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Abstract—In this work, two new shape descriptors are pro-
posed for tasks in Content-Based Image Retrieval (CBIR) and
Shape Analysis, which are built upon an extended tensor scale
based on the Euclidean Distance Transform (EDT). First, the
tensor scale algorithm is applied to extract shape attributes from
its local structures as represented by the largest ellipse within
a homogeneous region centered at each image pixel. In the new
descriptors, the upper limit of the interval of local orientation of
tensor scale ellipses is extended from π to 2π, to discriminate the
description of local structures better. Then, the new descriptors
are built based on different sampling approaches, aiming to
summarize the most relevant features. Experimental results for
different shape datasets (MPEG-7 and MNIST) are presented
to illustrate and validate the methods. TSS can achieve high
retrieval values comparable to state-of-the-art methods, which
usually rely on time-consuming correspondence optimization
algorithms, but uses a more straightforward and faster distance
function, while the even faster linear complexity of TSB leads to
a suitable solution for huge shape collections.

I. INTRODUCTION

Content-based image retrieval (CBIR) concerns the problem
of searching for digital images in large databases, which are
similar to a query image. A particular type of CBIR system
exploits the shape information as image descriptors. A shape
descriptor should be simple, compact, insensitive to noise,
affine-invariant, and at the same time contain all relevant
information to distinguish different images [1]. Preferably, the
matching algorithm used by a shape descriptor should also
be fast to be suitable on large datasets, since the feature
extraction can often be performed offline. Many proposed
shape descriptors yield a high accuracy score but sacrifice
performance with a high computational time, mainly relying
on Dynamic Programming (DP) for the matching algorithm to
establish correspondences.

In this work1, two new shape descriptors are presented
designed to achieve high accuracy with fast distance functions.
Besides not using DP, the matching algorithms are also simpler
than OCS (Optimal Correspondent Subsequence) used by
BAS [2], OSB (Optimal Subsequence Bijection) and the Hun-
garian algorithm used in [3], and also more efficient than the
one used in TSDIZ [4]. Comparing with especially proposed
methods for dealing with large datasets, such as Hough Trans-
form Statistics (HTS) and HTS-neighborhood (HTSn) [5], our

1This work relates to a MSc dissertation, defended on October 24th, 2017.

matching algorithms have a lower computational complexity,
for non-aligned shapes, and higher retrieval rates.

The methods presented here are based on the tensor scale
concept (TS) [6] — a morphometric parameter yielding
a simultaneous representation of local structure orientation,
thickness, and anisotropy. The algorithm to compute tensor
scale, as originally proposed [6], is computationally expensive.
To address this problem, Andaló et al. proposed a simpler and
yet effective implementation of the original method [4].

One contribution of this work was the revision of the
algorithmic TS computation, as proposed by Andaló et al.,
extending the ellipse’s orientation to 360◦. Based on this richer
TS model, two novel shape descriptors were proposed, with
greater discrimination power in relation to previous TS-based
works, for shape-based image retrieval: Tensor Scale Sector
(TSS) and Tensor Scale Band (TSB) descriptors.

In relation to previous TS descriptors (TSD [7] and TS-
DIZ [4]), the proposed descriptors TSS and TSB are more
accurate and have faster matching algorithms. TSS incor-
porates spatial information by the use of circular sectors
and TSB by the use of concentric bands around a central
point, which are much more discriminative than the simple
normalized orientation histogram used by TSD. While TSDIZ
is a contour-based method, TSS and TSB are region-based
methods, opening new perspectives for novel applications. The
features extracted from the ellipses are also more sophisticated,
considering 360 degrees.

This paper is organized as follows: Section II presents the
tensor scale previous relevant work, including its EDT-based
implementation and how to extend it to ellipses with 360◦,
as used in this work. Then, our novel tensor scale descriptors,
TSS and TSB, are shown in Sections III and IV. The combined
descriptor approach is described in Section V, respectively, and
the analysis of their computational complexity is presented
in Section VI. The experimental evaluation is conducted in
Section VII. Section VIII states the conclusions and derived
work.

II. BACKGROUND

Saha et al. have introduced a local scale method called
tensor scale (TS) [6], which is the parametric representation
of the largest ellipse (or ellipsoid in 3D), centered at a point
p within the same homogeneous region under a predefined



Fig. 1. Tensor scale representation at point p.

criterion (usually intensity). The tensor scale model (Fig. 1)
provides three factors: orientation θ of the major semi-axis t1,
anisotropy (

√
1− ‖t2(p)‖2/‖t1(p)‖2) and thickness (‖t2(p)‖).

For a given pixel, the largest ellipse within the same
homogeneous region is determined by tracing sample lines
from 0 to 180 degrees around that pixel and computing the fol-
lowing steps: (i) Intensity computation along each sample line;
(ii) Location of two optimum edge points on each sample line;
(iii) Repositioning of the edge locations to points equidistant
to the given pixel, following the axial symmetry of an ellipse;
(iv) Computation of the best-fit ellipse to the repositioned edge
locations using Principal Component Analysis (PCA). These
steps are performed for each image pixel until all ellipses have
been computed [6], [7].

In the case of binary images (or images with values taken
from a fixed set of labels), Andaló et al. proposed a very fast
TS implementation [4], which exploits the circles given by the
Euclidean Distance Transform (EDT). The EDT is computed
in linear time using the Image Foresting Transform (IFT) [8],
a graph-based approach to the design of image processing
operators based on connectivity.

A. EDT-based Tensor Scale

For each pixel, to locate the edge points on each sample line
around it (Figure 2a), we first compute the Euclidean Distance
Transform using the IFT framework. We insert in a priority
queue all pixels that have a neighbour with different label as
seeds with unitary costs. Then running the IFT with a proper
path cost function leads to a cost map (Figure 2b) that has the
Euclidean distance of every pixel to its nearest pixels with a
distinct label [8].

To find the edge locations over the sample lines for a given
central pixel, we exploit the EDT values to speed up the
process using a sequence of jumps, by skipping all pixels in
the radius given by the EDT, instead of performing a naı̈ve
pixel-by-pixel traversal (Figures 2c-e).

The computation of the best-fit ellipse is accomplished in
two sub-steps: (i) Determination of ellipse orientation θ; and
(ii) Computation of the lengths of the semi-axes.

In our approach we adopted the EDT value as being the
thickness b = ‖t2(p)‖. Therefore a = ‖t1(p)‖ is the only
variable left and this leads to simpler equations, with the

final ellipse being more consistently contained in the same
homogeneous region. In this sense:

a =

√
C · b2

b2 ·A−B
(1)

where A =
∑
u2i , B =

∑
u2i v

2
i , C =

∑
u4i and (ui, vi)

are the relative coordinates of the repositioned edge points
with respect to the central pixel and after rotation by angle
−θ, such that the ellipse’s major semi-axis becomes aligned
to the horizontal axis. To guarantee valid a values, points with
v2i ≥ b2 should not be considered during the computation of
the above equations since they correspond to pixels out of the
zone of possible boundary points of ellipses with the given
thickness b. To make sure that at least one edge point lies
on the valid zone, we trace an additional sample line on the
direction given by the angle θ.

For the purposes of shape descriptor, θ can be assumed
simply to be the orthogonal direction of the line that connects
the central pixel to its nearest pixel with a distinct label given
by the EDT. In our experiments, we adopted this simple, but
yet effective variation, and considered a single sample line on
the direction of θ to estimate a.

B. Extending TS to 360 degrees

In order to extend TS to 360◦, we further distinguish the el-
lipses, by comparing the label value L(p) at its central pixel p
with the label L(r) at its closest pixel r having a distinct label
(Figure 3). Consider the vector ~vrp. If L(p) > L(r), then the
ellipse orientation is taken as the angle formed by the vector
~vrp rotated 90◦ clockwise (Figure 3a), otherwise it is rotated
90◦ counterclockwise (Figure 3b). Figure 4 shows TS results
coded in the HSV color space, where the hue corresponds to
the orientation. TS by Andaló et al. [4] considered 180◦ only,
such that opposite directions receive the same color/orientation
(Figure 4a). By using the procedure depicted in Figure 3, we
can extend the results to 360◦, such that opposite directions
are assigned to different colors (Figure 4b).

III. TSS: TENSOR SCALE SECTOR

A single circular region around the object is considered,
which is divided into sectors within concentric bands (Fig-
ure 5a). After that, tensor scale information is computed only
inside this circular region, but the orientations of ellipses cen-
tered at pixels closer to the external circular border follow its
round shape, and therefore do not present relevant information
of the shape being analyzed. So, in this work these ellipses
are disregarded (Figure 4). Figure 5a shows an example grid
using four concentric bands and twenty sectors per band. The
radius of the bands are uniformly sampled at regular intervals.

Ellipses attributes within sectors are used as features to com-
pose a fixed-length feature vector, considering the orientation
θ of each ellipse converted to an angle γ measured relatively to
its sector, as shown on Figure 6. The usage of relative angles
γ enables the rotational invariance of TSB and simplifies the
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Fig. 2. Sample line traversal example in the direction pointed by the arrow in (a). (b) The auxiliary values of the EDT. (c) The first traversal step. (d) The
second step. (e) The edge location is found after only six steps.

(a) θ = 270◦ (L(p) > L(r)) (b) θ = 90◦ (L(p) ≤ L(r))

Fig. 3. TS with 360 degrees is obtained by comparing the label value L(p)
at its central pixel p with the label L(r) of its closest pixel r having a distinct
label.

(a) (b)

Fig. 4. (a) TS by Andaló et al. coded in the HSV colorspace, where the
hue (H), saturation (S), and value (V) indicate the orientation (0◦-180◦),
anisotropy, and thickness values, respectively. (b) TS extended to 360 degrees.

distance function computation of TSS, as will be explained
later.

To summarize the relative angles γi within each sector, each
angle is treated as a vector (vx, vy) = (wi cos (γi), wi sin (γi))
such that the magnitude information is exploited as well.
Then, a weight wi is assigned to each ellipse which is given
by its squared anisotropy value, to penalize ellipses with
low anisotropy as they tend to be circles and therefore do
not present a well-defined orientation. The local dominant
relative orientation (v̄x, v̄y) within these sectors is computed
by Equations 2 and 3, where γi and wi are the relative
orientations and squared anisotropy values of all the n ellipses

(a) (b)

Fig. 5. (a) Feature vector extraction of TSS. (b) The mapping in the simpler
case of 3 bands (B = 3) with 8 sectors per band (S = 8). Each ellipse falls
inside a radial band, which has an index b ∈ [0, B − 1], and has a sector
index s ∈ [0, S− 1] in that band. Its position j in the feature vector is given
by j = b+ s×B.

Fig. 6. For each ellipse, TSS and TSB consider angles γ measured relative
to its sector, instead of working with θ.

inside the sector being considered.

v̄x =
1

n

n∑
i=1

wi cos (γi) (2)

v̄y =
1

n

n∑
i=1

wi sin (γi) (3)

The usage of ellipses with 360◦ results in more complex
orientation patterns (Figure 4), such as the discontinuities
at pixels near the shape’s skeleton. In order to bring in
information about relative angles with opposite orientations,
we also extract the sum of the absolute values of the responses
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Fig. 7. (a-f) The features v = {v1, v2, v3, v4} of a sector effectively capture different underlying orientation patterns. (a-b) Vertical ellipses with the same
orientation. (c) Vertical ellipses with opposite angles. (d-e) Horizontal ellipses with the same orientation. (f) Horizontal ellipses with opposite angles.

(Equations 4 and 5). Therefore, we will have for each sector
a vector of four features v = {v1, v2, v3, v4}, where v1 = v̄x
and v2 = v̄y (Figure 7). This combination of ellipses with 360◦

and the features v, that were inspired on a four-dimensional
vector used in the SURF point detector and descriptor [9],
leads to an improved retrieval performance.

v3 =
1

n

n∑
i=1

|wi cos (γi)| (4)

v4 =
1

n

n∑
i=1

|wi sin (γi)| (5)

Finally, the features of sectors on the same radial zones
are consecutively grouped to compose the TSS feature vector
(Figure 5b). To properly deal with flipped/mirrored images we
should also consider a mirrored feature vector computed by
considering inverted signals on the x components of the angles
in Equations 2, 3, 4 and 5.

There are two parameters to be set, the central point coordi-
nates and the radius of the circular region. These parameters
can be tuned for different applications. In our experiments,
the center of gravity (shape centroid) was used as the central
point, and the radius was taken as three times the square root
of the mean squared Euclidean distance between the shape
pixels to the centroid.

The distance between two feature vectors is computed as a
circular matching, required for the rotational invariance, given
by the Algorithm 1, being the distance between corresponding
sectors computed by the `2 distance (Lines 12–13), which
empirically demonstrated superior results.

IV. TSB: TENSOR SCALE BAND DESCRIPTOR

The idea of TSB is to sacrifice the angular displacement of
the sectors to obtain a faster distance function. In contrast to
TSS, the spatial information in TSB is incorporated via the
radial displacement only, by taking one normalized histogram
with 60 bins per radial band, capturing the relative angular
distribution of γ. Due to the high coverage area of the radial
bands, the angular distributions in the form of a histogram is
more appropriate than considering only the four-dimensional
feature vector v. The histograms are concatenated to compose

a fixed-length feature vector, which is naturally rotational
invariant because of the usage of relative angles γ.

To make the method less sensitive to histogram bins with
very high values the square root of the normalized histogram
values is used, so the difference between the largest and the
smallest histogram bins becomes smaller than in the original
scale. For the same reasons, we empirically observed that the
`1 distance function resulted in superior performance than `2.

The distance function of TSB requires only the `1 distance
computation between two feature vectors.

Algorithm 1. – TSS DISTANCE FUNCTION

INPUT: Feature vectors fv1 and fv2
OUTPUT: Distance

1. S← number of sectors per band
2. B← number of radial bands
3. N← S · B
4. dmin ←∞
5. for k ← 0, to S− 1, do
6. offset← B · k
7. d← 0.0
8. for i← 0, to N− 1, do
9. j ← (i+ offset) % N
10. (a1, a2, a3, a4)← fv1[i]
11. (b1, b2, b3, b4)← fv2[j]
12. (d1, d2, d3, d4)← (b1 − a1, b2 − a2, b3 − a3, b4 − a4)
13. d← d+

√
(d1)2 + (d2)2 + (d3)2 + (d4)2

14. i← i+ 1
15. if d < dmin then dmin ← d
16. k ← k + 1
17. return dmin/N

V. COMBINED DESCRIPTOR WITH GLOBAL FEATURES

Considering that both TSS and TSB characterize a shape
by summarizing only local TS features from delimited regions
(sectors in TSS and bands in TSB), combining the descriptors
with global geometric features can increase the original dis-
crimination power. This strategy was also exploited in other
works [10]–[12] to increase or decrease the distance between
shapes based on their visually similarity.

In this work we used the following geometric global shape
features to build the composite descriptor: aspect-ratio of the
aligned bounding-box (Figure 8a), eccentricity, and solidity.
The solidity is defined by the ratio between the area of the
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Fig. 8. (a) Bounding-box aligned to the shape orientation. (b) Convex-hull.
(c) Ellipse with the same second-order statistical moments of the shape.

shape and its convex-hull (Figure 8b), which in turn is defined
by the smallest convex polygon that contains all the points
belonging to the object. Eccentricity is defined by the ratio
between the axes of the ellipse that has the same second-
order statistical moments of the shape (Figure 8c), centered
on the object’s center of mass. It is worth mentioning that
these global features are also invariant to rotation, scaling and
mirroring operations.

The distance function δGF of the combined descriptor is
obtained by the convex combination of the global geometric
features with the original descriptor’s distance (TSS or TSB),
using the log-sum-exp [13] operation, given by:

δGF (A,B) = δD (A,B) + log

m∑
k=1

exp
(
αk ·

(
ϕAk − ϕBk

))
where δD is the distance function to be extended;
ϕSk = (ϕ1, . . . , ϕm) a set of m geometric features from shape
S; and αk are the coefficients of the convex combination, with
αk > 0 and

∑m
k=1 αk = 1.

VI. COMPUTATIONAL COMPLEXITY

In the context of CBIR, the computational cost consists of
two parts: (i) computing the feature vector; (ii) performing
the shape dissimilarity by a distance function. On large col-
lections, the latter is more important as the distance should
be determined for every shape in the collection against the
query shape, and the descriptor of all shapes are already stored
and calculated beforehand. To perform a new search, only the
descriptor of the query shape must be calculated, so for a fast
retrieval time an efficient distance function is crucial.

The distance function of TSS presented in the Algorithm 1
requires the computation of the dissimilarity between each
corresponding sector from both feature vectors. The feature
vector size of TSS is proportional to the total number of
sectors N = S · B, where S is the number of sectors per
band and B is the number of bands. The overall complexity
for calculating the distance between two feature vectors is
O(S ·N). When the mirroring option is used, it must perform
a second iteration over a reversed feature vector, and in this
situation the matching is O(2 · S ·N) = O(S ·N).

The feature vector size of TSB is N = 60·B, where B is the
number of bands, since we have one histogram with 60 bins

per radial band. The distance function of TSB requires only
the `1 distance computation between two feature vectors and
its complexity is O(N), which becomes O(60 · B) = O(B),
if we consider the number of bins as a constant. It also allows
the usage of fast indexing structures. Both distance functions
are rotation-invariant and works with non-aligned shapes.

Table I compares the computational complexity of the
evaluated descriptors used in Section VII.

VII. EXPERIMENTAL RESULTS

The TSS and TSB descriptors were compared against
commonly used shape descriptors. We evaluated the proposed
descriptors using the MPEG-7 CE-Shape-1 (part B) dataset [1]
and the MNIST dataset from [14]. The MPEG-7 dataset
contains 1,400 shape images distributed along 70 classes,
where each class contains 20 shapes with various rigid and
non-rigid transformations, noise and change of viewpoint. The
MNIST database consists of 10,000 images of handwritten
digits and is commonly used in classification evaluation tasks.

In the experiments, we evaluated TSS with 4 bands and
20 sectors per band, and discarded the outermost band, since
its ellipses essentially follow the round shape of the external
circular region without adding relevant information. We also
used a single mean feature for the inner band, instead of taking
its sectors separately, since they are too small, resulting in a
total of 40 sectors for the two remaining central bands plus one
mean feature for the internal band (TSS-41). So, the number
41 of TSS-41 stands for B + B + 1, where B denotes the
number of sectors per band (B = 20).

Since the shapes in the MNIST dataset are almost already
aligned, we only considered the search from −π/4 to π/4.

In the case of TSB, we used 5 bands and 32 sectors
per band, but we discarded the outermost band, since its
orientation is mainly affected by the circular region around
the object, resulting in a total of 60 × 4 = 240 bins for the
4 remaining concatenated histograms. Also, for the combined
variations TSS+GF and TSB+GF, the parameter α were found
by cross-validation.
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Fig. 9. Precision versus Recall curves (MPEG-7 CE-1 Part B dataset).
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Fig. 10. Precision versus Recall curves (MNIST dataset).

TABLE I
BEP SCORES OF DIFFERENT DESCRIPTORS ON THE MPEG-7 DATASET
AND ITS COMPUTATIONAL COMPLEXITY OF THE DISTANCE FUNCTION.

Descriptor BEP (%) Complexity Type

Height Functions [15] 89.66 O(N3) Contour
CNSS [16] 89.47 O(N) Contour
IDSC+DP [17] 88.11 O(KN2) Contour
TSS-41+GF 87.22 O(SN) Region
TSS-41 86.20 O(SN) Region
MCC [10] 84.93 O(N3) Contour
BAS-60 [2] 76.78 O(N3) Contour
SC+DP (Shape Contexts) [17] 76.51 O(KN2) Contour
TSB+GF 75.20 O(N) Region
Path Similarity [3] 75.16 O(N3) Skeleton
TSB 74.01 O(N) Region
SSD+GF [11] 71.00 O(N2) Contour
TSDIZ [4] 69.44 O(CN2) Contour
HTSn [5] 59.97 O(N2) Contour
HTS [5] 56.01 O(N2) Contour
TSD [7] 46.08 O(N2) Region

A. Evaluation measures

Precision vs. Recall (P × R) curves are the commonest
evaluation measure used in CBIR domain. Precision is defined
as the fraction of retrieved images which are relevant to a
query. In contrast, recall measures the fraction of the relevant
images which has been retrieved. In general, the curve P ×R
closest to the top of the chart indicates the best performance.
Figures 9 and 10 shows the P × R curves obtained for all
evaluated descriptors on both datasets.

We also considered the bullseye precision (BEP) [1] for the
evaluation of the MPEG-7 collection, which is defined as the
count of true positives within the 40 top similar results for
every shape as a query image. Then the score is normalized
by the highest possible number of correct hits (which is
20×1400). The results are presented in Table I.

VIII. CONCLUSIONS

We presented two novel shape descriptors for CBIR, which
are non-limited to a particular topology and that may be

easily tailored for different applications. Their features ex-
tracted from circular sectors could be used to build a shape
vocabulary according to the bag-of-words (BoW) paradigm to
get a learning-based method, and also be combined with other
features. The results demonstrate that TSS performs better than
TSB, since it includes more spatial information, by exploiting
each individual sector instead of only the bands as TSB.

This work resulted in the publication of the article
“TSS & TSB: Tensor Scale Descriptors within Circular Sectors
for Fast Shape Retrieval” [18], published on a special edition
of Pattern Recognition Letters on “Efficient Shape Represen-
tation, Matching, Ranking, and its Applications”.
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