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Abstract—Unmanned Aerial Vehicles (UAVs) are increasingly
being applied in professional activities that require higher
precision in navigating and positioning the aircraft in flight.
Advanced location technologies such as GNSS (Global Navigation
Satellite System) and RTK (Real-Time Kinematic), can raise
the cost of demand using UAVs or still be dependent on an
area with a transmission coverage. In this context, this article
presents a visual navigation methodology based on topological
maps comparing the performance of consolidated classifiers such
as Bayesian classifier, k-Nearest Neighbor (kNN), Multi-layer
Perceptron (MLP), Optimum-Path Forest (OPF) and Support
Vector Machines (SVM), using attributes returned by state-
of-the-art feature extractors such as Fourier, Gray Level Co-
Occurrence (GLCM) and Local Binary Patterns (LBP). The
results show that the combination of LBP with SVM obtained
the best values in the evaluation metrics considered, among them,
99.99% of Specificity and 99.98% of Accuracy in the navigation
process.

Index Terms—Unmanned Aerial Vehicles, Computer Vision,
Topological Maps, UAV Navigation.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also known as drones,
are the focus of several researches for the most different
purposes, since they have become attractive due to their small
size, low cost and great manipulation potential [1]. In [2],
UAV is employed in precision agriculture, aiming at collecting
data to assist a more efficient farm and thus reduce its costs.
While in [3], a method of monitoring road traffic using UVA is
proposed, addressing the difficulty of managing road networks,
due to their vast distances. In [4], the authors present solutions
for the search of victims in natural disasters using UVAs and
wireless technology.

Considering this context, the navigation of UVAs has been
increasingly exploited, with the aim of elaborating more mod-
ern systems, with the ability to navigate independently [5]. For
the most part, the navigation task of a UAV is performed using
Inertial Navigation Systems (INS), which provides position,
velocity and attitude information of the UAV [6]. However, this

sensor has polarization errors, which continuously increase.
Thus, additional information on the position of the vehicle
was necessary from a precise navigation sensor, such as the
Global Positioning System (GPS) [6]. However, since INS for
accurate air navigation is very expensive, it is not popular
on small aircraft and UAVs and although GPS offers accurate
navigation with a cheap receiver, in some situations this system
may simply not receive the satellite signal, either due to
obstacles or signal block [7]–[9].

Therefore, to perform the navigation of UAVs using other
resources has become a challenge, motivated by the need
to obtain independent satellite alternatives [1], [5]. As an
alternative to INS/GPS, one of the most commonly used
means for UAV navigation is image recognition, enabling
an autonomous visual-based navigation, satellite independent
[10]. Among the main advantages of visual sensors is that they
do not depend on external signals [11], give bountiful online
information of the environment, are highly recommended for
perception in dynamic environments because they have a high
anti-interference capability and still make it difficult to identify
the detection system because they are mostly passive type
sensors [10].

With this, in this article we propose an autonomous visual
navigation approach with UAVs using topological map and
computational vision. The objective of this work is to present
an analysis of techniques of feature extraction and machine
learning consolidated, directing them to the task of localization
and navigation of UAVs in external and internal environment.
The feature extractors Fourier, Gray Level Co-Occurrence
(GLCM) and Local Binary Patterns (LBP) together with
classifiers k-Nearest Neighbor (kNN), Multi-layer Perceptron
(MLP), Optimum-Path Forest (OPF), Support Vector Machines
(SVM) and Bayesian Classifier were considered for this
proposal. Vision-based navigation for UAV is a complicated
procedure that demands fast processing times and accurate
calculations to return adequate and reliable control commands



to the vehicle [12]. For this reason, in order to compare
the performance of each classifier, four evaluation metrics
were considered: Specificity (Sp), Sensitivity (Se), Positive
Predictive Value (PPV) and Accuracy (Acc). Parameters such
as classification time and extraction time are also considered.

The results show that the association of the LBP extractor
with the SVM classifier, operating with linear kernel, reached
the highest values in the evaluated metrics, with 99.99%
Specificity, 99.98% Accuracy and 99.77% of Sensitivity and
PPV, proving to be an efficient and reliable approach for
navigation of UAVs.

II. MATERIALS AND METHODS

Figure 1 depicts the steps for carrying out the proposed
approach. Firstly, the image is captured by the camera coupled
to the UAV. Then, in the pre-processing step, the image is
resized to decrease the cost of storage and processing in the
next steps. After this, the feature extractors are applied so that
the attribute vector is then used as input for the classifiers.
By obeying the information present in the topological map,
the classifiers perform their prediction, identifying in which
class the UAV is located, called stage of cognition, and finally
allowing the UAV to navigate.

The UAV employed in this approach is the Parrot Bebop
Drone PF722000, as shown in Figure 2. This drone is equipped
with a camera that records videos and takes photos within a
180-degree field of view. The technical Specifications of the
UAV can be seen in Table I.

Fig. 2: Parrot Bebop Drone.

A. Image Acquisition, Pre-processing and Database

The images were captured through the camera coupled
to the UAV. Table I shows the technical specification of
the device. Each image underwent a pre-processing after its
acquisition, where they are redimensioned to decrease the

TABLE I: Specifications of Parrot Bebop Drone PF722000.

Connectivity

Wi-Fi 802.11a/b/g/n/ac

Antennas MIMO dual-band with 2 double-sets of
dipole antennas for 2.4 and 5 GHz
Camera

Sensor CMOS 14Mpx
Streaming Resolution 1700 x 1070 pixels

Video encoding H264
Internal memory Flash 8 GB

storage and computational costs. However, this pre-processing
does not interfere with the navigation process.

An image database was created to carry out this work.
The images were captured at strategic points in the positions
of the classes numbered c1 to c24, establishing the possible
trajectories of the UAVs during their navigation. The database
is composed of 240 images per class, totaling 5760 images,
which have a resolution of 889 × 500 pixels. The sequence of
the images were captured at different angles in real navigation
tasks.

B. Feature Extraction and Classification

For the feature extraction, GLCM was considered with a
distance D = 1 and direction θ = 0. LBP was applied in
its version with a uniform model, aiming at reducing the
dimension of the problem.

Concerning the classification process, Bayesian classifier
operated with the Gaussian probability density function. kNN
considered k = 5 nearest neighbors. MLP carried out its
training using the Levenberg-Marquardt method and neurons
ranging from 1 to 50 in the hidden layer. For OPF, Euclidean
distance was adopted. SVM used a linear kernel and a range
[2−2, 212] for the γ parameter. The determination of MLP and
SVM hyperparameters was done through cross-validation with
10-folds.

The classifiers used were chosen because they presented
distinct properties among them, allowing the abagence of
different aspects. Bayesian Classifier is non-parametric, kNN
is distance-based, MLP consists of an artificial neural network,
OPF is distance-based and SVM is a classifier that seeks to
reduce empirical and structural error.

Fig. 1: Methodology of the proposed approach for the UAVs navigation.



C. Localization and Navigation

A college campus was selected for navigation because this
environment includes both indoor and outdoor areas, which
provides analysis of navigation in both types of environment.

Fig. 3: Topological map of the environment.

Fig. 4: Flow of route 1.

The topological map of the system is presented in the Figure
3, which is systematized in nodes numbered from 1 to 12.
The images were captured in positions that are equivalent to
the classes considered, which were labeled from c1 to c24.
Classes define viable routes for navigation. Figure 3 shows the
topological map of the environment with classes and nodes. A
set of 10 routes were elaborated for navigation. The sequence
of instructions employed to move the UAV in each route is
displayed in the Table II, as well as the initial and final class.

For the sake of better understanding the navigation process,
the flow of route 1 is shown in Figure 4. The UAV begins the
navigation at class c11 (node 1) and receives two instructions
to go front. After this, a command to turn 90 degrees to right
followed by two more commands to go front are sent. Finally,
an instruction to turn 90 degrees to the right, another to go
front and another to turn 90 degrees to right are received by

TABLE II: Instructions for operating the UAV and navigation
routes considered: Go front (GF), turn 90 degrees to left
(T90L), turn 90 degrees to right (T90R) and turn 180 degrees
(T180).

Route Start (Class) Commands End (Class)
1 c11 GF, GF, T90R, GF, GF, T90R, GF, T90R c3
2 c2 T180, GF, T90L, GF, T180 c20
3 c21 T90R, GF, T90L, T90R, GF, GF, T90R, GF c11
4 c18 GF, T90R, GF, T90L, GF, T90L c13
5 c13 GF, T90L, T90F, GF, T90L, GF, T90R, GF c2
6 c3 GF, T90R, GF, T180 c20
7 c17 T180, GF, T90R, GF, GF, T90R, GF c11
8 c23 GF, GF, GF, T180 c13
9 c4 T180, GF, T90L, GF, T90L,GF, T180 c5

10 c11 T180, GF, T90L, GF, GF, T90L, GF, T180 c18

the UAV. In this way, UAV concludes route 1 by reaching class
c3 (node 3).

III. RESULTS

The domain of each combination of feature extractor with
classifier on the images is analyzed according to the param-
eters shown in Tables III and IV. The results of navigation
tests were calculated from 10 runs of each of the routes. The
results were calculated on an iMac 2.5 GHz Core i5 processor
with 4GB of RAM.

Table III outlines mean values and standard deviations
of Specificity, Sensitivity, PPV, and Accuracy. According to
this table, LBP stands out for obtaining the best values in
all the metrics, being the highest values always returned
when in combination with SVM(Linear), reaching 99.991%
in Specificity, 99.774% in Sensitivity, 99.776% in PPV and
99.985% in Accuracy with this classifier. Also according to
Table III, the worst results were returned by the combination
of Fourier with MLP: 97.122% of Specificity, 42.392% of
Sensitivity, 42.712% of PPV, and 94.512% of Accuracy.

Since the problem in question is a real-time application, it
is important to be aware of the computational costs. Hence,
Table IV shows accuracy, training time, testing time and
extraction time, which are important parameters for embedded
systems.

According to Table IV, kNN obtains the shortest training
times when combined with all feature extractors. Values of
0.00007s, 0.00017s, and 0.00039s are observed when kNN
is associated with GLCM, Fourier, and LBP, respectively.
The slower classifiers in the training stage are MLP and
SVM(Linear). MLP reached 3.04043s and 22.26473s in com-
bination with GLCM and Fourier, respectively. SVM(Linear)
associated with LBP completes the training in 5.49787s. Con-
cerning the testing time, MLP is the fastest, achieving 0.01ms
in association with all feature extractors. The highest testing
times are observed for the combinations of kNN with all
extractors, performing the task of classification in 345.74ms,
432.57ms, and 1321.10ms when associated to GLCM, Fourier,
and LBP, in this order.

Still according to Table IV, we evidence that, among all the
feature extractors, GLCM is the one that accomplished its task
in the shortest time: 11.77s. On the other hand, Fourier is the



slowest in this question, with extraction time of 18.49s. All
the best values cited are shown in green in Tables III and IV.

TABLE III: Specificity (Sp), Sensitivity (Se), Positive Predic-
tive Value (PPV) and Accuracy (Acc) obtained by features
extraction and classifiers.

Feature Classifier Sp (%) Se (%) PPV (%) Acc (%)

Fourier

Bayes(Normal) 99.591±0.024 91.802±0.471 92.589±0.373 99.223±0.045
kNN 99.718±0.021 94.155±0.415 94.122±0.427 99.438±0.039
MLP 97.122±0.761 42.392±15.202 42.712±16.209 94.512±1.447

OPF(Euclidean) 99.806±0.028 95.993±0.554 95.976±0.566 99.617±0.053
SVM(Linear) 99.611±0.024 92.226±0.475 92.167±0.491 99.259±0.045

GLCM

Bayes(Normal) 99.951±0.009 98.971±0.192 98.973±0.191 99.905±0.018
kNN 99.839±0.012 96.500±0.242 96.502±0.236 99.672±0.023
MLP 97.613±0.226 52.137±4.528 51.361±3.525 95.436±0.431

OPF(Euclidean) 99.915±0.009 98.253±0.198 98.254±0.199 99.831±0.019
SVM(Linear) 99.918±0.007 98.249±0.135 98.241±0.137 99.835±0.013

LBP

Bayes(Normal) 99.984±0.006 99.619±0.119 99.615±0.118 99.958±0.011
kNN 99.972±0.006 99.458±0.115 99.453±0.115 99.951±0.011
MLP 99.983±0.008 99.532±0.161 99.538±0.162 99.964±0.015

OPF(Euclidean) 99.987±0.006 99.699±0.123 99.694±0.122 99.969±0.012
SVM(Linear) 99.991±0.005 99.774±0.069 99.776±0.069 99.985±0.007

TABLE IV: Accuracy (Acc), training time, testing time and
extraction time obtained by features extraction and classifiers.

Classifier Acc (%) Training time (s) Testing time (ms) Extraction time (s)

Fourier
Bayes(Normal) 99.22±0.05 0.01551±0.00184 55.96±55.94

18.49±2.84
kNN 99.44±0.04 0.00017±0.00012 432.57±432.37

MLP 94.51±1.45 22.26473±6.45220 0.01±0.01
OPF(Euclidean) 99.62±0.05 0.24186±0.01320 143.40±143.33

SVM(Linear) 99.26±0.05 14.24819±5.53269 20.73±20.72
GLCM

Bayes(Normal) 99.90±0.02 0.00601±0.00448 34.30±34.28

11.77±8.67
kNN 99.67±0.02 0.00007±0.00002 345.74±345.58

MLP 95.44±0.43 13.04043±3.79468 0.01±0.01
OPF(Euclidean) 99.83±0.02 0.13773±0.03154 80.30±80.26

SVM(Linear) 99.83±0.01 5.13358±1.21721 9.53±9.53
LBP

Bayes(Normal) 99.96±0.01 0.06373±0.00299 80.76±80.72

17.15±13.21
kNN 99.95±0.01 0.00039±0.00026 1321.10±1320.47

MLP 99.96±0.02 2.74550±1.03566 0.01±0.01
OPF(Euclidean) 99.97±0.01 0.64364±0.32249 361.82±361.64

SVM(Linear) 99.98±0.01 5.49787±1.22487 80.91±80.87

IV. CONCLUSION AND FUTURE WORKS

The present research work has proposed a new navigation
and localization approach for UAVs. The proposed approach
uses topological map and feature extraction and machine
learning techniques for the construction of a system based on
computational vision. The chosen place for the development
of the approach has a dynamic structure, presenting outdoor
and indoor areas, which allows the system to be evaluated in
these two types of environment.

According to the results presented, LBP with SVM(Linear)
was the combination that obtained the best values in the
metrics evaluated, achieving 99.99% in Specificity, 99.77%
in Sensitivity and PPV, and 99.98% in Accuracy, showing to
be a robust and reliable option for the navigation task. About
training and testing times, kNN presented the shortest training
time, with 0.00007s, and MLP obtained the shortest test time,
with 0.01ms. Among the feature extractors, GLCM achieved
the shortest extraction time, with 11.77s.

For future work, other environments that are exclusively
external or internal can be evaluated with our proposed
methodology. In addition, other methods of feature extraction

and machine learning can also be employed, such as Structural
Co-occurrence Matrix (SCM) [13] and Optimum-Path Forest
(OPF) [14], respectively, and still Deep Learning techniques,
especially Convolutional Neural Networks (CNN) [15].
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