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Stochastic distances for patch-based ultrasound
image despeckling

Cid A. N. Santos and Nelson D. A. Mascarenhas

Abstract—Ultrasound image despeckling is an important re-
search field since it can improve the interpretability of one of
the main categories of medical imaging. Many techniques have
been tried over the years for ultrasound despeckling, and more
recently, a great deal of attention has been focused on patch-based
methods, such as non-local means (NLM) and block-matching
collaborative filtering (BM3D). A common idea in these recent
methods is the measure of distance between patches, originally
proposed as the Euclidean distance, for filtering additive white
Gaussian noise. In this work, we derive several new similarity
measures based on the statistics of the speckle and apply them for
despeckling both radio frequency (RF) and log-compressed US
signals. State-of-the-art results in filtering simulated, synthetic,
and real ultrasound images confirm the potential of the proposed
approach.

Index Terms—despeckling; ultrasound imaging; patch-based
filtering; stochastic distances; geodesic distances; BM3D; NLM

I. INTRODUCTION

ULTRASONOGRAPHY is an important modality of med-
ical imaging since it is non-invasive, harmless, portable,

low cost and is conducted in real time. The main issue
affecting ultrasound images is a random granular pattern, the
speckle, which is a phenomenon arising from the coherent
nature of the acquisition system. The speckle, a form of mul-
tiplicative noise, affects the interpretability of the image, both
by specialists or automated tools, and should be attenuated as
much as possible. This kind of noise is also present in other
types of coherent imaging systems, such as the laser, sonar,
and synthetic aperture radar (SAR).

A. Related work

Several techniques have been proposed in the literature for
speckle removal, including the well-known Lee [1], Frost [2],
and Kuan [3] adaptive filters, wavelets [4] [5], and anisotropic
diffusion [6] [7]. More recently, attention has focused on
patch-based approaches, such as NLM [8] [9] and BM3D [10]
[11]. A common concept underlying these new techniques is
the patch similarity measure, which indicates the similarity of
two patches. In NLM, the patch similarity measure is used
to determine the weights of the filtering process, while it is
used in BM3D to aggregate the blocks of similar patches for
subsequent filtering. As in the original proposals, both NLM
[12] and BM3D [13], which were designed for additive white
Gaussian (AWG) noise, use the Euclidean distance (L2 norm)
as the patch similarity measure.

In [14], the authors extend the NLM approach for speckle
noise using a Bayesian framework. They use the Pearson
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distance as a new statistical distance for patch comparison.
In [15], the NLM is adapted to SAR imagery using statistical
inference in an iterative approach. The patch distance measure
is obtained from the image statistics, which are considered
to fit a Nakagami-Rayleigh distribution. In [16], a non-local
approach is used for filtering intensity SAR images of homo-
geneous areas, modeled to fit a gamma distribution. It uses
statistical hypothesis testing based on stochastic divergences
derived from the (h, φ)-divergence class. In [17], the stochastic
distances coming from the (h, φ)-divergence class are used
to replace the Euclidean distance in a non-local filter for
intensity SAR images, modeled by the G0 distribution. In ad-
dition, working with stochastic distances derived from (h, φ)-
divergence class and a non-local filter, in [18], the approach
is applied to polarimetric SAR images, adopting the complex
Wishart distribution statistics.

In [10], the BM3D algorithm is adapted to SAR imagery by
replacing the Euclidean distance in the block-matching step by
a distance derived from the SAR image statistics, as suggested
by [15]. Additionally, the hard thresholding step is replaced
by a local minimum mean squared error (MMSE) shrinkage
strategy, as proposed originally in [19].

Contributions: In this work, we deduce several new
patch similarity measures, based on well-known entropies
and statistical divergences. These measures are derived for
Rayleigh, Fisher-Tippett and Nakagami distributions, covering
the noise model of RF and log-compressed US images. Two
approaches are used to generate the measures. First, we use
symmetrized versions of statistical diverges based on the
(h, φ)-divergence class. Second, we find the geodesic distances
induced in a probabilistic space and based in the (h, φ)-entropy
class. We name these two types of measures as stochastic
distances throughout this manuscript. Finally, these similarity
measures are used to propose stochastic filters derived from
NLM and BM3D techniques. Although there are approaches
using stochastic distances as new patch similarity measures
in [16] and [17], they are valid only for the statistics of
SAR imagery and are applied only to NLM. Furthermore,
the first attempt to apply stochastic distances with the BM3D
method is derived from this research and given in [20]. In the
same way, the first attempt to use geodesic distances based
on probabilistic spaces for despeckling is also based in this
research and given in [21].

II. THEORETICAL BACKGROUND

A. Speckle statistics
The ultrasound signal is acquired by transmitting high-

frequency sound waves into the body and collecting the return-
ing echoes. The interference among the returned echoes gives
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rise to a phenomenon known as the speckle, which is respon-
sible for the granular aspect of the ultrasonic images. The way
the returned echoes are modeled depends on certain factors,
such as the placement (regular or random) and density of
scatterers and the presence of strong specular reflections. The
various combinations of these factors yield different scattering
regimes and consequently different statistical models for the
radio frequency (RF) ultrasound envelope signal and related
speckle pattern. Destrempes and Cloutier (2010) provide a
deep review of such statistical models in [22].

Considering a resolution cell with a high density of scat-
terers (>10) that are randomly distributed and without strong
specular reflections, we have the regime referred to as the fully
developed speckle. For such a regime, the amplitude of the RF
ultrasound signal envelope is known to be well described by
a Rayleigh random variable (Y):

P (Y |σ) =
Y

σ2
exp

(
− Y

2

2σ2

)
, Y ≥ 0, σ > 0 (1)

where Y is the amplitude of the RF signal and σ is the tissue
reflectivity for the specific resolution cell.

Defining a new random variable by applying the logarithm
transform to equation (1), we can model the log-compression
phase, which is carried out by any commercial ultrasound
equipment, to adjust the large dynamic range of the RF image
to the dynamic range of the equipment display:

Z = log(Y + 1) (2)

Notice that the Rayleigh random variable Y has support
in interval [0,+∞). By adding one in equation (2), we
conveniently keep the new Z random variable in the same
support interval since there should be no negative amplitudes
in the log-transformed image.

The distribution of the transformed random variable Z will
be given by

P (Z) =

∣∣∣∣dYdZ
∣∣∣∣P (Y ) (3)

From equation (2), we have

Y = exp (Z)− 1 (4)

and
dY

dZ
= exp (Z) (5)

Replacing equation (4) in (1) and using the result, together
with (5), in equation (3), we have the distribution for the log-
compressed ultrasound image, modeled by Z in equation (2).
This distribution has a double exponential or Fisher-Tippett
shape, of which the only parameter is the tissue reflectivity σ:

P (z|σ) =

(
exp(z)− 1

σ2

)
exp

(
z − (exp(z)− 1)2

2σ2

)
(6)

Let z1, z2, . . . , z3 be samples of independent and identically
distributed observations coming from the distribution of Z
in equation (6). It can be easily shown that the maximum
likelihood estimator for the parameter σ of this distribution is
given by

σ̂2 =
1

2n

n∑
i=1

(exp(zi)− 1)2 (7)

The fully developed speckle regime leading to the Rayleigh
and Fisher-Tippett models is valid only in the homogeneous
areas of the image. To take into account other scattering
regimes, other statistical models have to be considered, as the
K-family of distributions. The issue about working with these
distributions is their analytical complexity, which makes them
unsuitable to apply in this paper. One possible solution for this
situation is to use the Nakagami distribution. Nakagami is a
two parameters distribution, known to be an approximation
for one of the distributions of the K-family [22], the K-
distribution.

The probability density function of the speckle under Nak-
agami model is given by

f(x;m,Ω) =
2mmx2m−1

Γ(m)Ωm
exp

(
−mx2

Ω

)
, x,Ω > 0, m ≥ 1

2
,

(8)
where m is the shape and Ω the scale parameters, and Γ
denotes the gamma function, as defined in [23, p.255]. Notice
that for m = 1, Nakagami becomes the Rayleigh distribution.

For a sample {x1, x2, ˙..., xn}, with n points, the MLE esti-
mator of the scale parameter (Ω) of the Nakagami distribution
is given by

Ω̂ =
1

n

n∑
i=1

x2
i , (9)

and the MLE estimator of the shape parameter (m) is given
by the solution of the equation

Ψ(m)− log(m)− 1

n

n∑
i=1

log(xi) + log

(
1

n

n∑
i=1

x2
i

)
= 0, (10)

where Ψ denotes the digamma function, as defined in [23,
p.258]. Details on these estimators can be found in [24].

B. Multiplicative model

Assuming a fully developed speckle model and, conse-
quently, Rayleigh statistics for the speckle, if we take a
homogeneous region of the image (σ constant), the ratio of the
standard deviation to the expected value is constant, meaning
that they are proportional. The fact that the standard deviation
is proportional to the mean in homogeneous areas suggests a
multiplicative model for the speckle. Such a model has been
widely used for deriving speckle reducing schemes and may
be expressed as:

I(i, j) = S(i, j) ∗ Y (i, j) (11)

where Y (i, j) is the multiplicative speckle noise in the spatial
position (i, j), with statistics given by equation (1). Moreover,
S(i, j) represents the noiseless pixel value to be recovered for
the same spatial position.

One possibility to deal with speckle under the multiplicative
model is to apply a homomorphic approach. It is based on
taking the logarithm to transform the multiplicative noise into
additive noise:
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TABLE I
(h, φ)-DIVERGENCES AND RESPECTIVE h(x)/φ(x) FUNCTIONS.

(h, φ)-Divergences h(x) φ(x)

Bhattacharyya − log (1− x) −
√
x+ x+1

2

Hellinger x
2 (

√
x− 1)2

Kullback-Leibler x x log (x)

Havrda-Charvát x
(x−xs)

1−s
Sharma-Mittal exp [(s−1)x]−1

s−1 x log (x)

Rényiβ log ((β−1)x+1)
β−1

x1−β+xβ−β(x−1)−2
2(β−1)

Triangular x
(x−1)2

x+1

Harmonic-Mean − log (1− x
2 )

(x−1)2

x+1

log[I(i, j)] = log[S(i, j)] + log[Y (i, j)]

log[I(i, j)] = log[S(i, j)] + Z(i, j)
(12)

where Z(i, j) is now an additive log-transformed speckle
noise.

In this work, we adopt the multiplicative model for speckle
in US images, using the relation in (11) for the RF images,
and the relation in (12) for the log-compressed images.

C. Stochastic Distances based on symmetrized divergences

Divergence measures play an important role in statistical
inference and discrimination since they are measures of the
statistical distance between probability distributions [25]. We
use the term ’stochastic distances’ for symmetrized versions
of divergence measures, as suggested by [26].

Let V1 and V2 be random variables defined on the same
probability space Λ, with densities f(x; θ1) and f(x; θ2) of
the same parametric distribution, and with parameter vectors
θ1 and θ2 respectively. The (h, φ)-divergence between the
densities will depend only on the parameter vectors and can
be expressed by

D(h,φ)(θ1, θ2) = h

(∫
Λ

φ

(
f(x; θ1)

f(x; θ2)

)
f(x; θ2) dx

)
, (13)

where φ is a convex function and h is a strictly increasing
function [26].

Some h and φ functions that give rise to well-known
divergences are listed in Table I. Reference to these functions
can be found in [26] and [27].

Since the measures defined by equation (13) are usually
non-symmetric, we define here our stochastic distances as
in equation (14). This is a typical procedure to symmetrize
divergence measures, as in [26]:

d(h,φ)(θ1, θ2) =
D(h,φ)(θ1, θ2) +D(h,φ)(θ2, θ1)

2
. (14)

Let X and Y be two noisy patches of size N x M, whose
statistics can be described by the Rayleigh ((1)), Nakagami
((8)) or Fisher-Tippett ((6)) distributions, with parameter vec-
tors θ1 and θ2 and defined in the interval Λ. Replacing
f(x; θ) in equation (13) by one of these parametric family of
distributions, using a pair of h(x) and φ(x) functions given in
Table I, and applying the result in equation (14), it is possible
to deduce several stochastic distances. The explicit expressions
for the distances derived for Rayleigh, Fisher-Tippett and
Nakagami distributions, based on all the divergences listed in

Table I, may be found in [28]. This work uses the divergences
shown in Table I since those are the divergences that resulted
in closed-form expressions for the stochastic distances when
using Rayleigh, Fisher-Tippett and Nakagami distributions.

D. Geodesic distances based on probabilistic spaces

Considering fP (x; θ) as a parametric family of proba-
bility distributions, where θ = {θ1, θ2, . . . , θM} is an M-
dimensional parameter vector, the set of all possible values
of this parameter vector form an M-dimensional Riemannian
space, as shown by Rao in [29]. Also in [29], Rao studied
the geometric structure of this space, introducing a quadratic
differential metric that allows the geodesic distance between
two points in this space to be calculated. In summary, the
geodesic distance proposed by Rao is a measure of distance
between two parameterizations from a family of probability
distributions

Additionally, the studies [30] and [31] introduced a generic
method to calculate Rao’s geodesic distance based on the φ-
entropy class. In [32] this previous method is extended and
considers the (h, φ)-entropy class. Entropy classes are gener-
alizations that allow the representation of a set of entropies.
The (h, φ)-entropy class can be expressed as

H(h,φ)(s) = h

(∑
i

φ(pi)

)
, (15)

where choosing adequate functions h and φ result in well
known entropy measures. Table II shows a set of entropies
and the related h and φ functions used to obtain them based
on the (h, φ)-entropy class.

The method proposed by the study in [32] allows the cal-
culation of generalizations of Rao’s geodesic distance, based
on all entropy measures that can be represented by the (h, φ)-
entropy class. Considering a family of distributions with only
one parameter, this method can be summarized as: consider P
a random variable with density fP (x; θ) and support interval I,
where θ = {θ1} is the parameter vector. The geodesic distance
between the points θa and θb in the space generated by the
parameter vector of the density fP (x; θ), expressed in terms
of the (h, φ)-entropy class, is given by [32]

d(θa, θb) =

∣∣∣∣∫ θb

θa

[g(θ)]
1
2 dθ

∣∣∣∣ , (16)

where

g(θ) =

[
h
′′
[∫
I

φ (fP (x; θ)) dx

]
2

∫
I

φ
′
(fP (x; θ))

∂fP (x; θ)

∂θ
dx

+

[
h
′
[∫
I

φ (fP (x; θ)) dx

] ∫
I

φ
′′
(fP (x; θ))

∂fP (x; θ)2

∂θ2
dx

]
,

assuming that the integrals exist and are finite. The symbols
h′/φ′ and h′′/φ′′ denote the first and second derivatives of the
functions h(y) and φ(x) with respect to y and x respectively.

Consider P1 and P2 as two noisy patches that can be
statistically described by the Rayleigh (equation (1)) or Fisher-
Tippett (equation (6)) distributions, and with parameter vectors
θ1 = {σ1} and θ2 = {σ2}, respectively. Replacing fP (x; θ)
in equation (16) by one of these parametric family of distribu-
tions, using a pair of h(y) and φ(x) functions given in Table
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TABLE II
ENTROPIES-(h, φ) AND RESPECTIVE h(x) AND φ(x) FUNCTIONS.

(h, φ)-Entropy h(y) φ(x)

Arimoto (ys−1)
s−1

x
1
s

Havrda-Charvát y
(xs−x)

1−s
Rényi log (y)

(s−1)
xs

Shannon y −x log (x)

Sharma e Mittal exp [(s−1)y]−1
1−s x log (x)

Tsallis y−1
1−s xs

Varma log(y)
m−r xr−m+1

II, and solving the integrals in the interval [0,+∞], we can
deduce several geodesic distances. The explicit expressions for
the distances derived for Rayleigh and Fisher-Tippett, based
on Arimoto, Havrda-Charvát, Rényi, Shannon, Sharma-Mittal
and Varma entropies may be found in [28] or [21]. This
work uses the entropies shown in Table II since those are
the entropies that resulted in closed-form expressions for the
geodesic distances when using Rayleigh and Fisher-Tippett
distributions.

E. Stochastic patch-based filters

In this section, we propose four types of stochastic despeck-
ling filters, two based on NLM and two based on BM3D.

For the stochastic filters derived from the NLM, we use as
base implementation, the pixel-wise NLM approach described
in [33]. In that implementation, designed for Gaussian noise,
the image is divided in overlapping windows, named search
windows, with a central pixel p. The estimation of the pixel p
in the filtered image is a weighted average using all the pixels
(qi) in the search window, where the weight is based on an
exponential kernel depending on the Euclidean distance (d)
between the patches:

wi = exp

(
−d(B(p, f), B(qi, f))2

h2

)
, (17)

where B(x, f) denotes a patch centered in the pixel x and size
(2f + 1)× (2f + 1). The parameter h controls the degree of
smoothness the filter will apply to the image.

To define stochastic versions of such a filter, we replace the
Euclidean distance in equation (17) by one of the stochastic
distances that can be derived in Section II-C. These filters are
named NLM-SIM. In the same way, replacing the Euclidean
distance in equation (17) by one of the geodesic distances that
can be derived in Section II-D we define the filters named
NLM-GEO.

For the stochastic filters derived from the BM3D, we use
as base implementation, the BM3D algorithm found in [34].
The BM3D algorithm performs three core operations: block-
matching, 3D collaborative filtering in a sparse domain, and
reconstruction. For the block-matching operation, the image is
scanned in overlapping windows and for each of these win-
dows, a reference patch is compared to all other (overlapping)
patches within the window. All similar patches, according to
Euclidean distance, are stacked to form a 3D block. These 3D
blocks undergo a linear transformation and are filtered in a

sparse domain. After inverse transformation, there are many
estimates for the same pixel, and the patch is reconstructed
by combining those estimates. The BM3D algorithm executes
the core operations twice. In the first step, the 3D blocks are
filtered using a sparse coefficient threshold; during the second
step, the 3D blocks are filtered using a Wiener filter with
coefficients estimated from the result of the first step. To define
stochastic versions of such a filter, we replace the Euclidean
distance in the block-matching step by one of the stochastic
distances that can be deduced in Section II-C. These filters are
named BM3D-SIM. In the same way, replacing the Euclidean
distance by one of the geodesic distances that can be derived
in Section II-D we define the filters named BM3D-GEO.

III. EXPERIMENTS AND RESULTS

To validate the filters defined in section II-E, we use simu-
lated, synthetic, and real ultrasound images. The experiments
with synthetic images use the database of realistic breast
phantoms found in [35]. The phantoms mimic the breast tissue
echogenicities, tumor shapes, and lesion histology. There are
three types of lesions (carcinoma, cyst, and fibroadenoma),
with three possible tumor shapes each. For each combination
of lesion/tumor shape, there are 50 phantoms, where the
position of the tumor varies. We used 10 phantoms from each
combination, totaling 90 tested phantoms. These phantoms are
the ground truth or noiseless images. Next, we define a noise
pattern as an image with Rayleigh-distributed amplitudes of
mean 1 and of the same size as the ground truth. Since we con-
sider uncorrelated noise, the noisy image must be obtained by
the pixel-by-pixel multiplication of the noiseless image and the
noise pattern. These noisy images are referred to as synthetic
RF noisy images. We note that this noisy image corresponds
to the US multiplicative noise model in equation (11), where
the speckle noise corresponds to the Rayleigh distribution
in equation (1). The synthetic log-compressed images are
obtained by log-compressing the synthetic RF noisy images
using equation (2).

The experiments with real images use a set of RF frames of
breast lesion recorded from a malignant and a benign tumor,
available from [36]. The sets are composed by 183 RF frames
for each type of tumor. We used 50 RF frames from each
set for our experiments. These images are in RF format, thus
we extracted the envelope of the signal using the Hilbert
transform, as suggested in [37]. These are the images referred
to as the real RF US images. The real log-compressed images
are obtained by log-compressing the real RF images, as the
model in equation (2).

For the simulated ultrasound images, we use the tool Field-
II [38], and we simulate images for the cyst phantom, as in
[39] and [8]. The US RF signal envelope is extracted with
the Hilbert transform exactly as shown in the sample code
provided with the tool. These are the simulated RF images.
The simulated log-compressed images are generated by log-
compressing the simulated RF images using equation (2).

Besides the original NLM and BM3D algorithms, we com-
pare our approach with other despeckling filters that have
publicly available versions. These filters are the PPB [15],
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TABLE III
DESPECKLING PERFORMANCE OF NLM-SIM, NLM-GEO, NLM, PPB

AND OBNLM.

Image Simulated Synthetic Real
RF Log RF Log RF Log

NLM-SIM 1.0 0.79 0.99 0.99 1.0 0.93
NLM-GEO 0.93 0.85 0.98 1.00 0.98 0.94

NLM 0.88 0.76 0.95 0.84 0.87 0.86
OBNLM - 0.70 - 0.85 - 0.72

PPB 0.87 - 0.90 0.85 -

TABLE IV
DESPECKLING PERFORMANCE OF BM3D-SIM, BM3D-GEO, BM3D,

SAR-BM3D AND OBNLM.

Image Simulated Synthetic Real
RF Log RF Log RF Log

BM3D-SIM 1.00 0.92 1.00 0.96 1.00 0.94
BM3D-GEO 1.00 0.97 1.00 0.72 1.00 0.90

BM3D 0.93 0.68 0.84 0.68 0.94 0.77
OBNLM - 0.64 - 0.65 - 0.64

SAR-BM3D 0.90 - 0.71 0.86 -

OBNLM [8] and SAR-BM3D [40]. We use PPB and SAR-
BM3D as references for filtering RF images and OBNLM as
reference for filtering log-compressed images.

To quantify the performance of the filtering experiments
we use the speckle suppression index (SSI) [41], the mean
preservation speckle suppression index (MPSSI) [42], the peak
signal-to-noise ratio (PSNR) [43], the structural similarity
index (SSIM) [44], the edge preservation index (EPI) [45],
and the resolution index(RI) [46]. To simplify the comparison
among the filters, since we have a large number of filters, we
define the average value of normalized metrics (AVNM). It is
calculated by normalizing each metric by its maximum value,
and calculating the average value. AVNM ranges from zero,
low filter performance, to one, maximum filter performance.

To be able to compare the performance of the filters, we fix
the RI metric. With RI fixed we can analyze the performance
based on the other metrics. To have the RI fixed, we run one
filter, measure the RI value and then run the other filters, with
a small variation in the parameters, until the same RI is found.

In the Tables III and IV we show the performance of the
stochastic filters when compared with the original methods and
other despeckling filters, for NLM and BM3D respectively.

IV. DISCUSSIONS

The result in the Tables III and IV show that both NLM
and BM3D benefit from replacing the Euclidean distance by
one of the distances suggested in sections II-C and II-D.
This is valid for simulated, synthetic and real US images,
both in RF and log-compressed formats. The filters defined in
section II-E have better performance than the originals NLM
and BM3D respectively, and also have better performance
than the references used for comparison, when considering
the average value of the normalized metrics.

With the full set of data shown in [28], it is also possible
to list the following findings:
• When using the NLM algorithm:

– the stochastic distances derived from the sym-
metrized divergences of Havrda-Charvát and Rényi

for Fisher-Tippet distribution have the better perfor-
mance for filtering log-compressed images. This is
valid for simulated, synthetic and real images;

– the geodesic distances derived from the Havrda-
Charvát, Sharma-Mittal and Tsallis entropies for
Rayleigh distribution have better performance for
filtering RF images. This is valid for simulated,
synthetic and real images;

• When using the BM3D algorithm:
– there is no difference using any of the stochastic

distances derived from symmetrized divergences for
filtering log-compressed images;

– the stochastic distances derived from the sym-
metrized divergences of Havrda-Charvát and Rényi
for Nakagami distribution have the better perfor-
mance for filtering RF images. This is valid for
synthetic and real images;

Finally, it also can be verified by the data in [28], that when
filtering RF images with the NLM stochastic filters, it is better
to adopt the Rayleigh model for the speckle.

V. CONCLUSIONS

This work presented a set of new stochastic distances for
Rayleigh, Fisher-Tippett and Nakagami distributions based on
the (h, φ)-divergence class and in the (h, φ)-entropy class.
Patch-based US image filters derived from the NLM and
BM3D approaches were defined using these stochastic mea-
sures. Experiments with simulated, synthetic and real US
images suggest that these stochastic distances may be used
to improve the performance of patch-based methods filtering
US images.

VI. RESULTS

As a result of the dissertation, the work in [20] was
published and the work in [21] is accepted for publishing.
Additionally, a manuscript entitled ”Patch similarity in ultra-
sound images with hypothesis testing and stochastic distances”
is under major review by the journal ”Computerized Medical
Imaging and Graphics”.
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