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Abstract—In this work we describe an approach to perform
boolean operations between pure quad meshes obtaining as result
a pure quad mesh preserving as much as possible the original
quadrangulations of the inputs. For this purpose, we solve the
boolean operation in a triangular version of the inputs with a
robust triangle-based method and then solve a requadrangulation
problem on portions of the mesh neighboring the intersection
curves of the inputs. Our approach reduces the hard problem
of requadrangulation in space to a 2D polygon subdivision
problem into patches which are easier to quadrangulate. We
propose a method based on partitioning polygon borders into
monotonic chains in order to get appropriate patches that can be
quadrangulated independently. As far as we know, this is the first
work to tackle the problem of computing boolean operations of
quad meshes without resorting to a full requadrangulation of the
result mesh. Another important goal is to obtain a good edge flow
near the intersection curves, a crucial feature for applications
relying on quad meshes such as character animation modeling.

I. INTRODUCTION

Boolean or set-theoretic operations are a natural way of
constructing complex objects from simpler ones, and is the
basis of Constructive Solid Geometry (CSG), where primitive
solids are usually implicit objects, which naturally support
such operations. On the other hand, Boundary Representation
(B-rep) is a modeling paradigm where surfaces are represented
by discrete structures such as meshes, which require consid-
erably more effort when used as operands of set-theoretic
operations. Since B-rep is very popular in CAD and computer
graphics applications, several techniques for computing such
operations on meshes have been devised over the years.

This is a non-trivial problem, especially for complex B-rep
models as it requires many intersection tests, separating the
final surface into pieces and constructing new surfaces out of
these pieces. Computing the intersection curves between the
input models is a central task and computationally expensive if
we demand accuracy. Exact arithmetic and complex techniques
were used in several works addressing the issue, as in the
Computational Geometry Algorithms Library (CGAL [1]) that
supports robust Boolean operations on Nef polyhedra [2],
which is considered a seminal reference, despite its high
memory cost.

Several approaches were proposed in this area, but all
proposals that work with B-rep deal with the connectivity near
the intersection curves using triangles. In the case of quad
mesh applications, boolean operations must be handled with
special care so as to preserve the edge flow. The edge flow is a
kind of discrete surface flow that animators generally set up to
follow the principal curvature lines of the surface. A good edge

flow is necessary for a model be used for animation. For that
reason, simply computing the boolean operation on equivalent
triangle meshes and then requadrangulating the result is not a
suitable approach. In this work we propose an approach where
requadrangulation effort is spent only close to the intersection
curves and these are reproduced as faithfully as possible in
the finished result.

II. RELATED WORKS

There are works that use other surface representations in
order to deal with the conflicting goals of accuracy, robustness,
and efficiency in boolean operations. This is the case of [2]
that uses Nef polyhedra representation and is the main robust
reference in this area. In fact, most of the time computing
is carried out in the conversion of the polygon mesh to the
representation in Nef polyhedra. The work of Biermann et al.
[3] that uses multiresolution subdivision surfaces and the work
of Magalhes et al. [4] that uses a triangle soup representation
are other important examples of this sort of approach.

Works handling boolean operations on B-rep’s are divided
into two groups: those that work with only triangle meshes
and those that work with polygonal meshes. On the latter
group, we highlight the work of S. Lo, W. Wang [5] that
receives as inputs mixed meshes (quadrilaterals and triangles)
and also returns mixed meshes. Also worthy of mention is
the work of Douze et al. [6], that developed QuickCSG, a
multiple input polyhedra system for boolean operations which
is very fast and robust. They propose a new vertex-centric
view of the problem with impressive results. On the former
group, we find BSP-based methods like [7] or [8] and the work
of Zhou et al. [9] that developed a robust boolean system for
triangle meshes using the Winding Number concept, restricting
the problem to the class of meshes with a piecewise-constant
winding number or PWN meshes. It should be noted that
the validation of this method was exhaustive with the online
3D printing repository of 10000 triangle meshes Thingi10K.
There is an implementation of this algorithm in the LIBIGL
library. Incidentally, this library is used as a tool to compute
the boolean operation between the triangular versions of the
inputs in our method.

Finally, we must also consider works about quadrangulation
of meshes. In this field, there are several types of approaches.
For our purposes we focus on quadrangulators of surface
patches that solve the problem by restricting the quadrangu-
lation effort to selected regions of the mesh, so that the final
quadrangulation is the union of the quadrangulated patches.

https://ten-thousand-models.appspot.com/
https://github.com/libigl/libigl
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Fig. 1. Steps to compute the union operation between two quad meshes: (a) Input quad meshes. (b) For each mesh, a partition into 4-sided patches is
computed and an equivalent triangle mesh is computed. (c) Intersection curves are computed and segmented with respect to the patches they cut. (d) Each
cut patch and corresponding intersection curve segments are brought to the 2D parametric space inherited from the quadrangulation, resulting in a set of
polygonal regions. Each polygonal region is then subdivided into “well-shaped” polygonal parts whose boundaries contain a small number of monotonic
chains. Intuitively, these parts can then be requadrangulated independently. (e) Patterns used to quadrangulate each part. (f) Requadrangulated parts are
unprojected back to the original mesh space and stitched together with the uncut patches (this step is still being implemented).

Bessmeltsev et al. [10] developed a system for reconstruction
of quad dominant meshes from an input curve network. An
important characteristic of this method is that it infers both
geometry and topology from closed 3D paths. The works of
Takayama et al. [11] and Marcias et al. [12] are aimed at
retopologizing a triangle mesh. Both focus the attention on
the problem of quadrangulating a 2D n−sided patch with
good results. The first uses a pattern-based approach and the
second uses a trained database of quadrangular patches. Since
we expect to produce triangular patches that are relatively
small with respect to the input meshes, we propose using
Takayama’s method. While Marcias’ method is generally
better for controlling the edge flow, in our case, the edge flow
is given by setting the intersection curves as boundaries of
patches.

III. METHODOLOGY

The entire work-flow of our proposal can be seen in
the Figure 1. We use a number of consolidated techniques
in order to deal with the hard problems found during the
implementation. These steps are discussed in detail below.
The next step is to quadrangulate only the patches crossed by
intersection curves. Requadrangulating these patches assuming
the intersection curves as boundaries has two effects: (1)
forces the edge flow to be orthogonal to the intersection curves
for small patches, and (2) minimizes the disturbance of the
edge flow along other boundaries.

A. Partition in 4-sided patches

This part is aimed at constructing a 1-to-1 mapping of
the original surface onto a set of patches with rectangular
topology, i.e., where all vertices have degree 4. We use a
simple approach working directly on the quad mesh topology
by searching irregular points, separatrix lines and tracing the
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Fig. 2. Parameterization example. (a) Union operation of the models. (b)
Parameterization of the red patch in (a).

flow lines. The main purpose of this step is to establish
subdomains on the mesh that can be parameterized along two
directions.

B. Boolean operation

Although have implemented a naive algorithm that solves
the problem for well-behaved meshes, our current prototype
now uses the LIBIGL implementation of the method of Zhou
et al [9] in order to ensure robustness. For converting the quad
meshes into triangle ones we simply divide each quad into
two triangles but keep track of the vertex indices for future
computations.

C. Parameterization

At this point, we have a complete mesh with the result
of the boolean operation. More importantly, this mesh also
contains information about (1) which parts originate from each
of the two input models, and (2) the new edges introduced
by the operation, i.e., the intersection curves. Due to the
preprocessing of the input quad meshes, the requadrangulation
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Fig. 3. Determining the abstract cone of a chain

work can be done independently for each original 4-sided
patch that was crossed by an intersection curve. This allows us
to solve each problem topologically on a plane (Figure 2). We
use the natural parameterization of each patch and interpolate
the intersection curve coordinates.

D. Splitting patches into semi-regular parts

This is the key part of our approach. We attempt to
subdivide the regions present in each patch of interest (like the
red patch in Figure 2) into parts that can be quadrangulated.
For this purpose, we subdivide the boundary of the polygons
(possibly with holes) into monotone chains that will be can-
didate sides for the patch subdivision. These monotone chains
are akin to “straight sides” that can be used as support for
consecutive quads along a flow line of the quadrangulation.

1) Partition into tight monotone chains: We define a tight
monotone chain as a chain of edges or poly-line segment
such that the beam of vectors corresponding to the chain
edges define an abstract cone with aperture less than a given
threshold. An abstract cone is defined by two vectors that we
call the min and max directions. The angle between these is
called the cone’s aperture, which can be enlarged by updating
min and max. These concepts are illustrated in Figure 3. We
proceed to subdivide the regions’ boundaries following the
steps:

a) Polygons with holes are converted into simple polygons
by connecting each hole with the exterior boundary.

b) Starting at a feature vertex of the polygon boundary
(the vertex with smallest internal angle), follow the
boundary to compute tight monotone chains. Initially,
an abstract cone with zero aperture is built with min
and max set to first directed edge. Walking around the
circulation, consecutive edges are added to the cone
while corresponding vertices are added to the chain until
the cone’s aperture becomes larger than the threshold
(we use 60 degrees in our experiments). The process is
repeated until the first vertex is reached.

2) Diagonal ranking: The ranking process is addressed
to choose the best diagonal connecting one endpoint of a
monotone chain to another vertex of the polygon. A line
segment is a diagonal if it does not intersect the boundary
of the polygon other than at the endpoints. This step ranks the
diagonals according to the following criteria:

• Length of the diagonals – smaller diagonals are better.

• Angle deviation from the bisector of the vertex – diago-
nals that split the internal angles at each endpoint roughly
in the middle are better.

• Balance between the number of chains of the result –
diagonals that split the polygon boundary into two parts
with n and m chains where n ' m are better .

We average these criteria giving preference to the angle
deviation. Once the best diagonal is selected, the polygon is
split and each of the two parts are recursively split until each
part’s boundary has no more than 5 monotone chains.

E. Quadrangulation of the patches

With the patches found in the before step, we proceed to use
the method of Takayama et al. [13], take care to respect the
method’s requirements. In particular, each patch must contain
an even number of edges. In order to ensure this, we have two
options: adding points into the diagonals and solving an integer
programming problem, or adding vertices to the intersection
curves and extending to the triangle versions of the inputs.
Currently, our implementation adopts the latter option.

IV. RESULTS

Our prototype uses the Visualization and Computer Graph-
ics Library (VCGlib [14]) for the geometry tasks and the Qt
platform in C++ 11. Also we use the LIBIGL library for
the triangle boolean operations. We have yet to finish the
implementation, but we have already achieved good results
with our 2D subdivision method in a number of experiments.
We present some cases of the subdivision on the Figure 4. The
integration of Takayama’s method is still pending.

V. CONCLUSION AND FUTURE WORKS

We have presented an approach to perform boolean oper-
ations between quad meshes and returns another quad mesh
preserving as much as possible the original quadrangulations.
Additionally, the resulting mesh should present a good edge
flow near the intersection curves. This is a useful tool for
modelers who work with quad meshes already processed for
animation. This demand can be seen in forums of 3d artists
that, at this moment, solve that problem using assisted retopol-
ogizers such as Quad Draw Tool of Maya [15], Topogun [16],
RetopoFlow [17], MODO retopology [18], 3DCOAT retopol-
ogy [19], etc.

A disadvantage of our method, however, is that the method
of Zhou et al. [9] for computing the boolean operation of
triangle meshes requires that the inputs be closed surfaces.
As future work, we intend to improve our boolean operation
system to handle open surfaces without losing the robustness.
At the moment, the work is in the final implementation phase
which will require a few more months before it can be
presented to the academic community.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

http://vcg.isti.cnr.it/vcglib/
https://github.com/libigl/libigl
https://knowledge.autodesk.com/support/maya-lt/learn-explore/caas/CloudHelp/cloudhelp/2016/ENU/MayaLT/files/GUID-20DEA0B6-C090-49EA-98AE-172F1C382A05-htm.html
http://www.topogun.com/
https://blendermarket.com/products/retopoflow/
https://www.youtube.com/watch?v=om9YnlnR30w
https://www.youtube.com/watch?v=6MLiml3ePXo
https://www.youtube.com/watch?v=6MLiml3ePXo


(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. 2D patch subdivision results. Our method tries to partition a complex
2d shape into subpatches, each having a border composed of a small number
of monotonic chains. The left column (a, c, e ,g) shows the vertices where
the border of several patches were split into a number of monotonic chains.
The right column (b, d, f, h) shows the choice of diagonals used to obtain
the final subpatches (colored regions).
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