s)
LB 92.21s (102.22s) 4.14s (5.98s) 4.20s (4.59s)

HZZ 89.15s (104.39s) 2.35s (1.78s) 4.20s (4.55s)
VZZ 90.66s (89.33s) 5.70s (8.54s) 15.90s (13.00s)

S 67.32s (80.63s) 2.23s (1.96s) 1.02s (0.17s)
S−1 68.72s (87.84s) 2.24s (1.97s) 1.01s (0.16s)
DT 76.11s (94.04s) 4.90s (9.62s) 5.29s (7.72s)

The average running time the method took to solve a
Tangram puzzle presented a considerable variation among the
executed experiments. On average, the first experiment re-
quired a higher running time to solve a puzzle when compared
to the other two experiments. Therefore, we observe a relation
between the complexity concerning the number of configura-
tions that the pieces can assume and the average running time
necessary to correctly assemble a Tangram puzzle.

Figure 12 presents examples of obtained solutions to il-
lustrate the precision of the proposed discrete representation
taking into consideration the visual resemblance between the
Tangram pattern and the corresponding obtained solution.

Fig. 12: Examples of solutions found through the execution of
our method.

V. CONCLUSION

In this paper, we proposed a heuristic method for the
automatic solution of Tangram puzzles, aiming to solve the



main limitations identified in the literature. In order to ac-
complish our main objective, we propose a raster repre-
sentation that permits to describe patterns with holes, and
composed by multi-connected regions. Besides, concerning the
transformations to be performed on the Tangram pieces, our
method implements the reflection transformation and permits
the execution of unconstrained rotations. Moreover, to avoid
overlaps and reduce the distance between Tangram pieces, we
use some traditional geometrical techniques that are applied in
the automatic solution of C&P problems, which are combined
with mathematical morphology operators and representations
to adapt its application to the discrete domain.

During our experiments, the reduction in the complexity
related to the number of piece configurations caused a decrease
in the percentage of solved Tangram puzzles, which indicates
that the execution of unconstrained rotations and the reflection
transformation are important aspects to consider during the
automatic solution of Tangram puzzles. Our method was able
to find a feasible solution for most of the Tangram puzzles
included in our dataset. The Tangram puzzles for which our
method could not find a solution in the determined time
limit were the ones identified with the numbers 7, 8, 21
and 29 in Figure 11. However, in general, we consider that
our method could overcome the limitations identified in the
previous methods regarding the solution of complex Tangram
puzzles in feasible running time.

The results obtained show that the raster representation used
to describe the Tangram pattern and the Tangram pieces also
has proven efficient. Besides the loss of precision in the vector-
to-raster conversion, we consider that the solutions presented
after the application of the proposed method, in general,
resemble the patterns informed to the method. Also, the
distance transform approach was able to solve more Tangram
puzzles than the other placement position strategies presented
by Mundim et al. [2]. Therefore, besides the proposed method,
the raster representation and the distance transform approach
represent additional contributions for the area, since these ap-
proaches can be applied in the automatic solution of other two-
dimensional optimization problems (e.g., placement problems,
knapsack problems, cutting-stock, and bin packing problems).

For future works, we aim to extend our method to the auto-
matic solution of C&P problems, since it can be easily adapted
to solve general two-dimensional optimization problems. In
order to test our raster-based mathematical morphology ap-
proach efficiency in solving C&P problems, we aim to apply
our method in instances from the Special Interest Group on
Cutting and Packing (ESICUP) website [22]. We intend to
compare the results obtained in the tests of our method with
other techniques presented in the literature, such as the works
of Valle et al. [15], Dalalah et al. [16], Fischetti & Luzzi [17],
Alvarez-Valdes et al. [18], and Gomes & Oliveira [19].
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