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Abstract—Breast cancer is the most frequent type of cancer
among women. Since early diagnosis provides a better prognosis,
different techniques have been developed by researchers all over
the world. Several studies proved the efficiency of infrared image
as a breast cancer screening technique. This paper proposes
a methodology for analyzing infrared thermography of breast,
considering distinct protocols, in order to classify patients images
as healthy or non-healthy due to anomalies such as cancer.
The major contribution of this work is to provide accurate
classification using Convolutional Neural Networks, which were
not exploited in previous works. Many methods relies on hand-
crafted features and traditional classificators, such as Support
Vector Machines. We obtained competitive results compared to
other works and we design an appropriate modelling which
takes advantage of this type of deep learning architecture. Our
proposal obtained 98% of accuracy for static protocol and 95%
for dynamic protocol.

I. INTRODUCTION

Cancer is a disease which can spread quickly and impact
the major organs and functions of the body. According to the
World Health Organization – WHO [1], cancer is an uncon-
trollable growth or reproduction of abnormal cells, beyond
their usual boundaries. Metastasis is one of the hallmarks of
cancer, which the tumor cells spread to other parts of the body
damaging organs and tissues, leading patients to death.

Several glands and tissues compose the breasts. Lobules are
responsible to produce milk which is transported to the nipples
by ducts, a breast structure similar to a pipe. Breasts are also
composed by fat, lymph nodes and blood vessels in a region
called stroma.

Breast cancer occurs when the tumor is located in one
of the breast structure, mentioned before. According to The
VisualMD Website [2], about 80-85% of breast cancer cells
occurs in the ducts, 10-15% of the cases appears in lobules
cells, and the other 5-10% occurs in the stroma region.

Breast cancer is the second most common type of cancer
in the world [1]. In Brazil, the National Institute of Cancer
[3] estimated that in 2018, 28% of new registered cases of the
disease, are breast cancer. It is also responsible for the death
of an average of 14,000 people.

Despite its high occurrence, when diagnosed early, the
patient may obtain 95% chance of cure [4]. This is the
major reason for many researchers to keep developing new

methodologies to diagnose breast cancer earlier. Also, these
technologies assist doctors to make a more accurate diagnose
and also, let them able to indicate preventive treatments for
patients at risk to develop the disease.

There are several ways to diagnose breast cancer. The breast
self-exam is the easiest option since the patients can do it by
themselves. More detailed exams rely on images to visualize
and detect any abnormal pattern inside the breast that indicates
anomalies.

Mammography is the most used screening technique in
order to identify patients at initial stages of breast diseases.
When this exam presents any abnormal results, doctors may
conduct their patients to a more detailed screening exam,
considering the BI–RADS score. However, if breasts have
high density or protesis, it requires a different screening exam,
such as Ultrasound or Magnetic Ressonance Imaging – MRI,
which is more expensive than other methods. The combination
of different techniques is important, since most of them are
complementary [5].

Considering the most popular breast diagnosis exams, in-
frared imaging provide important information about the pres-
ence of abnormalities on the breast. Based on the asymmetry
of the temperature distribution along the sagital axis, it is
possible to investigate the presence of abnormalities on the
breast.

Also, infrared imaging introduces several advantages. They
do not use ionizing radiation, venous access or other invasive
procedures. It is painless and has no contact with patients
skin and it has low cost when compared with traditional
exams, such as mammography, ultrasound and others. Section
II presents more details about infrared imaging in the context
of breast cancer detection.

Computer aided detection or diagnosis (CAD) systems may
assist medical doctors on cancer diagnostics. This task requires
from the doctor a specific study and experience in order to
provide an accurate diagnosis based on image. Also, due to
some limitation each screening technique has, a computer-
aided detection system may work as a peer based diagnosis
method.

These systems consist of several stages. Initially, acquisition
and storage of infrared images are necessary. Several proposals



of acquisition protocols of breast thermal images includes
static and dynamic approaches. The static protocol does not
take into account data related to time. Normally it consists
of a single image with thermal maps. The dynamic protocol,
in contrast, encompasses several images captured during an
interval of time.

After the definition of the protocol, it is necessary to use
image processing techniques for segmentation of the region of
interest (ROI), in order to extract the relevant area processed
for later stages. The extraction of features in ROI is neces-
sary for further use in a machine learning classifier, which
detect patterns with anomalies (positive samples) and without
anomalies (negative samples).

Considering the increasing demand for automatic methods
for breast cancer detection in infrared imaging, we analyze dif-
ferent methodologies to automatically classify infrared images
into distinct subsets: healthy or abnormal. The contributions
of this paper are stated:

• It was developed a supervised breast cancer detection
methodology based on Convolutional Neural Networks
(CNNs), which was never used for classifying infrared
breast images.

• We propose 4 strategies to determine how the dynamic
protocol fits better in a CNN model. Also, we describe
an appropriate CNN architecture design for the described
problem.

• We evaluate the performance of two distinct protocols
(static and dynamic) of breast images acquisition, con-
sidering cross-validation. That avoid the effects of over-
fitting.

• We discuss the results quantitatively for seven accuracy
measures and time (in seconds) of network training,
considering CPU and GPU architectures.

This paper is organized as follows. The Section II describes
how infrared imaging works and how they are used to classify
breast thermal images as healthy or non-healthy. Also, it
analyzes how accurate infrared image methods detect the dis-
ease. The section III summarizes the state-of-the-art of breast
infrared imaging classification and compares our approach to
them. Finally, in the Section IV we describe the proposed
methodology considering new approaches for introducing the
breast thermal dataset with distinct protocols in a deep learning
framework. Finally, Section V summarizes our experiments
and quantitatively results. The conclusion and future works
are depicted in Section VI.

II. THE ROLE OF INFRARED IMAGE DETECTING BREAST
CANCER

Infrared imaging used on clinical applications is a procedure
used to detect, record and produce an image representation
of the infrared radiation, invisible for humans eyes [6]. The
infrared radiation is part of the electromagnetic spectrum
which is not visible but can be represented as a temperature.

According to Gore and Xu [7], it is possible to observe,
for a long period of time, a certain symmetry in the thermal

temperature distribution of the body. The presence of abnormal
cells, such as a tumor, may affect this temperature distribution.

Three main reasons for this thermal asymmetry can be men-
tioned, such as the angiogenesis process, the high metabolic
activity of the cancer cells and the vasodilatation caused by
nitrix oxide release [6], [8].

It is possible to capture the breast temperature using simple
and non-invasive methods, such as thermal cameras. This
type of camera is sensible to infrared radiation, acquiring the
information and converting into one of the visible bands of
the electromagnetic spectrum.

The Database for Mastology Research [9] has two different
protocols of acquiring images, the static and the dynamic
protocol. The static records only one image per patient, in
different angles, while the dynamic records a set of twenty
images per patient, over a given period, after passing through
a cooling step.

III. RELATED PAPERS

Classification of medical images is a complex task that
requires some expertise to analyze and detect abnormalities.
Computers can master this task with a good dataset and the
right machine learning algorithm. Is this section, we are going
to review some of the methods available in the literature and
compare them to the proposed method of this paper.

In the work of Lessa and Marengoni [10], it was developed a
method based on Artificial Neural Networks (ANN) to classify
breast thermal images into abnormal and normal samples.
Similar to our approach, Lessa and Marengoni used infrared
images from DMR [9] using the static aquisition protocol. In
their experiments, it was selected 47 patients and 94 breast
images, in which 48 came from healthy patients and 46 had
some abnormality. They reported 87% in sensitivity, 83% in
specificity and 85% in accuracy.

Their method consists of 4 steps. First, the data is pre-
processed, such that the image is converted to grayscale and
the background is removed; Then, they segment the breast
thermograms using the Canny edge detector with a threshold
for the lower part of each breast; After that, they compute
the histogram of each thermogram, in order to understand
the relationship between the temperature of healthy and sick
samples using statistical analysis; and finally, they train ANNs
to realize the classification based on this feature.

Differently from Lessa and Marengoni, Silva et al. [11]
worked only with the dynamic aquisition protocol. He devel-
oped a hybrid approach to classify samples into normal or
”with abnormalties”, using time series. His approach achieved
100% in accuracy.

Their work extracted the temperature matrix from the pa-
tients exam. Next, it is developed a step of image processing,
which the Region of Interest (ROI) is segmented and the image
is registered. Then, the ROI is divided into small squares
which the maximum temperature is computed over the patients
thermograms, generating the time series. After that, K-Means
algorithm is applied in order to construct k groups. Clustering
validation index is used to evaluate the results obtained by



K-Means. Finally, the values obtained in the previous step
is used as features and submitted to classification. Over 30
classification algorithms were used in his experiment, reaching
100% of accuracy with K-Star and Bayes Net.

Gaber et al. [12] developed a CAD system classifier. His
approach has two stages, the automatic segmentation and the
classification. First, the segmentation has three basic steps,
the pre-, segmentation and post-segmentation. Basically these
stages prepare the data, segment and enhance the result of
the segmentation. After that, 30 features based on gabor
coeficients, statistics and GLCM, were extracted from the
dataset and transferred to the classifier. At the end, the Support
Vector Machine (SVM) has been used to classify the samples.
The authors reported a total of 92.06% of accuracy and 87.50%
of precision.

Sathish et al. [13] also developed a breast thermogram
image classifier. In their approach, a automatic segmentation
of the ROI is developed and used to extract two features,
the histogram and the grayscale co-occurrence matrix-based
texture. According to the authors, using statistical tests, these
two features are more significant in order to detect breast
cancer. Their approach uses SVM RBF to classify the samples
into sick and healthy patients. They reported an accuracy of
90% and 87.5% of sensitivity.

A similar work was developed by Borchartt et al. [14]. Their
work uses the DMR static images for its experiments, with a
sample of 51 images, which 37 came from healthy patient and
14 have some abnormality. The methodology proposed by the
authors include a segmentation step which can be a manual
or an automatic algorithm to segment the ROI. After that, the
authors used statistical measures, histogram, Higuchis fractal
dimension and three geostatistics methods as features to train
the SVM algorithm. And finally, the Genetic Algorithm (GA)
is used in order to optimize the results of the classification. The
authors reported a 88% of accuracy and 79% of specificity.

Another type of work have been conducted by Gogoi et al.
[15] in which it was proposed a investigation of the importance
of selecting the right features to improve the classification
accuracy. According to the authors, a set of 24 features have
been used in order to select the best discirminative features
for breast cancer detection. Using a random selected images
from different databases (DMR and DBT-TU-JU), the authors
used statistical and texture features with several classifiers in
order to find the algorithm with the best accuracy. With ANN
and Linear SVM, the authors reached 87.5% of accuracy and
80% of sensitivity.

IV. MATERIALS AND METHODS

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized
kind of neural network for processing data that has a known,
grid-like topology [16]. A typical layer of a CNN consists of
three stages. In the first stage, several convolution operations
are performed in parallel to produce a set of linear activations.
These convolutions compute feature maps of the previous layer
with a set of filters.

Later, each linear activation is computed through a nonlinear
activation function, such as reLU (rectified linear activation
function). Normally reLU is used because it leads to a faster
training stage in deep nets. This stage is called the detector
stage.

Finally, it uses a pooling function to modify the output of
the further layer, reducing the size of feature maps. A pooling
layer with pooling size of 2 x 2 reduces a patch with 2 x
2 pixels to one pixel. That results in faster convergence and
better generalization.

These stages are depicted in Figure 1. In this context, the
convolutional net is viewed as a small number of complex
layers, with each layer having many stages.

The training of a CNN ressembles a feedforward neural
network. Each sample (image) is forwarded through the layers
until a loss function is computed. Then, the loss is back-
propagated into the net, changing the weights in accordance
to gradient descent methods [18]. This procedure is looped
until a pre-defined number of training iterations (epochs) is
reached.

B. Training a CNN for Breast Thermal Dataset using Static
and Dynamic Protocols

The infrared images used in this work belongs to the
Database for Mastology Research with Infrared Image - DMR
[9]. This dataset comprises static and dynamic protocols.
Protocols for thermal imaging can be classified based on the
behavior of the body, related to heat transfer.

In static acquisitions, the body of the patient must achieve
thermal balance in a controlled environment; dynamic proto-
cols are used to inspect the skin temperature recovery caused
by thermal stress after cooling the patient by eletric fan.

The static dataset of DMR is composed of 177 images
of healthy patients and 42 pictures of patients with cancer.
Since balance of image classes is necessary to use CNN
architecture, images of cancerous set is augmented until both
classes have the same amount of images. These images are
chosen randomly among the abnormal set.

For the dynamic protocol, 95 healthy patients has 20 images
each, totalizing 1900 figures. On the non-healthy cases, 42
patients compose 20 images (840 pictures in total). As in static
approach, abnormal set of images are augmented randomly,
until the healthy and non-healthy sets has the same number of
samples (images).

For the static approach, CNN classification is performed
using each image of each patient, considering cross-validation.
However, since we use CNN, it is not necessary to define
features to be selected into the breast thermal dataset. The
CNN is responsible to determine which patterns and features
separates among the healthy and non-healthy sets. That is
a fundamental difference between our paper and traditional
works such as [10], [11], [19].

For the dynamic protocol, several strategies were proposed
in this work to verify which approach works better for CNN
classification of breast thermal images. The first strategy



Fig. 1. The structure of a typical Convolutional Neural Network adapted to our proposed architecture. Source: [17], adapted.

Fig. 2. Example of the breast thermal database. In (a) is represented the
static image acquisition protocol, which each patient has only one image and
in (b), it is presented the dynamic protocol, which each patient has a set of
20 images obtained during a certain interval of time.

assigned all data (20 images) in a single array, as if they were
part of a single image. This strategy is depicted in Figure 3.

The second strategy takes all 20 images of a patient set
and compute their mean. In this case, each patient generates
a single image which is used to train the network model. This
approach is stated in Figure 4.

The third strategy encompasses the first and the last image
of the set and computes their mean. Consequently, only two
images with a significant difference in their temperature are
considered. The average image is used to train the network.
This approach is depicted in Figure 5.

Finally, the last strategy uses image subtraction to produce
the picture used in the neural network. The last image of the
set is subtracted by the first one. The result is a transformed
image similar to the presented in Figure 6.

Independent of the strategy adopted for static or dynamic
protocols, both sets are divided into train and test classes. The
first one is used by the CNN to fit the model. The second one
is used to provide an unbiased evaluation of a final model fit
on the training dataset.

Fig. 3. Illustration of several images that composes a single patient thermal
images in dynamic protocol of DMR database. Each set of images composes
a dataset for CNN classification.

Fig. 4. Example of the second strategy, where all image colors are summed
and their mean is computed. The final generated image is used in the network
training.

V. EXPERIMENTS AND RESULTS

A. Database Methodology

The DMR database is a public breast thermogram database
[9]. It contains the breast infrared imaging of 287 patients
which has healthy and sick labels. For acquisition of ther-
mograms, they used a FLIR SC-620 Thermal Camera. Each
patient image has spatial resolution of 640x480 pixels, and



Fig. 5. Example of the third strategy, where only the first and the last image
of the patient set is summed and their mean is computed. The final average
image is used in the network training.

Fig. 6. Example of the fourth strategy, where the last image is subtracted by
the first one. The generated image is used in the network training.

grayscale or colored images that represents their heat temper-
ature.

For the static approach, we partitioned the original dataset,
composed of 300 images into two sets, in a proportion of
10% of test images and 90% of training images. These values
were obtained empirically. Consequently, our methodology is
composed of 10 experiments, such that 15 images belong to
the training set and 15 figures are assigned to the test set.

Considering the dynamic methodology, we used data of
137 patients, which 95 patients were considered healthy and
42 were assigned to the non-healthy set. The proportion of
train and test sets is 88%-12%, respectively. Analogously to
the static approach, these values were chosen in an empirical
fashion. Once exist a disproportion between the healthy and
non-healthy sets, we got a higher degree of positive set during
the cross-validation stage. Consequently, in this case a total of
6 experiments were evaluated for each strategy.

The dynamic protocol required these strategies to represent
each patient, with 20 imagens, in only one picture, so the
proposed architecture for CNN could fit for both protocols. In
total, we used 190 images in which 95 was normal, or healthy,
samples and 42 abnormal, or unhealthy, samples. Since the
data is unbalanced, we used data augmentation to balance and
increase the number of unhealthy samples to 95.

B. Network Design and Computer Architecture

In order to classify breast images as healthy or malignant,
we designed a Convolutional Neural Network for static and

dynamic protocols. This type of network become state-of-the-
art on image classification problems [20].

We design our CNN architecture with learning rate of 0.001
and dropout rate of 0.75. We also used the Adam Optimizer
to optimize our deep learning model. Also, in the proposed
architecture, it is used two textit Convolutional Layers with
the size of 5x5 and 32 outputs, followed by two Max Pooling
Layers with 5x5 in size and a threshold of 3. The output layer
is a fully connected layer and classify the data into two classes,
called here healthy and unhealthy.

For the construction of each test and train sets, we resize all
images to 56 x 56 pixels, which is the resolution used tipically
in CNN applications. We also use cross-validation to guarantee
that every image is evaluated in test and train sets. Also, it
minimizes generalization problems caused by overfitting.

To finish the training network, it is defined a halting
criterion. It considers the error function of the method. First
we evaluate the difference between the error function of the
previous iterations minus the current error function is greater
than 1000, or, (prevloss− currloss) > 1000.0. In that case,
if this condition is true for more than 10 iterations, then the
training is stopped. After evaluation of several experiments,
we consider that a good halting criterion.

Since we are working with an unbalanced database, which
has more healthy samples than unhealthy ones, we used data
augmentation on botch dynamic and static approach. We used
operations, such as crop and duplicate to set the unhealthy
samples with the same amount as the other class.

About the computer architecture, our experiments were
evaluated in a notebook with Processor AMD Ryzen 7 1700
3.2Ghz with 8GM of RAM DDR4. We also tested part of
our results in a GPU nVidia GeForce GTX 1060 6GB. Our
software consists of Cuda Toolkit 8.0, cuDNN 5.1, Python
3.6.3 and Tensorflow 1.4.0.

C. Comparison with Other Works

Conceive a breast abnormality classification system is dif-
ficult, since several feature sets and classifier models are
available. Choose the most efficient to deal with breast thermo-
grams is a challenging task. Based on that, our choice of CNN
deal with the feature selection problem and the classification
as well.

Most works relies on combination of statistical and texture
features with a SVM (Support Vector Machine) classifier.
This approach requires hand-crafted features extraction, which
involves a hard work by the system developer. On the contrary,
CNNs deal with automatic feature selection in a robustness
fashion.

Since our work it the first to deal with CNN for automatic
classification of breast thermograms as healthy or malignal, we
compared our results with articles that used the same breast
database as ours ( [10]–[15]). We summarize their and our
results in Table I.

Based on Table I, our work performed better on static
protocol with more images than the compared works. That is



expected, since CNN outperforms traditional image classifiers
[20].

For the dynamic protocol, Silva et al [11] achieves a perfect
score. However, this accuracy suggests that their work has
overfitting. Differently, our work had experiments with mean
accuracy of 95%, for colored images even considering cross-
validation of the entire image set.

D. Detailed Results

All results of our proposal are fulfilled in Tables II, III,
IV, V, VI. Mean values for static and dynamic protocols are
highlighted.

Evaluation results show that our deep learning approach
using the colored image dataset presented good performance
in comparison with grayscale dataset for static protocol (Table
II). Furthermore, our results outperformed other works that
deals with the same dataset in every accuracy measure. That
is expected, since much more information about temperature
is stored in the color set, and CNN features capture patterns
in a more efficient manner than handcrafted feature selection.

Considering the dynamic protocol, the first and the third
strategies performed better when considering the accuracy
(Tables III and V). The first strategy comprises all data of each
patient, giving much more information to the deep network.
Consequently, more redundant data is used to identify different
patterns of cancerous cells.

The third strategy performs very well. Only the mean
between the first and the last image are considered. Based
on our results, it is possible to reduce the amount of data
necessary to produce an effective model to classify anomalies
on breast thermal images. Also, all strategies generalizes well,
avoiding overfitting.

VI. CONCLUSION

One of the most common malignancies among women
is breast cancer. Further exploration of techniques for early
detection of cancer is necessary. Based on that, we devel-
oped a Convolutional Neural Network optimized for breast
infrared imaging. The results of this study indicated that CNNs
obtained competitive results for both protocols: static and
dynamic. Without overfitting, it is possible to assume that
our proposal can be easily generalized for much more data,
obtaining similar or even more accurate results.

In future works we expect to construct a complete
Computed-Aided Diagnosis system, realizing segmentation
and classification in the same methodology. We also expect
that our previous segmentation works in consonance with
CNN-classificator can yield good results.
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TABLE I
SUMMARY OF SIMILAR WORKS ON BREAST THERMOGRAM CLASSIFICATION USING DMR DATABASE.

Authors Features / Classifiers Number of Images Acquisition Protocol Accuracy
Gaber et al [12] Gabor Coefficients / SVM RBF 63 (29 healthy and 34 malignant) Static 88.41%
Sathish et al [13] Statistical Texture Features / SVM RBF 80 (40 normal and 40 abnormal) Static 90%
Lessa and Marengoni [10] Statistical Features / Artificial Neural Networks 94 (48 normal and 46 abnormal) Static 85%
Borchartt et al [14] Statistical Features / Genetic Algorithm 51 (14 abnormal and 37 normal) Static 88.2%

Gogoi et al [15] Statistical and Texture Features / SVM Linear
and Artificial Neural Networks 80 (45 normal and 35 abnormal) Static 87.50%

Silva et al [11] Several using Feature Selection / Bayes Nets 80 patients with 20 images each
(40 healthy and 40 non-healthy) Dynamic 100%

Our Work CNN Features / Convolutional Neural Networks 300 images (126 abnormal and
174 normal) Static 98% (color) and

95% (grayscale)

Our Work CNN Features / Convolutional Neural Networks 137 patients with 20 images each
(95 healthy and 95 non-healthy) Dynamic 95% (color) and

92% (grayscale)

TABLE II
OUR RESULTS USING COLORED IMAGES AND GRAYSCALE IMAGES ON THE STATIC PROTOCOL.

Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time (GPU) Time (GPU)
0 1 1 1 1 1 1 1 28.67s 28.67s
1 0.96 0.93 1 1 0.93 1 0.96 53.35s 24.68s
2 0.93 0.87 1 1 0.86 1 0.93 88.04s 63.36s
3 0.96 0.93 1 1 0.93 1 0.96 121.08s 57.72s
4 1 1 1 1 1 1 1 136.71s 78.99s
5 1 1 1 1 1 1 1 152.13s 73.14s
6 1 1 1 1 1 1 1 184.69s 111.55s
7 1 1 1 1 1 1 1 208.72s 97.17s
8 0.96 0.93 1 1 0.93 1 0.96 219.96s 122.79s
9 1 1 1 1 1 1 1 239.04s 116.25s

Mean 0.98 0.97 1 1 0.97 1 0.98 - 77.43s
Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time (CPU) Time (CPU)

0 0.98 1 0.94 0.93 1 1 0.93 618s 618s
1 0.92 0.92 0.82 0.8 0.93 0.8 0.86 1614s 996s
2 0.94 1 1 1 1 1 1 2329s 715s
3 0.92 0.87 0.87 0.87 0.87 0.87 0.87 3260s 931s
4 0.96 0.93 0.94 0.95 0.96 0.97 0.98 5476s 561s
5 1 1 1 1 1 1 1 4915s 996s
6 0.96 0.93 0.94 0.95 0.96 0.97 0.98 5476s 561s
7 0.94 0.87 0.93 0.93 0.86 0.93 0.9 6216s 740s
8 0.94 0.93 0.94 0.95 0.96 0.97 0.98 6818s 602s
9 0.92 0.93 0.87 0.87 0.93 0.87 0.9 7616s 799s

Mean 0.95 0.94 0.92 0.92 0.95 0.94 0.94 - 761.7s

TABLE III
OUR RESULTS USING COLORED IMAGES ON THE FIRST STRATEGY OF DYNAMIC PROTOCOL.

Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time
0 0.96 1 0.93 0.92 1 0.92 0.96 3223.80s 3223.80s
1 0.92 0.87 1 1 0.85 1 0.93 10255.68s 7031.88s
2 1 1 1 1 1 1 1 13173.04s 2917.26s
3 0.96 1 0.93 0.92 1 0.92 0.96 16543.41s 3370.37s
4 0.86 1 0.77 0.71 1 0.71 0.83 21112.49s 4569.08s
5 1 1 1 1 1 1 1 24007.71s 2895.22s

Mean 0.95 0.97 0.93 0.92 0.97 0.97 0.94 - 3515.05s



TABLE IV
OUR RESULTS USING COLORED IMAGES AND GRAYSCALE IMAGES ON THE SECOND STRATEGY OF DYNAMIC PROTOCOL.

Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time
0 1 1 1 1 1 1 1 252.32s 252.32s
1 1 1 1 1 1 1 1 478.18s 225.86s
2 0.8 0.84 0.76 0.73 0.86 0.73 0.78 762.75s 536.89s
3 0.93 1 0.88 0.86 1 0.86 0.92 928.09s 391.2s
4 0.9 0.92 0.87 0.86 0.93 0.86 0.89 1180.92s 789.72s
5 0.83 0.81 0.85 0.86 0.8 0.86 0.83 1342.36s 552.64s

Mean 0.91 0.93 0.89 0.89 0.93 0.89 0.90 - 458.11s
Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time

0 1 1 1 1 1 1 1 155.33s 155.33s
1 0.83 0.81 0.85 0.86 0.8 0.86 0.83 282.7s 127.37s
2 0.96 0.93 1 1 0.93 1 0.96 479.68s 353.31s
3 0.83 0.81 0.85 0.86 0.8 0.86 0.83 605.86s 253.55s
4 0.90 0.92 0.87 0.86 0.83 0.86 0.89 753s 499.45s
5 0.90 0.83 1 1 1 1 0.9 870s 370.55s

Mean 0.90 0.88 0.93 0.93 0.89 0.93 0.90 - 293.09s

TABLE V
OUR RESULTS USING COLORED IMAGES AND GRAYSCALE IMAGES ON THE THIRD STRATEGY OF DYNAMIC PROTOCOL.

Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time
0 1 1 1 1 1 1 1 190.39s 190.39s
1 1 1 1 1 1 1 1 318.23s 127.84s
2 0.83 0.81 0.85 0.86 0.8 0.86 0.83 523.24s 395.4s
3 0.93 0.88 1 1 0.86 1 0.93 630.12s 234.72s
4 0.96 0.93 1 1 0.93 1 0.96 789.04s 554.32s
5 0.96 0.93 1 1 0.93 1 0.96 919.68s 365.36s

Mean 0.95 0.93 0.98 0.98 0.92 0.98 0.95 - 311.34s
Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time

0 0.93 0.88 1 1 0.86 1 0.93 91.13s 91.13s
1 0.93 0.88 1 1 0.86 1 0.93 195.19s 104.06s
2 0.96 0.93 1 1 0.93 1 0.96 324.69s 220.63s
3 0.90 0.92 0.87 0.86 0.93 0.86 0.89 437.63s 217s
4 0.96 0.93 1 1 0.93 1 0.96 527.87s 310.87s
5 0.86 0.78 1 1 0.73 1 0.88 605.53s 294.66s

Mean 0.92 0.89 0.98 0.98 0.87 0.98 0.93 - 206.39s

TABLE VI
OUR RESULTS USING COLORED IMAGES AND GRAYSCALE IMAGES ON THE FOURTH STRATEGY OF DYNAMIC PROTOCOL.

Experiment Accuracy Sensibility Specificity Preditivity Pos Preditivity Neg Precision F1 Accumuled Time Time
0 1 1 1 1 1 1 1 155.94s 155.94s
1 0.83 0.81 0.85 0.86 0.8 0.86 0.83 246.41s 90.47s
2 0.93 1 0.88 0.86 1 0.86 0.92 410.67s 320.2s
3 0.96 0.93 1 1 0.93 1 0.96 549.62s 229.42s
4 0.93 0.88 1 1 0.86 1 0.93 711.74s 482.32s
5 0.90 0.83 1 1 0.8 1 0.9 807s 324.68s

Mean 0.93 0.91 0.96 0.95 0.90 0.95 0.92 - 267.17s
0 0.96 0.93 1 1 0.93 1 0.96 214.39s 214.39s
1 0.83 0.81 0.85 0.86 0.8 0.86 0.83 332.46s 118.07s
2 0.83 0.75 1 1 0.66 1 0.85 423.23s 305.16s
3 0.90 0.92 0.87 0.86 0.93 0.86 0.89 561.53s 226.37s
4 0.83 0.81 0.85 0.86 0.80 0.86 0.83 652.43s 396.06s
5 0.93 0.88 1 1 0.86 1 0.93 756.07s 360.01s

Mean 0.88 0.85 0.93 0.93 0.83 0.93 0.88 - 275.01s


