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Abstract—One of the main challenges in quadrilateral mesh
generation is to ensure the alignment of the elements with
respect to domain constraints. Unaligned meshes yield numerical
problems in simulations that use these meshes as a domain
discretization. There is no alignment metric for evaluating the
quality of quadrilateral meshes. A directionality field represents
the diffusion of the constraints orientation to the interior of the
domain. Kowalski et al. use a directionality field for domain
partitioning into quadrilateral regions. In this work, we repro-
duce their partitioning method and adapt it to reduce the final
number of partitions. We also propose a new metric to evaluate
the quality of a quadrilateral mesh with respect to the alignment
with domain constraints. 1

I. INTRODUCTION

The discretization of domains in meshes is one of the main
tasks in numerical simulations of engineering using the finite
element method to solve systems of partial differential equa-
tions. Quadrilateral and hexahedral elements are sometimes
chosen because they have better interpolation functions. When
compared to triangles, quadrilateral elements are usually more
stable and need less refinement. Moreover, the transformation
of quadrilaterals into triangles is easier then vice-versa.

In this work, we focus on quadrilateral mesh generation
and in the method of Kowalski et al. [1], which shows how to
partition the domain in quadrilateral regions using the concept
of directionality. Given a triangle mesh, their method generates
a directionality field by solving a partial differential equation.
Then it uses the directionality field to find the singularities
of the field and to generate their separatrices, streamlines that
will partition the domain into quadrilateral regions. As those
regions respect the directionality field, any direct mapping
method generates a good quadrilateral mesh, as we can see
in Fig. 1.

Fig. 1. Example of the domain decomposition in quadrilateral regions and
the quadrilateral mesh generation [1].

1This work relates to an M.Sc. dissertation.

The main contributions of this work are:
• A implementation of the method of Kowalski et al. [1],

with the needed modifications for domains with con-
straints (Sections III and IV).

• A new quality metric that globally evaluates alignments
of quadrilateral meshes (Section V).

II. RELATED WORKS

A. Quadrilateral mesh generation

Quadrilateral mesh generation is a field that has been widely
studied. However, there are still many challenges, specially
the generation of meshes aligned with boundary and interior
constraints for complex domains. Aligned meshes are very
important for modeling [2], to respect the shapes, and for
numerics, to best capture the physical phenomenon [3].

Blacker and Stephenson [4] introduced the paving algo-
rithm, which paves rows of elements from the boundary
inward. The method respects the geometry alignment and con-
straints orientations. There are lot of works that use this paving
method. White and Kinney [5] propose a mesh generation of
element by element, instead of row by row advancing front.
Recently, Park et al. [6] present a paving method in domains
with open boundary constraints.

For complex constraints domains, Araújo and Celes [7]
present a new automatic method for quadrilateral mesh gen-
eration based on deferred constraint insertion. Their method
starts with a triangular mesh that is locally modified to satisfy
each inserted constraint. At the end, they use some heuristics
to convert the triangular mesh into a quadrilateral one. Pochet
et al. [8] propose a direct method for quadrilateral mesh
generation, which receives a geometric constraint set as input
and uses a quadtree to adapt and subdivide the domain.

Direct mapping methods ensure alignment, but need to
partition the domain. Many works use the medial axis or
skeleton to subdivide the domain [9]. However, the medial
axis is not stable: a small change in the domain can affect the
skeleton. Moreover, the resulting regions normally do not have
four sides, and so are not suitable to generate quadrilateral
structured meshes.

Ray et al. [10] formalize the concept of n-symmetry direc-
tion field, which are objects invariant by rotation of 2π

N . Works
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al. [1], [13], [14] use this concept of directionality field to
partition the domain in 2D or 3D into suitable regions for the
quadrilateral or hexaedral mesh generation. In this work, we
explore domain partition with directionality fields, based on
Kowalski et al.’s papers: 2D [1] and 3D [14].

B. Quality Metrics for Quadrilateral Meshes

There are many different ways to evaluate the quality of
a quadrilateral mesh. It is possible to evaluate the vertex
valence. A quadrilateral mesh is regular when the valence
of every vertex is 4. Another quality metric is the minimum
angle between quadrilateral edges. The aim is to measure the
number of elements that have the minimum angle closer to
90◦ and thus closer to squares. The Jacobian quality metric
analyzes the deviation of a mesh element from the ideal
element: it measures how much the element has deformed
from parametric space to object space.

These metrics are local: they evaluate the element locally,
but do not evaluate the mesh globally. None of these metrics
evaluates mesh alignment. This work proposes a new metric
to evaluate mesh alignment, as explained in Section V.

III. REFERENCE WORK

The first part of this work was to revisit Kowalski et al.’s
work [1]. In this section we explain with detail their original
method.

Kowalski et al. [1] present an algorithm to partition a
2D domain Ω into regions suitable for quadrilateral mesh
generation. Given a uniform triangulation of Ω, the algorithm
has the following steps, shown on Fig. 2:

a,b: Generate a directionality field on Ω, propagating the
representation vectors by solving a PDE.

c: Find singularities and separatrices used to partition Ω in
quadrilateral regions.

d: Generate a quadrilateral mesh using structured mapping
in each quadrilateral region.

(a) Representation vectors. (b) Directionality field.

(c) Quadrilateral regions parti-
tion.

(d) Quadrilateral mesh.

Fig. 2. Kowalski et al method [1].

A. Directionality field
Directionality is the concept that guides Kowalski et al. [1].

The creation of a directionality field aims to propagate the
orientations of the constraints to the interior of Ω. The direc-
tionality is continuous on the straight corners, which makes
them continuous in quadrilateral regions.

A regular vertex P in the interior of a quadrilateral mesh
is four-valent and the four incident edges can be seen as two
sets of opposite vectors. The tangents of these curves in P can
be described as a cross.

A vector ~v0 is formed by using θ, which is an angle between
one of the cross’s tangent and a fixed direction (Kowalski et
al. [1] use the x axis): ~v0 = (cos θ, sin θ). Using ~v0 it is
possible to build the directionality. A directionality of θ ∈
[0, π2 ) is defined as:

Cθ =

{
~vk =

(
cos

(
θ +

kπ

2

)
, sin

(
θ +

kπ

2

))T
, 0 ≤ k ≤ 3

}
Given θ of ~v0, the angles of the following vectors ~v1, ~v2, ~v3

are:

θk+1 = (θk +
π

2
) mod 2π where θ0 = θ, 0 ≤ k ≤ 2

As the directionality has four vectors, Kowalski et al. [1]
created the representation vector to make the interpolation
easier. Thus, the representation vector ~vr of the directionality
Cθ is given by:

~vr = (cos(θr), sin(θr)) where θr = (4θ0) mod 2π

As a consequence, when the representation vector rotates by
2π, the corresponding directionality will only rotate π

2 . When
two directionalities differ by a π rotation, they will have the
same representation vector, as shown in Fig 3.

(a) (b) (c) (d) (e)

Fig. 3. Directionalities and their representation vectors [1].

Kowalski et al. [1] solve a diffusion problem to propagate
information from the constraints to the entire domain:

J(u) =
∫

Ω
|∇u|2dx

u(x) = u0(x) ∀x ∈ ∂Ω

|u(x)| = 1 ∀x ∈ Ω

B. Singularities
Next, Kowalski et al. [1] detect the singularities of the

directionality field. A singularity occurs when the field is not
defined and has a zero representation vector. A singularity can
be inside the triangle or on an edge.

Given a triangle T with P1, P2, P3 as vertices, v(Pi) as the
representation vector of Pi and θi as the angle between v(Pi)
and the x axis, the Poincaré index [1], [15] of T is given by:

is =
∆θ12 + ∆θ23 + ∆θ31

2π



where ∆θij = θj−θi−π. The triangle T contains a singularity
when is = ±1. When is = 0, the triangle T does not contain
a singularity.

C. Separatrices

After finding the singularities, the next step is to define
the separatrices that will form the quadrilateral regions. Sep-
aratrices are streamlines that start at a singularity point. A
streamline of a vector field is a curve whose tangent at any
point has the same direction as the vector field at this point.
On a streamline of a directionality field, the tangent at a point
has the same direction as one of its directionality vectors at
the point.

The first step to generate a separatrix is to find the in-
tersection point in the edge of a triangle that contains the
singularity. Given an edge e of a triangle T that contains a
singularity So, a point P in e and a vector ~u = P − So, the
separatrix will intercept e at P when one of the vectors ~vk
of P ’s directionality has the same direction and orientation of
the vector ~u, as in Fig. 4.

Fig. 4. Separatrices originated from the singularity S0 intersection with the
triangle that contains S0. [1].

The next step is to generate further segments on the separa-
trix. This is done by a numerical integration method. Kowalski
et al. [1] use Heun’s method, a second order Runge–Kutta
variant [16], shown in Fig. 5.

Fig. 5. Triangle integration process to define the separatrices [1].

The integration method integrates over the triangles. Each
integration step starts at a point of a triangle and ends at
another point of the same triangle. Each step begins at a point
Xi that is on an edge of a triangle T . This point has an input
direction ~di and the aim is to find the output direction ~di+1

of T at Xi+1 point.

The representation vector in Xi is linearly interpolated from
the representation vectors of the vertices Si of T . They then
define a vector field Y = f(X) over T , which is the vector
of the directionality that has the small angle compared to the
direction ~di denominated v~di .

Knowing that v~di = f(Xi), to find the output point Xi+1,
we need to find a intermediate point X

′

i+1:

X
′

i+1 = Xi + hf(Xi)

From f(X
′

i+1) and f(Xi), it is possible to find the output
direction ~di+1:

~di+1 =
f(Xi) + f(X

′

i+1)

2

Then:
Xi+1 = Xi + h~di+1

The integration ends when the streamline reaches another
singularity or the border of the domain Ω.

D. Quadrilateral Mesh Generation

To generate the quadrilateral regions, geometric singularities
are added. They are the corners of ∂Ω and they are the seeds
for separatrices using the same method. Thereby, the set of
separatrices partitions the domain into quadrilateral regions.
This is possible because the resulting regions do not contain
singularities.

IV. IMPLEMENTATION AND RESULTS

In this section we explain how we have implemented
Kowalski et al.’s method [1], discussing the chosen adapta-
tions. To represent the model’s mesh, we used TopS [17], a
library that provides a compact topological data structure for
finite element meshes.

A. Directionality field

We used the same concept of directionality and representa-
tion vector. So the first step is to propagate the constraints in-
formation through all the domain. In our work, we considered
constraints inside and on the border of the domain, shown in
red in Fig. 6. We find the representation vector for each vertex
from the vertex’s directionality that is formed by the edge’s
normal and the edge’s tangent, as in Fig. 7.

Fig. 6. Model with its constraints.

We used the program gHEM [18] to propagate the direc-
tionality from the constraints to the interior. The program
simulates diffusion by solving a heat conduction problem.



We propagate the representation vectors of the constraints
for each component: component x and component y. The
input to gHEM is a triangular mesh and scalar values (the
components of the representation vector) at the constraint
vertices: those values will be the temperature. We used the
program Pos3D [19] to view the result of the scalar field for
each component, as shown in Figs. 8 and 9.

Fig. 7. Representation vectors prescribed from the constraints in red

Fig. 8. x axis field.

Fig. 9. y axis field.

This procedure differs from the original [1] which imposes
the restriction that the vectors need to be unitary; otherwise
Kowalski et al. [1] say there will be errors and variations
in the directionality orientations. We did not encounter those
limitations when using gHEM. At the end of the diffusion,
we have a value for each component (x and y) that we use
to build the representation vector at each vertex of the mesh.
Fig. 10 illustrates the result of this propagation.

B. Singularities

To define the value of the field in a point P inside a
triangle ABC, we used barycentric interpolation. We defined
the representation vectors of the triangle vertices as “points”.
Knowing that the singularities occurs when the directionality
field is undefined and has a zero representation vector, we
simply need to find the representation vector ~vp = (0, 0) for
P to be a singularity point (Fig. 11).

Compared to Kowalski et al.’s work [1], this method has the
advantage that it gives the exact position of the point P that has

(a) Representation vector field.

(b) Directionality field.

Fig. 10. Result of the propagation.
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Fig. 11. We used barycentric interpolation to find the singularity point in a
triangle.

a zero representation vector. Fig. 12 shows the representation
vector magnitude, the red color is magnitude 1 and the blue
color is the magnitude 0. The dark blue region is exactly the
region that has a singularity, which was already expected.

Fig. 12. Representation vector magnitude.

C. Separatrices

To generate the separatrices, we used the same method as
Kowalski et al. [1]. However, instead of using only the triangle
that contains the singularity, we used the two triangles that
share the edge closest to the singularity point as in Fig. 13.
This was the solution to numerical imprecision errors when
the singularity was very close to an edge.

D. Domains with constraints partition

One of our focus was to investigate the subdivision of
complex domains, such as geologic domains, which also have
constraints in its interior. We aim to decompose the domain
into quadrilateral regions so that the prescribed directionality
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Fig. 13. We’ve used two triangles to calculate the separatrices’ start.

does not introduce discontinuity in the field. Fig. 14 shows a
domain that has interior constraints (in red) and the separatri-
ces (in blue). The constraints, together with the separatrices,
form quadrilateral regions.

Fig. 14. Domain with interior constraints and the resulting subdivision.

The result shows that the separatrices originated from
geometric singularities have followed the directionality field.
Consequently, it was possible to subdivide the domain in
quadrilateral regions suitable for a direct mapping, as shown
in Fig. 15. This mesh was generated with Sigma2D [19].

Fig. 15. Quadrilateral mesh generated from the regions of Fig. 14.

V. A QUALITY METRIC FOR QUADRILATERAL MESH
ALIGNMENT

An application of the directionality fields is to measure
the alignment of quadrilateral meshes, hence their quality. As
mentioned before, no metric exists for analyzing the quality
of quadrilateral mesh alignment. In the second part of this
work, we proposed a new metric to evaluate the alignment in
quadrilateral meshes, divided in the following steps, show in
Fig. 16:

a: Input: Quadrilateral mesh Q of Ω together with its
constraints

b: Triangle mesh T created from Q
c: Directionality field of Ω
d: Output: Alignment quality metric
The method starts with a quadrilateral mesh Q as input. The

next step is to convert it into a triangle mesh T . For that we
subdivide each quadrilateral in two triangles using one of the
diagonals. With T , we generate the directionality field of the

(a) Quadrilateral mesh. (b) Triangle mesh.

(c) Directionality field. (d) Alignment quality metric.

Fig. 16. Quality metric steps.

domain using our method described in Section IV-A. With the
directionality at each vertex, we evaluate the quality described
as follows.

The metric is composed by two factors: deviation d and
reliability α. The deviation represents how misaligned the
vertex is compared to its directionality. For this evaluation
we compare each edge incident to the vertex with the vectors
~vk of the directionality. For each edge ei, we find which ~vk
has the smallest angle (θmini

) with ei. The deviation will be
the largest θmini

, that is d = max{θmini
} (Fig. 17).

Fig. 17. Deviation representation. Mesh edges in gray and directionality in
black. The blue and red vectors are the one that we use to find the angle of
the closer vertex to the edge.

The reliability α means how much we can trust the deviation
measure in each vertex. The directionality is undefined at the
singularities, and so it is impossible to evaluate the alignment
there. On the other hand, the directionality is prescribed on the
constraints and so is completely trustworthy. Therefore, we can
say that the reliability is 0 at the singularities and 1 on the
constraints. These values are consistent with the representation
vector magnitude (Fig. 18), so we can use it as the value for
the reliability: α = ||~vr||.

To visualize the metric, we compose d and α in one figure,
in which the deviation is expressed by the color of each vertex
and the reliability is the transparency of the color. Fig. 19
shows this visualization: the smaller the deviation, the closer
the color is to blue; the larger the deviation, the closer the
color is to red.

Fig. 20 and Fig. 21 show two ways to analyze the metric.
Fig. 20 has histograms that represent the distribution of the
deviation d considering only vertices that have reliability α



Fig. 18. Representation vector magnitude (α).

Fig. 19. Alignment quality metric, deviation (d) is the color of each vertex
and reliability (α) the transparency of the color.

in a chosen interval. The first interval, [0.8, 1.0], is the more
reliable and its color is more opaque. For the other intervals,
the reliability decreases and the color gets less opaque. Fig. 20
reveals the good quality of the mesh: the small deviations
(good quality) are mostly reliable values, while the larger
deviations (poor quality) occur in regions of low reliability.

Fig. 20. Deviation graph quantized in α intervals.

Fig. 21 is a frequency histogram of the deviation, where the
occurrences are weighted by the reliability. The height of each
bar is the sum of the deviation reliability values. Fig. 21 shows
that the graph condenses correctly the information of the first
graph, allowing an evaluation of the quality mesh distribution.

Fig. 21. Condensed bars graph; the height of the bar is weighted by α.

VI. CONCLUSION

In this work, we used and modified a method proposed
by Kowalski et al. [1]. The method generates quadrilateral

meshes by using a directionality field. Our work focused on
regions with constraints and how to treat this regions in domain
partitioning, respecting the directionality alignment.

We then proposed a quality metric for the alignment of
quadrilateral meshes. This metric uses the directionality to
calculate the angle deviation of each vertex and the magnitude
of the representation vector as a reliability criterion. The
results show that meshes can have a good quality locally and
a bad quality globally. Our metric reflects this in a direct way.

ACKNOWLEDGMENTS

This work was sponsored by CAPES (Grant CAPES
PROEX 0487 process 1503654) and by Instituto Tecgraf/PUC-
Rio.

REFERENCES

[1] N. Kowalski, F. Ledoux, and P. Frey, “A PDE based approach to
multidomain partitioning and quadrilateral meshing,” in Proceedings of
the 21st international meshing roundtable. Springer, 2013, pp. 137–
154.
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