
Face Detection at 15,000 FPS:
Real-Time Inference on GPU and CPU

Matheus Alves Diniz1, David Menotti2, William Robson Schwartz1
1Smart Surveillance Interest Group, Smart Sense Laboratory

Department of Computer Science, Universidade Federal de Minas Gerais
2Department of Computer Science, Universidade Federal do Paraná

matheusad@dcc.ufmg.br, menotti@inf.ufpr.br, william@dcc.ufmg.br

Abstract—Object detection is a key task in computer vision
since it is the first step in the pipeline of many applications
such as person re-identification, vehicle identification, and face
verification. Recently, the best performing object detectors have
been achieved with deep learning and one common characteristic
among them is that they are a very slow on ordinary hardware.
Reported real time object detectors are usually measured with
high-end GPUs, which is inappropriate for scenarios where
energy efficiency and low costs are required. We were able to
train a very light face detection architecture by greatly reducing
the number of parameters and input size of a convolutional
network. Our model is capable of performing inference in real
time on a hardware as simple as a Raspberry Pi. Furthermore,
when evaluated on a GPU, we were able to achieve up to 15,000
frames per second.

I. INTRODUCTION

When Krizhevsky [1] won the ILSVRC-2012 [2] image
classification challenge, the rise of deep learning (DL) in
computer vision followed. However, the strong performance
of deep learning comes with an expensive computational cost.
Inference time is usually reported with high-end GPUs but
many models fail to run at real-time.

The dependency on expensive GPUs is also a major hin-
drance for the financial viability of computer vision in real
applications. Furthermore, embedded and mobile systems are
usually equipped with energy efficient hardware, which usually
lacks processing power to run these models in real-time.

In this paper, we investigate object detection with con-
volutional neural networks. Our main focus is to develop
applications that are able to run in real-time on a modest
hardware. We believe that by bringing down the cost of the
models, deep learning could be applied to broader spectrum of
problems. In addition, our techniques can also be used in the
classroom: our model follows the same principles and develops
the same insights as larger models, but it can be trained in
an ordinary computer, which might be an important tool for
teaching deep learning to students.

We chose object detection as our focus due to its applicabil-
ity in many different scenarios. For instance, detection of cars,
license plate, faces and pedestrians have direct applicability
on automatic license plate recognition, face verification and
person re-identification. Many tasks are also directly related
with detection, and as far as we know, no effort has been

Fig. 1. Our approach resizes the original image down to a miniature, where
the convolutions can be performed much faster. While small faces could be lost
on the interpolation process, this may not be a problem when the application
only cares about faces above some size. For instance, faces of pedestrians
outside the car are too small, but they may not be of interest.

previously made to develop and evaluate possible scenarios
for real time CPU deep learning models for object detection.

Our approach focuses on small inputs images. Recent object
detectors [3] have been able to detect faces which are only
a few pixels tall. We argue that face detection could be
performed on smaller inputs as long as the faces on the original
image have enough resolution to not disappear in the smaller
image. Fig. 1 illustrates the steps of our approach.

To validate our approach, we collected a set of videos inside
a car cabin. We were able to achieve very strong performance
in this set of videos, and furthermore our method was able to
run in real time in a common CPU. Our proposed model uses
less than 10k parameters, i.e., orders of magnitude smaller than
conventional models. As a result of such model, our approach
is able to detect more than 15,000 frames per second (FPS)
using a GTX 1080TI, more than 250 FPS using an i3 core
CPU processor and 49.61 FPS using a Raspberry Pi.

II. RELATED WORKS

Object detection is a crucial step in many computer vision
applications as well as an important application by itself.
Deep learning approaches to this task can be divided into two
categories: two stage detectors and one stage detectors.

Two stages detectors rely on a region proposal network step
to generate candidate regions for objects in the image. Each
of these candidate regions is then classified as one of the
objects classes, or background. These two steps can be done
separately [4], but using a single model decreases detection
time [5] and greatly increases accuracy [6].

One stage detectors, also known as single shot detectors [7],
skip the region proposal step and directly classify the presence
of objects in a fixed set of candidate regions [8]. This leads
to faster inference time at the cost of small drops in accuracy,
though this accuracy gap seems is becoming ever smaller [9]



pool: convolution: concatenation:

inception A: inception B:upsampling: 

classi�cation

localization

Fig. 2. Our detection network architecture (on top). Inception-A, and
Inception-B blocks are detailed in the middle, inside the light-gray and dark-
gray boxes respectively. The depth of each block (d1, d2, d3) is composed
by the concatenation of the convolutional towers inside the inception blocks.
The variable A indicates the number of anchors used at each point in the
grid. Convolutional layers are described by {filters, kernel size/stride}, and
pooling layers, by {kernel size/stride}. Each convolution is followed by batch
normalization and ReLU, but they are omitted for better visualization.

In [10], object detection parameters, such as number of
anchors and input size, are studied. Different backbones are
also evaluated as feature extractors for three distinct object
detectors: Faster R-CNN, R-FCN, and SSD. While the focus
of the study is to analyse speed and accuracy trade-offs, even
the fastest model evaluated would be still too heavy for real-
time computation on CPU.

Howard et. al [11] studied efficient deep learning models in
order to get high performance out of light weight models.
They identify two hyper-parameters to control model size
and accuracy, namely α, which controls the width of the
networks and ρ, which controls the input resolution. They also
propose depthwise separable convolution as an alternative to
the standard convolution in order to decrease the number of
float operations per convolutional layer.

While there are many works that investigate efficient deep
learning architectures, they still are not able to achieve real
time CPU because the focus of their analysis is still on
robust models and datasets. In this work, we evaluate a
more restrictive domain which allows us to greatly reduce our
architecture size, and thus achieve real-time CPU detection.

III. PROPOSED APPROACH

We developed a deep learning architecture capable of per-
forming detection in real time even when only a simple CPU

is available. We focus our evaluation on a specific domain:
face detection inside a car cabin. In this scenario, the faces are
expected to have large sizes and our model does not need to
be robust to large scale variances, which allows us to greatly
reduce the model size and inference time.

To minimize inference time, it is necessary to reduce the
number of floating operations performed by the network. This
can be achieved in at least three different ways: (i) reducing
the number of layers in the model; (ii) reducing the number
of channels in each layer, also known as the model width; or
(iii) reducing the input size of each layers.

Reducing the input size of the layers is equivalent to
reducing the input size of the model. It has been shown
that exceptionally small objects can be detected with deep
learning [3]. Therefore, if we investigate a domain where only
large objects are present, we can downsample the domain input
and expect to maintain the performance of small objects. For
instance, if a robust model is able to detect faces with height
of 6 pixels and we are interested in detecting faces in an
environment where faces are no smaller than 60 pixels, we can
expect that the face will still be detected if we downsample
the image by a factor of 10. One possible explanation for
this is that the faces with large resolution presents too much
redundant information which is not necessary for detection.
In addition, smaller inputs also allows the network to use fewer
filters on the convolutional layers since the image information
becomes more concentrated in fewer pixels. Thus, reducing
the input size also favors the reduction of the model width.

Our model is summarized in Fig 2. Since our goal is
to speed up the inference time, we follow the one-stage
detectors strategy and we adopt a fixed set of candidate
regions. The inception [12] backbone also helps with this goal
because it grants a deeper architecture for less computational
budget. Residual connections [13, 14] between the blocks were
evaluated but not used in the final model because they provided
a significant overhead in inference time while offering no
major accuracy improvement. Since the input resolution is
very small, we also upsample the last layer of the backbone
to increase the size of the feature map, and consequently the
number of candidate regions available for detection.

The detection sub-model classifies each candidate region
as either a face or a background. Therefore, to train this
sub-module, we generate a classification grid for each one
of A the anchors. We assign 1 to positions where the face
has intersection over union (IOU) greater than 0.45. Positions
where the intersection is below 0.3 are assigned 0. Finally,
anything between 0.3 and 0.45 is set to ignore and does
not contribute to the loss function. We use focal loss [9] for
this task, which is a modification on the more commonly
used cross-entropy that down-weights the impact of easy
classifications (e.g. easily classified background regions) that
are common in the object detection scenario.

The localization sub-model adjusts each of the anchors
to better match the actual bounding boxes. Thus, for each
anchor grid in the detection sub-model, there are 4 grids in
the localization sub-model, each one regressing one of the



Fig. 3. On the left, the original image of WIDER-FACE dataset. On the
center and on the right, modified crops in which the face size matches our
targets.

Fig. 4. Our test dataset consists of videos filmed with three GoPros attached
to the windshield on the driver (left), center (middle), and passenger side
(right).

4 coordinates of the bounding box. For this sub-model, we
employ the smooth-L1 as our loss function.

IV. EXPERIMENTAL RESULTS

Unless stated otherwise, all reported experiments were per-
formed in a machine with processor Intel(R) Core(TM) i3-
6006U CPU @ 2.00GHz, 8 GB of memory, and no GPUs.
Dataset. Since we are only interested in faces of a specific
size, we need training samples that match these sizes. Instead
of collecting samples on a similar scenario, we apply modifi-
cations to an existing dataset so that it fits our constraints.
The main benefit of this approach is that it avoids costly
annotations and data acquisition. It also helps to make the
trained model more robust to different scenarios since the
training and the testing data are not captured equally.

We use WIDER-FACE [15] as the underlying dataset in
which we make our transformations. Our approach takes an
input image from the original dataset and crops it so that the
resulting image has a face with dimensions matching to the
ones in our domain. For the car cabin that would be crops in
which the face height is between 25% and 50% of the total
image height, but the method could be adapted to a broader or
a more restrictive spectrum. Fig. 3 shows the original image
and two samples generated by this method.

During training, each image on the training set of WIDER-
FACE is modified and fed to the network, though the sample
may differ at each execution, since there may be more than
one face per image. On the other hand, the test set of WIDER-
FACE cannot be adapted to our domain because the ground
truth is not provided. Thus, we collected a dataset of car cabin
videos to evaluate our model.

A total of 10 individuals were filmed on the driver seat of
the car from three different angles, as shown in Fig. 4. Each
video has, on average, 30 seconds, filmed at a rate of 30 frames
per second. At the video capture, the subjects were instructed
to look at each of the mirrors in the car in order to introduce
pose variation in the video.

Evaluation of Our Approach. Overall, we are able to achieve
a network configuration with less than 10,000 parameters,
more than 85% of these belonging to the localization and
detection sub-models, which correspond to only 3 out of the
43 convolutional layers. For this setup, we empirically set
d1, d2, d3 to 4, 8 and 12, respectively. Since WIDER-FACE
contains a large variation of poses, we have to use 9 anchors
in order to be able to match all of them. Less anchors could be
used if the domain was even more restrictive, as if it contained
only frontal faces, or an even narrower height range.

For students, one of the key advantages of our model is
that it can be trained from scratch in just a few hours on
the i3 processor. Learning rate was set initially to 0.0005,
batch size to 256, and ADAM was used as our optimizer.
The learning rate was also set to decrease by a factor of 10
whenever the loss did not decrease for 2 consecutive epochs.
With this configuration, we were able to train our model in
less than 3 hours for 70 epochs.

Figure 5 shows the precision recall curve for our model
when the input size is set to 48 × 48 pixels. In our first
evaluation, we select 50 frames from each video and perform
detection varying the classification threshold over different
IOU metrics. The classification threshold controls the value
of the output of the detection sub-model that separates back-
ground from faces.

At 0.5 IOU, which is the traditional value in many datasets,
we are able to achieve recall and precision above 80%.
Considering that our model was developed to be very light,
and thus run at every single frame, it would be very unlikely to
miss the face in a video segment for many consecutive frames.
Furthermore, the 0.3 and 0.4 IOU curves show that many of
the false positives and false negatives in our model are due to
poor localization instead of miss-classification, i.e. the face is
detected but the bounding-box is not perfectly fitted. For the
rest of the evaluation, unless specified otherwise, our measures
consider only IOU above 0.5 as a positive match.

Table I compares our model with different input sizes
against Viola & Jones [16], which employs a cascade of
classifiers to detect faces in an image pyramid. Our choice
for this method is based on the fact that, though outdated,
this method is known as a very fast detector. We used the
implementation available at OpenCV to run our evaluations.
While Viola & Jones is able to achieve real-time in our CPU,
it shows poor performance, specially when the face is not
fully frontal. Combining a second cascade classifier for profile
faces improves the detection rate but it is still not able to
achieve comparable results both in accuracy and inference
time. While reducing the input size for Viola & Jones does
reduce inference time, its handcrafted features are not able to
distinguish between background and faces at a resolution as
small as our model does.

Our model also seems to lose performance at the 80 × 80
pixels input resolution. One possible explanation is that this
is due to the fact that we kept the network width and depth
constant throughout the experiments. At this resolution, it is
possible that the small backbone lacks capacity to learn all



TABLE I
AVERAGE PRECISION (AP) AND RECALL (AR), AND FRAME RATE FOR EACH MODEL. BATCH SIZE EQUALS 1, UNLESS SPECIFIED.

Frames per second
Method (resolution) AP AR CPU I3 6006U Raspberry Pi GTX 1080TI GTX 1080TIbatch=256

Ours (16×16 pixels) 0.65 0.53 277.76 49.61 130.21 15,442.34
Ours (32×32 pixels) 0.77 0.75 182.65 38.31 117.15 7,811.34
Ours (48×48 pixels) 0.85 0.83 120.36 25.91 122.64 4,064.50
Ours (64×64 pixels) 0.89 0.84 82.37 16.86 99.64 2,866.93
Ours (80×80 pixels) 0.84 0.80 60.07 11.61 105.83 1,092.50

Viola & Jones frontal (480×300) 0.83 0.25 50.61 9.69 - -
Viola & Jones frontal+profile (480×300) 0.81 0.37 22.98 4.36 - -

Viola & Jones frontal+profile (64×64) 0.60 0.00 258.60 45.12 - -

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

0.4

0.5

0.3 IOU
0.4 IOU
0.5 IOU

Fig. 5. Precision recall curve for our model with 48 × 48 input size.
Using the conventional 0.5 intersection over union (IOU) metric, we were
able to achieve a good recall and precision in our test set. The curves with
lower thresholds, show that many of the misses are due to poor localization,
rather than miss-classification. On the top of the green curve, we show the
classification thresholds 0.5 and 0.4, which are ideal for our model.

necessary features to detect faces in the larger and sparser
grid. Thus, it is likely that increasing the model width, i.e. the
values for d1, d2, d3 could improve the performance of this
model, but at the cost of a drop in FPS.

We also evaluate the performance of our proposed detector
on a Raspberry Pi 3. This test shows that it is feasible to use
our model on embedded systems and mobile hardware. The
two smaller models were able to be above real time, while the
48× 48 model was nearly real time.

When evaluated with a GPU the model is sometimes slower
than on CPU. This can be explained by the overhead necessary
to transfer the image to the GPU memory which is not negli-
gible at this frame rate. This hypothesis can be corroborated
by the evaluation on larger batches. At a batch size of 256, we
are able to achieve extremely fast detection, as high as 15,000
FPS with a high end GPU.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we were able to train an efficient model for
face detection. Though our domain is restrictive (i.e., smaller
faces are not detected) when compared to other datasets, it is
not unrealistic. This same principle could be applied to other
computer vision tasks that could benefit from specialized mod-

els and achieve faster inference speeds. In this sense, vehicle
detection is a promising target since cars have reasonable size
in comparison to the whole scene, such as a single lane roads.

We also showed that our approach may aid interested
students in the development of their own models. Excessive
training times is one of the biggest obstacles to beginners in
deep learning. With this approach, it is feasible for students to
train their models overnight on their own laptops and achieve
similar results, or even tune our model even further.

ACKNOWLEDGMENTS

The authors would like to thank the Brazilian Na-
tional Research Council – CNPq (Grants #311053/2016-5,
#428333/2016-8 and #313423/2017-2), the Minas Gerais Re-
search Foundation – FAPEMIG (Grants APQ-00567-14 and
PPM-00540-17), the Coordination for the Improvement of
Higher Education Personnel – CAPES (DeepEyes Project),
Maxtrack Industrial LTDA and Empresa Brasileira de Pesquisa
e Inovação Industrial – EMBRAPII.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[2] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition
Challenge,” IJCV, 2015.

[3] P. Hu and D. Ramanan, “Finding tiny faces,” in CVPR, 2017.
[4] R. Girshick et al., “Rich feature hierarchies for accurate object detection

and semantic segmentation,” in CVPR, 2014.
[5] R. B. Girshick, “Fast R-CNN,” CoRR, 2015.
[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” TPAMI, 2017.
[7] W. Liu et al., “SSD: single shot multibox detector,” CoRR, 2015.
[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in CVPR, 2016.
[9] T. Lin et al., “Focal loss for dense object detection,” CoRR, 2017.

[10] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional
object detectors,” in CVPR, 2017.

[11] A. G. Howard et al., “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications,” CoRR, 2017.

[12] C. Szegedy et al., “Going deeper with convolutions,” in CVPR, 2015.
[13] K. He et al., “Deep residual learning for image recognition,” in CVPR,

2016.
[14] C. Szegedy et al., “Inception-v4, inception-resnet and the impact of

residual connections on learning,” CoRR, 2016.
[15] S. Yang et al., “Wider face: A face detection benchmark,” in CVPR,

2016.
[16] P. Viola and M. Jones, “Rapid object detection using a boosted cascade

of simple features,” in CVPR, 2001.


