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Abstract—The automatic quality assessment of images and
videos is a crucial problem for a wide range of applications
in the fields of computer vision and multimedia processing. For
instance, many computer vision applications, such as biometric
identification, content retrieval, and object recognition, rely
on input images with a specific range of quality. Therefore,
a great research effort has been made to develop a visual
quality assessment (VQA) methods that are able to automatically
estimate quality. However, VQA still faces several challenges.
In the case of images, most of the proposed methods are
complex and require a reference (pristine image) to estimate the
quality, which limits their use in several multimedia applications.
For videos, the current state-of-the-art methods still perform
worse than the methods designed for images, both in terms
of prediction accuracy and computational complexity. In this
work, we proposed a set of methods to estimate visual quality
using texture descriptors and machine learning. Starting from the
premise that visual impairments alter image and video texture
statistics, we propose a framework that use these descriptors to
produce new quality assessment methods, including no-reference
(blind) and full-reference quality metrics. Experimental results
indicate that the proposed metrics present a good performance
when tested on several benchmark image and video quality
databases, outperforming current state-of-the-art metrics.

Index Terms—Visual quality, objective metrics, no-reference
image quality assessment, video quality assessment

I. INTRODUCTION

Visual quality assessment is an important problem in com-
puter vision (CV). The quality of image and videos affects
the performance of the several CV algorithms. For instance,
Karahan et al. [1] have tested the performance of face recog-
nition methods, based on deep convolutional neural networks
(DCNN), for images with different levels of degradations.
They observed that, although DCNN models are robust to
color distortions, some structural distortions cause a signif-
icant decrease in performance. In addition to that, Dodge
& Karam [2] demonstrated that DCNNs are susceptible to
image quality distortions, particularly to blur and noise. More
specifically, they inserted distortions into a dataset of images
and tested the performance of identification algorithms that
used different DCNN architectures. Bharadwaj et al. [3] inves-
tigated the effects of quality on the performance of biometric
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Fig. 1. Object detection using YOLO [5] on the distorted (left) and on the
pristine (right) images from GoPro [6] dataset. The detection effectiveness of
YOLO is remarkably impaired by the quality of the input image.

systems. Moreover, Kupyn et al. [4] have shown that object
detection methods based on deep learning approaches [5], [6]
are greatly affected by the quality of the input images, as illus-
trated in Fig. 1. Another examples of known CV algorithms
that are affected by the quality of the input images include
finger vein detection [7], video stream recognition systems [8],
deep learning reconstruction of magnetic resonance imaging
(MRI) [9], multi-view activity recognition [10], etc [11].

Additionally, due to the popularity of multimedia services
over the Internet, the requirements of end users have changed
in terms of the quality. In a recent report, Conviva®has shown
that viewers are demanding a delivered multimedia content
with a higher quality [12]. But, in the context of images and
videos, higher quality content generally correspond to larger
file sizes, which implies in higher network traffic and storage
space. This growing network traffic and storage space, as
pointed out by Cisco®[13], is mostly composed of multimedia
content. Since the quality of the multimedia content can be
altered in any stage of the multimedia communication chain,
such as capture, compression, transmission, reproduction, and
display, it is important to design automatic tools that are able to
predict the quality of the visual stimuli perceived by the user.
In other words, techniques for assessing the quality of image
and video signals are crucial for most multimedia applications.

Notwithstanding, the design of automatic methods that
estimate the quality of a multimedia content is a challenging
problem, which requires solving three major issues. The first
one is to determine a set of features that are relevant to
visual quality. The second is to establish a pooling strategy
for assessing visual quality over space and time. The third
problem is how to create a model for mapping the pooled data
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Fig. 2. Stages of the proposed no-reference image quality metric.

into estimates of the subjective quality scores. Hemami and
Reibman [14] have named these three problems as measuring,
pooling, and mapping, respectively. Measuring refers to the
computation of the stimuli physical quantities. Pooling refers
to the combination of the measurements, over a suitable
subspace, to represent the quality of the stimuli. Mapping
corresponds to modeling the result of the pooling into an
estimate of subjective scores.

In this work, we investigate the use of texture measures (or
descriptors) in image and video quality assessment method-
ologies. We chose to adopt a feature-based approach because
this type of approach does not require assumptions about what
types of artifacts (degradations) are present in the stimuli or
its semantic content. For this reason, the chosen approach is
more general and can be more widely used in multimedia
applications. Feature-based approaches can be divided into
Natural scene statistics (NSS) and Machine Learning (ML)
approaches. NSS approaches are based on the hypothesis that
the statistical properties of natural scenes are affected by
distortions or artifacts. ML approaches, on the other hand,
relies on a large number of features that are designed to capture
relevant factors affecting visual quality. Since visual features
are not easily interpreted, choosing them is one of the main
challenges in this type of approach. In this work, we choose
an ML approach because it provides a superior performance
when compared to other approaches.

This document summarizes the main contents of the Ph.D.
dissertation entitled “Using Texture Measures for Visual Qual-
ity Assessment”, which was developed in the Department
of Computer Science of the University of Brası́lia. In Sec-

tion II, we explain the texture measurement adopted in this
work. Sections III and IV describe the application of texture
measures for assessing image and video, respectively. The
conclusions are presented in Section V. Finally, we summarize
the accomplishments of this research in Section VI.

II. TEXTURE MEASUREMENTS

The texture is a fundamental attribute of images. In the
context of this work, a texture is the characteristic of an
area, which is perceived as the combination of some basic
patterns. These basic patterns present a certain regularity that
appears in the statistical measures of the visual stimuli. To
characterize a texture, a method identifies and selects a set
of distinguishing and relevant features. Several methods have
been proposed to characterize textures, including gray level
co-occurrence matrices (GLCM), texture spectrum, and local
binary patterns (LBP). Among the aforementioned methods,
the LBP descriptor is one of the most popular methods. Its
popularity is due to its ability to describe texture information
using a simple descriptor-based approach. Because of its
simplicity, this method had a big impact on several computer
vision applications, such as face recognition, gender classifi-
cation, among others. Despite its flexibility, performance, and
popularity, the LBP descriptor has many limitations, which
have inspired the development of variants that are better
adapted to the different applications.

Part of the research conducted in this thesis is to investigate
the use of state-of-the-art LBP variants to describe visual
quality. Among the studied variants are:

. Local Ternary Patterns (LTP) [15];

. Local Phase Quantization (LPQ) [16];

. Binarized Statistical Image Features (BSIF) [17], [18];

. Rotated Local Binary Patterns (RLBP) [19], [20];

. Complete Local Binary Patterns (CLBP) [21];

. Local Configuration Patterns (LCP) [22];

. Opposite Color Local Binary Patterns (OCLBP) [23];

. Three-Patch Local Binary Patterns (TPLBP) [24];

. Four-Patch Local Binary Patterns (FPLBP) [24].

Experimental results show that the above LBP variants can
be used to describe (and estimate) image quality in some
contexts. However, we noticed that the robustness of these
descriptors can make it difficult to detect some types of
degradations and, therefore, to estimate the overall quality.
We also observed that multiscale texture descriptors are more
suitable for quality estimation. Taking into consideration these
observations, we developed six quality-aware texture descrip-
tors in this thesis. The proposed quality-aware descriptors are:

. Multiscale Local Binary Patterns (MLBP) [25];

. Multiscale Local Ternary Patterns (MLTP) [26];

. Local Variance Patterns (LVP) [27];

. Orthogonal Color Planes Patterns (OCPP) [28];

. Salient Local Binary Patterns (SLBP) [29];

. Multiscale Salient Local Binary Patterns (MSLBP) [30].
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Fig. 3. Distribution of average SROCC after 1000 simulations using different texture descriptors (a, b, and c) and comparison with different state-of-the-art
methods (d, e, and f).

III. IMAGE QUALITY ASSESSMENT USING SPATIAL
TEXTURE MEASURES

We proposed a generic quality assessment method that is
based on a supervised learning approach. Block diagrams of
the training and predicting stages of the proposed method are
depicted in Fig. 2(a) and 2(b), respectively. First, we collect
subjective scores corresponding to each image of a training
set. This procedure generates a set of labeled images, where
each training set entry is composed by a pair of an image
and its associated MOS (mean observer score). Then, we

train the model by extracting features from each image and
associating them to the corresponding MOS. After generating
the prediction model, the image quality can be predicted using
the trained model.

Once it has been demonstrated that basic LBP variants
present a suitable descriptor to describe image quality, we
check the performance of other LBP extensions mentioned
in Section II. To perform the tests, we variate the parameters
of BSIF, LPQ, and CLBP descriptors. For the remaining ex-
tensions (i.e., LCP, LTP, RLBP, TPLBP, FPLBP, LVP, OCLBP,
OCPP, SLBP, MLBP, MLTP, and MSLBP), we do not variate



the parameters. Figs. 3(a), (b), and (c) depict the distribution of
SROCC over simulations on the general case using the tested
LBP variants.

The performed tests indicate that multiscale approaches
increase substantially the overall quality prediction perfor-
mance. Among the multiscale approaches, the MSLBP de-
scriptor, which incorporates visual saliency information for the
multiple scales of the LBP maps, presents the best accuracy
performance. For the LIVE2 database, the MSLBP and OCPP
descriptors have similar performances. However, for the set
of all tested databases, the OCPP descriptor has the best
overall performance, when compared to the other LBP-based
descriptors and to current state-of-the-art quality assessment
methods.

Fig.3(d), (e), and (f) indicate that the state-of-the-art meth-
ods CORNIA and SSEQ present a performance similar to
some LBP-based descriptors, such as CLBPSM and BSIF.
However, several LBP-based descriptors present a notable
performance, being superior to the state-of-the-art methods,
as we can observe from results of LPQ, MLBP, MSLBP, and
OCPP with average SROCC above 0.94 on LIVE2. We can
also notice that LBP-based NR-IQA approaches present better
performance also on CSIQ and TID2013 databases. On CSIQ,
we can observe that, on average, the best state-of-the-art NR-
IQA method is BRISQUE, followed by SSEQ and CORNIA.
The average SROCC scores are 0.7406, 0.6979, and 0.6886 for
BRISQUE, SSEQ, and CORNIA, respectively. However, LPQ,
BSIF, LVP, OCLBP, OCPP, SLBP, MLBP, MLTP, and MSLBP
descriptors present better results on CSIQ when compared with
the state-of-the-art methods. Similarly, on TID2013 database,
the best state-of-the-art method is CORNIA, which presents
an average SROCC of 0.5361. This value is outperformed by
several LBP-based descriptors, such as LVP (0.5428), OCLBP
(0.5902), OCPP (0.7035), MLBP (0.5284), MLTP (0.5652),
MSLBP (0.5919), and LPQ (0.5518).

IV. VIDEO QUALITY ASSESSMENT USING
SPATIOTEMPORAL TEXTURE MEASURES

Based on the results obtained with the method described in
the last section, we investigated whether texture information
can be used to assess the quality of the videos. Since still
images and moving images (videos) are perceived differently
by the human vision system (HVS), we added more feature
sets to the framework than what was previously used for
predicting the quality of still images. The feature sets are
composed of:

. multiscale salient local binary patterns (MSLBP) [30],

. multiscale structural similarity (MSSIM) [31],

. gradient magnitude similarity deviation (GMSD) [32],

. Riesz pyramid similarity deviation (RPSD) [33],

. spatial activity (SA) and temporal distortion measures
(TDM) [34].

As illustrated in Fig. 4, each of these feature sets is
computed for both the reference and assessed videos. For
each feature component, a pooling strategy is adopted and the
pooled values are concatenated to generate a single feature

Reference Video
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GMSD

RPSD
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TDM

Feature Pooling

Pooling

Pooling

Pooling

Pooling

Pooling
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Fig. 4. Block diagram of the proposed video quality assessment method.

vector. Finally, the feature vector is used as input to a random
forest regressor (RFR) to predict the quality score.

The proposed video quality method is compared with other
7 methods, including 3 image quality metrics plus 4 state-
of-the-art video metrics. These results are shown in Fig. 5,
which depicts the distribution of the correlation scores over
1,000 rounds of simulations. Fig. 5(a) presents the SROCC
and LCC violin plots for the CSIQ dataset. Notice that
the proposed method shows the highest SROCC average
values, when compared to state-of-the-art metrics, followed
by SSTSGMSD, GMSD, ViS3, and STRRED. Since CSIQ
contains two transmission-based distortions, it is expected that
IQA methods present a worse performance, which explains
the differences between the PSNR and SSIM results when
compared with other methods. Surprisingly, GMSD presents a
competitive performance, having a performance similar to its
video-based version, SSTSGMSD.

V. CONCLUSIONS

In this thesis, our goal was to investigate how to estimate
digital image and video quality for real-time applications,
with both blind and full-reference objective metrics that use
machine learning approaches. In the proposed approach, visual
quality methods were generated using texture measurements.
We presented two methods: a no-reference (blind) image
quality metric and a full-reference video quality method. In
this work, we first presented a general framework to predict
image quality using texture descriptors, using the Local Binary
Pattern (LBP) and some of its variants. Then, we adapted the
texture feature descriptors for video quality assessment.

In short, the thesis at hand contributes to the fields of
Multimedia and Computer Vision with the following novelties:
. Development of a set of extensions of the LBP descriptor,

which are designed to produce quality-aware features that
are useful to predict visual quality.

. Development of a machine learning framework to blindly
estimate image quality using texture descriptors.

. Development of a full-reference video quality assessment
method using the framework described for still image but
with some additional spatio-temporal features.
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Fig. 5. Violin plots of SROCC results of the tested OVQA methods for CSIQ, IVPL, MCL-V, LIVE, and LIVE-M databases.

The proposed solutions are generic enough to be used in
multimedia applications that require a quality estimate for
images or videos, such as video coding, lossy compression,
image restoration, etc. Moreover, the proposed methods can be
extended for another type of visual data, such as point clouds,
3D videos, and light fields. As future work, another type of
descriptors that produce texture features that are sensitive to
other types of distortions (such as color, contrast, etc.) can be
designed.

VI. RESEARCH ACCOMPLISHMENTS

As a result of the work produced in this Ph.D. dissertation,
23 papers were produced and 2 awards were received :

� Published Conference Papers:
C1: “A Parallel Framework for Video Super-Resolution”

– SIBGRAPI, 2014
C2: “Tampering Detection of Audio-Visual Content Using

Encrypted Watermarks” – SIBGRAPI, 2014.
C3: “Embedding Color Watermarks Into Halftoning Im-

ages Using Minimum-Distance Binary Patterns” –
SIBGRAPI, 2015.

C4: “Improved Performance of Inverse Halftoning Algo-
rithms via Coupled Dictionaries” – ICME, 2015.

C5: “Video Quality Ruler: A New Experimental Method-
ology for Assessing Video Quality” – QoMEX, 2015.

C6: “No-Reference Image Quality Assessment Using Tex-
ture Information Banks” – BRACIS, 2016.

C7: “No-reference Image Quality Assessment Based on
Statistics of Local Ternary Pattern” – QoMEX, 2016.

C8: “Blind Image Quality Assessment Using Local Variant
Patterns” - BRACIS, 2017.

C9: “On the Performance of Visual Semantics for Improv-
ing Texture-based Blind Image Quality Assessment” –
SIBGRAPI, 2017.

C10: “No-reference Image Quality Assessment Using
Salient Local Binary Patterns” – Electronic Imaging,
2018.

C11: “Blind Image Quality Assessment Based on Multiscale
Salient Local Binary Patterns” – ACM Multimedia
Systems, 2018.

� Accepted Conference Papers:
C12: “Towards a Referenceless Visual Quality Assessment

Model Using Binarized Statistical Image Features” –
BRACIS, 2018. Accepted.

� Published Journal Papers:
J1: “A Parallel Framework for Video Super-resolution”

– Electronic Letters on Computer Vision and Image
Analysis (ELCVIA), 2014 – Qualis B2.

J2: “Detecting Tampering in Audio-Visual Content Using
QIM Watermarking” – Information Sciences, 2016 –
Qualis A1

J3: “Enhancing Inverse Halftoning via Coupled Dictio-
nary Training” – Signal Processing: Image Commu-
nication, 2016 – Qualis A2.

J4: “Secure Self-Recovery Watermarking Scheme for Er-
ror Concealment and Tampering Detection” – Journal
of The Brazilian Computer Society, 2016 – Qualis B1.

J5: “Hiding Color Watermarks in Halftone Images Using
Maximum-Similarity Binary Patterns” – Signal Pro-
cessing: Image Communication, 2016 – Qualis A2.

J6: “Blind Image Quality Assessment Using Multiscale
Local Binary Patterns” – Journal of Imaging Science
and Technology, 2017 – Qualis B4.

J7: “Using Multiple Spatio-temporal Features to Estimate
Video Quality” – Signal Processing: Image Commu-
nication, 2018 – Qualis A2.

J8: “No-Reference Image Quality Assessment Using Or-
thogonal Color Planes Patterns” – Transactions on
Multimedia, 2018 – Qualis A1.

� Submitted Journal Papers:
J9: “Performance Analysis of a Video Quality Ruler

Methodology for Subjective Quality Assessment” –
Transactions on Broadcasting, 2018 – Qualis A2.
Under review.

J10: “Image Quality Assessment by Saliency, Color-Texture
Energy and Gradient Boosting Machines” – Journal



of the Brazilian Computer Society, 2018 – Qualis B1.
Accepted.

J11: “A Framework for Computationally Efficient Video
Quality Assessment” – Signal Processing: Image Com-
munication, 2018 – Qualis A2. Under review.

� Awards:
A1: Honorable mention award in the main track for the

work “Embedding Color Watermarks into Halfton-
ing Images using Minimum-Distance Binary Patterns”
presented in the 28th Conference on Graphics, Patterns
and Images (SIBGRAPI), Salvador, Brazil, on August
26–29, 2015.

A2: Best student paper award in the Image Quality and
System Performance track for the work “Blind Image
Quality Assessment Using Multiscale Local Binary
Patterns” presented in the International Symposium
on Electroning Imaging, Burlingame, California, on
February 29, 2017.

The publications derived from this Ph.D. dissertation are
available at: https://www.dropbox.com/s/f8t4iqutdqf8hc3/
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