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Abstract—Surveillance has been gradually correlating itself to
forensic computer technologies. The use of machine learning tech-
niques made possible the better interpretation of human actions,
as well as faster identification of anomalous event outbursts.
There are many studies regarding this field of expertise. The
best results reported in the literature are from works related
to deep learning approaches. Therefore, this study aimed to
use a deep learning model based on a multi-stream and high
level hand-crafted descriptors to be able to address the issue
of fight detection in videos. In this work, we focused on the
use of a multi-stream of VGG-16 networks and the investigation
of conceivable feature descriptors of a video’s spatial, temporal,
rhythmic and depth information. We validated our method in two
commonly used datasets, aimed at fight detection, throughout the
literature. Experimentation has demonstrated that the association
of correlated information with a multi-stream strategy increased
the classification of our deep learning approach, hence, the use
of complementary features can yield interesting outputs that are
superior than other previous studies.

I. INTRODUCTION

The frequent violent scenarios lived in both public and
private locations, nowadays, has influenced the development
of more assertive security applications. It has become common
not only for establishments, but also for public places where
there are various people transiting and interacting (for instance,
schools, subways, stores, airports and banks) to install surveil-
lance cameras.

Investments are substantial to maintain a security team or
even hire third-party services to guard a particular space. In
addition, a security system team is required to take prompt and
hasty actions in some situations to prevent a harmful event
from being triggered. Therefore, for these operations to run
smoothly, part of the job demands a thorough surveillance
video checking. Even though there are trained professionals
to perform this task, this is tiring and the large number
of cameras can make it almost impossible to monitor the
videos uninterruptedly [1]. Furthermore, some actions can be
deceiving and complex to anticipate only by overseeing the
surveillance recordings.

As a result of the mentioned struggle, human action analysis
gained a significant interest in the field of machine learning as
well as computer vision. Accordingly, a considerable number
of methods for identifying these behaviors have been proposed

in the literature. These approaches can be divided into (i)
gesture; (ii) facial expression; (iii) pose recognition. Some
of these studies only indicate if the video content contains
a particular event, while others disclose what events transpire
throughout the scene.

According to recent works, action recognition can be di-
vided into two major subdivisions [2], [3]: (i) the single
layered approaches; and (ii) hierarchical approaches. The main
differences between these techniques are their complexity and
the ability of each to recognize from much simpler actions to
complex activities.

As its main concern, this work adopted a four-stream VGG-
16 architecture and explored high-level handcrafted features
as inputs to investigate their impact on fight detection in
videos. As other studies mainly use similar features for this
binary problem classification, we focus on finding distinct
feature descriptors that can also be good investments for fight
detection. Therefore, we examine the influence of using: (i) the
optical flow; (ii) a depth estimation; (iii) the visual rhythm; and
(iv) the RGB features for classification.

Although some of these features have already been used
in works available in the literature, their combination for
exploring spatial, temporal and spatio-temporal information
from the video frames through RGB, depth, optical flow
and visual rhythms is, in fact, novel and one of the main
contributions of our work. In this manner, it is possible to
use the temporal, depth, rhythmic and spatial information of
a video in a complementary fashion.

We are able to observe that potentially weaker isolated
features, are able to, when combined, provide as good results
as other previous demanding approaches proposed by the liter-
ature for a fight classification problem. In addition, our study
demonstrates that the combined use of features that conceal
the RGB information such as the optical flow, depth and visual
rhythm can generate better results then combinations including
the spatial (RGB) representation. Experiments were conducted
on two datasets, Hockey Fight [4] and Movie Fight [4].

This paper is organized as follows. In Section II, we discuss
some of the recent works associated to fight detection in
videos. In Section III, important concepts used in this work are
clarified. In Section IV, the proposed multi-stream methodol-



ogy is explained. In Section V, we describe the experiments
performed and compare the achieved results to other published
methods. Finally, some concluding notes and suggestions for
future work are presented in Section VI.

II. RELATED WORK

In this section, we discuss some of the works that also
specifically addressed fight detection.

Concerned with anomaly identification in videos, Sultani et
al. [5] decided to tackle a multiple instance learning (MIL)
approach to cope with the problem. Another study was made
by Li et al. [6], which proposed a depth image information
based framework to recognize human interaction focusing
on key frame extractions. The problem of finding the most
representative frames was treated as a dictionary selection
problem using sparsity consistency. Therefore, these frames
had the proposed spatio-temporal image motion feature and
a local edge feature extracted (3D Gabor filters and optical
flow) and sent to a Support Vector Machine (SVM) to be
recognized. Other studies, such as Keçeli and Kaya [7], also
investigated the SVM behavior using high-level features, such
as optical flow and transfer learning for violence detection
on both crowded and uncrowded environments. In addition,
Lejmi et al. [8] addressed the violence scenario by feature
extracting points of interest from the inputs on the SBU
Kinect Interaction dataset. They used an SVM in an ensemble
combination with other learning algorithms, such as K-means
and random forests.

To detect anomalous violent actions in crowd scenes, Has-
sner et al. [9] captured the optical flow from the videos and
the changes between frames. Since abnormality detection is
not confined to a few actions, Antić and Ommer [10] decided
to parse video frames and use a discriminative background
classification method. Stephens and Bors [11] focused their
studies on group activity recognition. In their research, the
authors investigated the video motion flow association. Naikal
et al. [12], concentrating their work on simultaneous detecting
and recognizing human actions from both single camera or
multiple cameras, extracted the histogram of oriented gradients
(HOG) descriptor from the foreground region of each frame,
along with the coordinates of the bounding box and used them
as inputs for their deformable keyframe model framework
(DKM). In order to detect anomalous events, Du et al. [13]
experimented with structural multi-scale motion interrelated
patterns (SMMIP) and a Gaussian mixture model (GMM).
In their study, Wang et al. [14] applied wavelet transfor-
mations on traditional spatio-temporal features to acquire
high-frequency information. Multiple Hidden Markov Models,
allied to a mechanism to judge the inputted behavior type, are
then used to detect video abnormality.

Given the observation that the majority of studies involving
action recognition were related to simple detections, such as
hand gesture recognition, Bermejo et al. [4] targeted their work
on video fight detection. The main contribution of their work
verified that the use of Bag-of-Words (BoW) associated to
Space-Time Interest Points (STIP) and Motion SIFT (MoSIFT)

could provide approximately 90% accuracy when dealing with
fighting in videos. In addition, the author introduced two
datasets aimed at fights: (i) Hockey Fights and (ii) Movie
Fights.

Deniz et al. [15] concerned with time efficiency compared
to previous work, that relied on costly feature extractions, de-
cided to study fight detection using kinematic features. In their
work, the use of extreme acceleration patterns calculated based
on motion blur allied to an SVM classifier proved that less
features could generate significant results for three datasets.
Their experiments were conducted on the datasets proposed
by Bermejo et al. [4] and the UCF101 dataset demonstrating
to be 15 times faster than their other compared methods. Also
concerned with practical implementations of fight detection,
Gracia et al. [16] based their work on classification of motion
blobs extracted from video frames. Although the method,
depending on the dataset, could not outperform the compared
approaches, the authors were able to maintain a 70% to 90%
accuracy average and still be time efficient. The study was
performed also using the datasets proposed by Bermejo et
al. [4] and the UCF101 dataset associated to SVM, AdaBoost
and Random Forest classifiers.

Convinced of the need of improvements in surveillance
applications, Gao et al. [17] employed the Violent Flows (ViF)
as a descriptor for fight detection. Since the ViF did not
consider some information involving both motion magnitudes
and motion orientations, the authors also proposed the Ori-
ented Violent Flows (OViF) descriptor. By using the SVM and
AdaBoost algorithms, the Violent Flow dataset and the Hockey
Fight dataset [4], Gao et al. [17] was capable of obtaining an
accuracy average of 94%. In their study, it was concluded
that the proposed feature was more appropriated for violence
detection in non-crowded scenarios and that the combination
of learning algorithms improved classification.

Interested in detecting violent content in videos, Mukherjee
et al. [18] compared two methods for fight detection in
sports. The first used blur and radon transform with a feed-
forward Neural Network. For the second, the performance
was fine-tuned using pre-trained VGG16. The authors reported
that after 550 epochs, using the Hockey Fight dataset [4],
the performance did not change and the accuracy continued
75%, when dealing with the pre-trained version. Considering
only the feed-forward Neural Network, after 200 epochs the
accuracy remained 56%. Fu et al. [19] inspired by an ensemble
learner and the fact that there were not sufficient data in
human fighting datasets, proposed a cross-species learning
method. In their experiments, the authors used local motion
features (LMF), including the motion statistics and segment
correlation to readjust animal fighting data to assemble a
human fight detection model. Results were based on four
datasets: (i) Hockey Fights [4]; (ii) Movie Fights [4]; (iii)
Animal Fights [19] and (iv) Human Fights [20]. Results
achieved 85% to 99% of accuracy depending on the dataset.

Serrano et al. [21] proposed a hybrid “handcrafted/learned”
feature. Their method was based on summarizing the content
of a video sequence into an image and afterwards identifying



representative motion areas of fighting scenarios. In their work,
a designed 2-D Convolutional Neural Network was used to
classify the summarized resulting images between violent and
normal cases. Results, compared to other works that used
handcrafted features, such as LMF and ViF, showed an above
90% of accuracy when applied to the Hockey Fight [4] and
Movie Fight [4] datasets. A spatio-temporal elastic cuboid
(STEC) trajectory descriptor was proposed and used as input
to a Hough forest classifier by Serrano et al. [22]. This made
possible an average result of 90% for both of the Bermejo et
al. [4] study. Xia et al. [23] invested on a bi-channel with VGG
networks and two SVMs to achieve violence detection by
using a label fusion method. In their study, a pre-trained VGG-
f model on ImageNet dataset was used for feature extraction of
the original video frame and the difference of adjacent frames.
For each of these channels, an SVM was used for appearance
and motion classifier, respectively. Their approach yielded a
96% accuracy for the Hockey Fight [4] dataset.

To detect violent actions in videos, after detecting people
in frames using a trained MobileNet CNN model, Ullah et
al. [24] used a sequence of frames as input to a 3D CNN model
for spatial and temporal features extraction. Accordingly, the
extracted features were passed to a Softmax classifier so their
predictions could be obtained. Their proposed method was able
of achieving an above 95% accuracy with both of Bermejo et
al. [4] datasets. Febin et al. [25] used a movement filtering
algorithm to check the existence of violence in videos. Only
the frames that were assumed to have significant movement
had their scale-invariant feature transform (SIFT), histogram of
optical flow feature and motion boundary histogram extracted.
The combined features formed the MoBSIFT descriptor used
as inputs to an SVM, AdaBoost and Random Forest learning
algorithms. Performance showed that classification ranged be-
tween 85% and 98% on Bermejo et al. [4] datasets depending
on the classifying algorithm.

III. THEORETICAL BACKGROUND

In this section, we explain some of the relevant concepts
and techniques related to fight detection in video sequences.

A. High-Level Descriptors

In this work, we considered hand-crafted features as high-
level descriptors. Therefore, the spatial, temporal, rhythmic
and depth information extracted from video are clarified.

1) Spatial Descriptor: Since we intended to evaluate the
impact of the raw information of a video frame, a feature
chosen to be used as one of the multi-stream inputs was the
unprocessed Red Green Blue (RGB) frames (Figure 1). This
feature provides spatial relevant information regarding fight
detection. Hence, it is a feature strongly associated to the RGB
information of the videos such as location, clothing and actors.

2) Temporal Descriptor: The optical flow is a feature that
captures an image object movement in a video. The extractors
can generate the information relying on the movement among
neighboring pixels or the modifications of pixel intensities
between frames (Figure 2). Therefore, being able to describe

Fig. 1. Unprocessed RGB frame examples from the Hockey Fight dataset [4].

motion, it can support the networks recognition concerning
classification and detection with temporal information.

Let I be a video frame and I(x, y, t) be a pixel in an initial
frame. In addition, compared to the next frame obtained dt
time after, the pixel then moves a distance (dx, dy). Hence
considering the mentioned pixels being equivalent and having
static intensities, it is possible to consider Equation 1.

Subsequently, after applying a Taylor series approximation
of right-hand side and divide by dt, the optical flow equation
(Equation 2) is achievable, in which ft is the gradient given
time, fx, fy , u and v are given in Equation 3. Finally, to
obtain the variable results of u and v, there are some methods
that can be used, such as Lucas-Kanade [26] and Gunnar-
Farnebäck [27].

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (1)

fxu+ fyv + ft = 0 (2)

fx =
∂f

∂x
; fy =

∂f

∂y
; u =

∂x

∂t
; v =

∂y

∂t
(3)

Fig. 2. Optical flow examples for (x, y, z) components.

3) Depth Descriptor: Much information can be obtained
by calculating the video depth. Since specific fighting datasets
have not already included the depth information (achievable
with multiple camera shots) and it is a difficult task to compute
this information based on a single 2D camera shot. For
computing the depth descriptor, we used the depth estimator
proposed by Godard et al. [28]. This estimator based on a
deep learning approach is able to process a single 2D frame
and estimate its depth values. Depth estimation frames can be
seen in Figure 3.

Fig. 3. Depth feature estimation examples.



4) Rhythmic Descriptor: The visual rhythm is an image of
a full-length video and can describe both spatial and temporal
information [29]–[31]. There are distinct forms to build a
visual rhythm from the video, some of them are known as
visual rhythm by histogram or by sub-sampling [32], [33].

In order to understand this concept, it must be considered
that D ⊂ Z2, in which D = {0, ....,H − 1}× {0, ....,W − 1},
H and W are the height and the width of each video frame.
Therefore, a video V , in domain 2D + t, is a sequence of
frames Ft and can be described in Equation 4, where T is the
number of frames contained in the video.

V = (Ft)t∈[0,T−1] (4)

A visual rhythm generated by the histogram B can be, con-
sidering (Hft)t∈[0,T−1] the sequence of histograms, computed
from all frames of V , described as a 2D representation of
all frame histograms, where each vertical line represents a
frame histogram, therefore, B is defined in Equation 5, where
z ∈ [0, L−1] and t ∈ [0, T −1], such that T is the number of
frames and L the number of histogram bins, whereas the sub-
sampling technique consists of encoding videos into images by
adding slices from every frame to it. Thus, the visual rhythm,
in domain 1D + t, is a rendition of the video in which each
frame ft is transformed into a vertical line of the visual rhythm
image A, defined in Equation 6, where z ∈ {0, ....,HA − 1}
and t ∈ {0, ...., T − 1}, HA, T , rx, ry , a and b are the height
and the width of the visual rhythm, the ratios of pixel sampling
and shifts on each frame, respectively.

B(t, z) = Hft(z) (5)

A(t, z) = ft(rx × z + a, ry × z + b) (6)

Informally, a slice is a one-dimensional column image of a
set of linearly organized pixels that can be constructed based
on the iteration over every pixel of the image in a diagonal
path. All slices are horizontally concatenated to form an image
with dimensions W ×H pixels. In this manner, each column
of a visual rhythm image represents an instant in time, while
each row represents a pixel of the image, or some other visual
structure, varying in time. Examples of visual rhythm outputs
can be observed in Figure 4.

Fig. 4. Visual rhythm feature examples.

B. Multi-Stream Learner

A multi-stream is a learner based on an ensemble of
multiple learning algorithm outputs. A stream is characterized
as an individual learning process. Therefore, each stream is
responsible for an individual classification for a given input.
After obtaining these individual classifications an ensemble

is used to assemble the information and to define the final
classification result for a video.

The advantages of adopting a multi-stream is the fact
that distinct yet complementary information can be learned
individually. Hence, the chances of having a high-level feature
information imposing over others reduces.

1) Transfer Learning: Transfer learning is a technique
employed when it is possible to use previously trained weights
based on other similar data sets to instantiate earlier layers in
a learning architecture [34]. Since transfer learning has shown
promising results, it is mostly used to reduce training time
and when the original problem data size for training samples
is insufficient to correctly tune the model weights.

The method consists in using a larger dataset containing
similar instances of the problem to train the learning model
and instantiate the first layers of this model. Eventually, to
be able to deal with the specific study subject, the original
dataset will be, then, used to train and generate the weights
for the last convolutional layers of the model. The main idea
of transfer learning is to allow that the information, learned
from the initially trained dataset, can be useful to further
adding to the learning process of the topic under investigation.
Therefore, transfer learning is particularly common in the
image recognition field problems, since there already are
many previously trained weights publicly available, such as
ImageNet’s [35], making the specific learning process much
faster and more robust to different input data.

2) Ensemble: To improve accuracy, new architectures have
always been developed, thus, a useful approach is ensemble.
Therefore, by arranging an ensemble, a number of different
learning approaches are joined [36]. These architectures can
be either equal or distinct; however, the concept of ensemble
relies on training each of these networks according to a specific
input. In this sense, multiple learners will specialize in a
different input, hence, the input will be used in all of the
ensemble networks. Finally, after each learner computes their
individual results, the one that has the majority of votes will
have its results associated to the mentioned input.

IV. MULTI-STREAM FIGHT DETECTION APPROACH

The methodology proposed in this project aims to imple-
ment and evaluate an architecture based on a multi-stream
deep neural network to verify the existence of violent fight-
ing actions in videos. A four-stream model can provide the
information of which features are relevant to be considered
during a binary fight detection problem. In addition, it is tested
if the increasing number of used streams is proportional to
the escalation in evaluation metric values. In this section, we
describe each part of the model illustrated in Figure 5, as well
as the techniques we will use in each stage.

A. High-Level Feature Extraction

Four descriptors were investigated in this work: (i) RGB
frames; (ii) Optical Flow; (iii) Depth Estimation; (iv) Visual
Rhythm. Initially, the video frames were extracted and went
through a feature descriptor generator algorithm (discussed in



Fig. 5. Multi-Stream Fight Detection Approach.

Section III). Accordingly, the output of each generator was
the associated high-level feature. The only feature that did
not need to go through a generating algorithm was the RGB
frames considering it was the raw frame itself.

B. High-Level Feature Weight Calculation

As it can be seen in Figure 5, each of the generated group of
features went through a modified VGG so that a weight vector
could be calculated and used in a posterior step of fine-tuning
the streams. This weight vector generated by the CNN reduces
the need of explicit feature engineering and it is able to make
the method more independent.

C. Individual Stream Learner

Since we extracted four distinct features, it was needed a
four-stream model for the proposed multi-stream architecture.
As discussed in Section III, a multi-stream model has two
general learning processes. The first process is the individual
stream classifications and the second the final classification
based on the previous step. Therefore, for each of the streams
presented in Figure 5, a VGG-16 was used as the first indi-
vidual classification. The VGG-16 model was chosen because
of its simplicity as it is a classic convolutional approach and
less deep than other networks, such as ResNet and Inception.
In addition, it has yielded interesting results as it was found in
previous works, such as Xia et al. [23]. A VGG-16 model has
16 layers and employs an architecture with small convolution
filters, that can perform and output relevant results when
coping with images [37].

In this work, the fighting data provided by the datasets did
not have the ideal amount of information necessary to train an
entire learning model. Therefore, a technique that was used to
handle this dilemma was to pre-train each VGG-16 with the
ImageNet dataset [35], and later with the UCF101 dataset [38].
This process ensures that the first layers are able to identify
basic shapes and objects as well as the further layers are
capable of distinguishing motion. This implies that the 14 first
layers of the VGG-16 were trained with both ImageNet and
UCF101. Finally, after assuring that the network had learned

important basic information, the two last dense layers of the
VGG-16 received one of the calculated high-level feature
weights, based on the generated features designated as the
input. This process allows the network to receive knowledge
considered important to distinguish fighting and not fighting
cases.

D. Classification

For the final classification, an ensemble was considered
to merge the results of each individual stream. For this
ensemble process, we propose to use three distinct approaches:
(i) average and threshold; (ii) average and a support vector
machine (SVM); and (iii) continuous values and SVM.

The average and threshold technique added the outputs
of each stream and computed the average to compare it
to a network parameter classification threshold. The second
approach was similar to the previously discussed, but instead
of empirically defining the threshold, an SVM was used for
this purpose. Finally, the continuous values and SVM was
responsible for generating a vector with each stream output
so that an SVM could find this vector separation region.

Even though the results for each ensemble method were
relatively close, we will only present the metrics achieved by
the continuous values and SVM approach since the results
were slightly higher.

V. EXPERIMENTS

In this section, we discuss the experimental process setup
to test our multi-stream methodology.

A. Datasets

In this work, we evaluate our method on Hockey Fight
Dataset [4] and Movie Fight Dataset [4]. The Hockey Fight
Dataset [4] is a gathering of 1000 video segments of action
collected from the National Hockey League (NHL) hockey
games. These segments have a dimension of 720×576 pixels
and are composed of 50 frames each divided between fight and
non-fight. In addition to this set, another dataset is considered
in the experiments, the Movie Fight Dataset [4]. This set



contains 200 video snippets, separated in 100 fighting scenes
and 100 normal events, collected from action movies.

B. Evaluation Metrics

The evaluations metrics used were accuracy, specificity and
sensitivity. These were chosen since previous studies validated
their works using them. The accuracy is a metric for the
model performance evaluation that correlates both positive and
negative classes and measures how accurate are the learner
results. Specificity is a metric that provide information related
to, given a negative example, the probability of a result being
negative. Sensitivity, also known as recall, is, given a positive
example, the classification result being indeed positive.

C. Quantitative Analysis

Throughout this study, we tested our method with a 10-fold
cross-validation. The best results were achieved considering a
10−3 learning rate, a batch size of 1024, threshold of 0.5 and
500 epochs. Since most of the works presented in the literature,
that tested with the same datasets as the current study, were
not standardized while testing, we compare the best accuracy
rates that the entire method could yield. The datasets were
divided by 80% for training and 20% for testing. Results for
our best configuration can be seen in Tables I and II.

It can be observed in Tables I and II that we showcase all of
the possible combinations regarding our presented high-level
features. Hence, we can observe all of the single feature until
the four-streams combinations. Single streams do not have
a prior ensemble step for their final classification since they
already output the final result.

It is possible to observe that the use of individual fea-
tures associated with our pre-trained VGG-16 as a single
stream can already yield interesting results. However, when
dealing with fight detection, it is important to have the best
achievable metrics. As we suggested, the combination of non-
straightforward features that are complementary can yield
comparable results to the literature and even have higher
accuracy metrics than some of the presented works. This is
an important finding regarding studies of ideal features that
one can quickly process and use in fight detection scenarios.
In addition, it is possible to notice that the smallest accuracy
rates for the single streams are related to the depth estimation
descriptor. It is our understanding, since the dataset did not
provide the original depth information of each video, that an
estimation would not be as good as the ground truth. Moreover,
as it can be seen in Table I, the combinations that had RGB
did not surpass the three multi-stream combinations of the
visual rhythm, optical flow and depth for the most challenging
dataset. As expected, even though the RGB rates had a high
performance, we believe that it is slightly overfitted. The RGB
(spatial) information is a dependable feature, in other words,
it is attached to all the objects that exist in a scene such as:
colors, actors, and objects. Non-spatial information can further
detach itself form a specific dataset and have, consequently,
better results.

Multi-stream combinations results on the Hockey Fight
dataset (Table I) demonstrate that our fight detection approach
is comparable to some methods available in the literature
( [16]–[19], [22], [25]), although it does not surpass the state
of the art. The results on the Movie Fight dataset (Table II), as
well as some of the methods cited in the paper, achieved high
rates of sensitivity, specificity and accuracy. We conjecture that
the dataset is not currently very challenging for a classification
problem, although it is widely used to validate fight detection
approaches.

All of our combinations had an above 80% in metrics
indicating their relevance considering a classification problem.
Our hypothesis lies on the fact that by learning complementary
high-level features individually, it can help the networks to
better balance the outlier classifications. Moreover, not nec-
essarily, increasing the number of streams means to increase
the accuracy values. In some cases, it can be observed that
the numbers might decrease depending on the feature combi-
nation. However, by studying these features it is possible to
observe which are conceivable descriptors to be used in this
fight detection problem that might be less expensive, more
reliable and which are the best feature combinations to cope
with the presented situation.

Another remark that we were able to detect was that
even though the accuracies were not higher then all of the
presented works, our study was only carried out with 500
epochs compared to studies that ran on 1000 to 5000 epochs
and demanded lots of processing. Studies such as Ullah et
al. [24] based their progress on much more costly learning
models compared to ours. Finally, it is possible to notice
by our achieved sensitivity and specificity scores that the
method has some trouble when dealing with negative fighting
cases. Therefore, the learning model is able to better detect
positive situations and, in sensitive scenarios such as health
and security, it is best to detect a false positive than a false
negative case.

D. Qualitative Analysis

According to the classification achieved with our method,
we tried to define a video pattern of which the model had
trouble to identify as a positive or negative scenario. The
Hockey Fight dataset misleading videos did not have a specific
situation, but we observed that the data that involved smaller
commotions, such as grapple and non-magnified punch move-
ments, were included in this group. Some of the incorrectly
classified videos also had more than two actors and others
might have been influenced by camera shifting. On the other
hand, although the Movie Fight dataset had more variability
than the Hockey Fight dataset, it was a less challenging dataset
for the learning model. Therefore, the Movie Fight dataset had
a smaller amount of inaccurate classification. However, since it
is composed of staged fights, the videos classified as inaccurate
were mostly the ones with significant camera shifts and not
convincing fighting scenes.



TABLE I
HOCKEY FIGHT RESULTS.

Sensitivity (%) Specificity (%) Accuracy (%)

Multi-stream (OF+RGB+VR+D) 91.36 85.87 88.62
Multi-stream (OF+RGB+VR) 91.30 86.12 88.71
Multi-stream (OF+RGB+D) 90.80 85.45 88.12
Multi-stream (OF+VR+D) 92.64 85.49 89.10
Multi-stream (RGB+VR+D) 90.84 85.62 88.23
Multi-stream (OF+RGB) 90.51 85.66 88.09
Multi-stream (OF+VR) 91.03 82.09 86.56
Multi-stream (OF+D) 91.61 79.65 85.53
Multi-stream (RGB+VR) 90.59 85.72 88.15
Multi-stream (RGB+D) 90.05 85.06 87.56
Multi-stream (VR+D) 88.68 84.00 86.34
Single-stream (OF) 86.30 77.37 81.84
Single-stream (RGB) 89.18 85.08 87.14
Single-stream (VR) 86.05 77.10 81.58
Single-stream (D) 85.12 85.14 81.49

Bermejo et al. [4] - - 90.90
Deniz et al. [15] - - 90.10
Gracia et al. [16] - - 72.50
Gao et al. [17] - - 86.30
Mukherjee et al. [18] - - 75.00
Fu et al. [19] - - 87.50
Serrano et al. [21] 93.80 95.4 94.60
Serrano et al. [22] - - 82.60
Xia et al. [23] - - 95.90
Ullah et al. [24] 96.67 95.43 96.00
Febin et al. [25] - - 86.50

TABLE II
MOVIE FIGHT RESULTS.

Sensitivity (%) Specificity (%) Accuracy (%)

Multi-stream (OF+RGB+VR+D) 100.0 100.0 100.0
Multi-stream (OF+RGB+VR) 100.0 100.0 100.0
Multi-stream (OF+RGB+D) 100.0 100.0 100.0
Multi-stream (OF+VR+D) 100.0 98.48 99.32
Multi-stream (RGB+VR+D) 100.0 98.25 99.21
Multi-stream (OF+RGB) 100.0 100.0 100.0
Multi-stream (OF+VR) 100.0 100.0 100.0
Multi-stream (OF+D) 99.71 100.0 99.84
Multi-stream (RGB+VR) 100.0 99.76 99.68
Multi-stream (RGB+D) 100.0 100.0 100.0
Multi-stream (VR+D) 87.03 94.75 90.47
Single-stream (OF) 99.71 100.0 99.84
Single-stream (RGB) 100.0 100.0 100.0
Single-stream (VR) 83.92 94.52 88.65
Single-stream (D) 100.0 93.12 96.93

Bermejo et al. [4] - - 89.50
Deniz et al. [15] - - 82.50
Gracia et al. [16] - - 87.20
Fu et al. [19] - - 99.00
Serrano et al. [21] 98.00 100.0 99.00
Serrano et al. [22] - - 98.00
Ullah et al. [24] 100.0 100.0 99.90
Febin et al. [25] - - 76.60

VI. CONCLUSIONS

In this work, we considered the use of a deep learning ap-
proach based on multi-stream learners. Accordingly, this work
focused on the an ensemble of individual VGG-16 streams to
cope with the binary problem of fight detection in videos. Our
study was performed upon a 10-fold cross-validation to test
our method and it was possible to observe that utilizing a pre-
trained VGG-16 and fine-tuning its last dense layers benefited
even the single-stream approaches. In addition, the multi-

streams also showed interesting results regarding classification.
Our hypothesis lies on the fact that learning complementary
high-level features individually can help the networks to better
balance the outlier classifications. By studying the effects of
each high-level feature on the classifier, we are more likely
to understand relevant information for the network as well
as observe which are the best descriptors to be used on
a detection scenario. As a limitation of this work, we did
not test if the VGG-16 was necessarily the best option to



cope with the presented problem. It has many parameters
and can have a significant training time, might not being the
best in terms of performance and effectiveness. As directions
for future work, we intend to impose some constraints on
the neural networks through regularization mechanisms and
apply our method to more challenging datasets to observe its
performance. In addition, it is intended to test the presented
stream model using other learning networks.
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