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Abstract—Lighting intentions are the goals and constraints
that designers like to achieve in a lighting design process. In
this context, rendering problems are the kind of problems based
on the rendering equation that are proposed to satisfy a set
of lighting intentions. These problems are usually expressed as
optimization problems.

In this article is presented a novel method based on photon
tracing, the VNS optimization metaheuristic, and the determi-
nation of the number of photons needed, allows to handle a
wider variety of lighting intentions without incurring in high
computational costs. Moreover, the method developed shows to
be efficient when the geometry is also a variable in the rendering
problem. The techniques explained here could be included in a
package used by architects or designers to aid in the lighting
design process of architectural environments.

I. INTRODUCTION

Rendering problems (RPs) are the kind of problems related
to the rendering equation (Eq. 1). These problems include the
direct problem -rendering an image given a scene composed of
geometry, reflectivity properties, and emitters-, as well as the
inverse and optimization problems, where the scene contains
some unknowns and their solutions imply the satisfaction of
a set of constraints and goals.

To solve inverse or optimization RPs, the brute force ap-
proach is not a good strategy. The computational effort often
grows exponentially in relation to the number of variables,
goals and constraints to be satisfied. In this context, inverse
RPs were analyzed in previous work by using radiosity and ray
tracing techniques, among others [1], [2]. These techniques are
time consuming, may include an expensive pre-computation
stage, or only can solve a particular kind of problems effi-
ciently.

In this paper we propose a new approach for solving inverse
and optimization RPs based on Photon Tracing (PT) [3], and
the use of a metaheuristic to implement the optimization
process. The metaheuristic evaluates a set of possible con-
figurations for the unknowns, using PT and statistical tools
to determine the value of the optimization function. The PT
technique, is the global illumination method used to evaluate
the objective function and constraints of each configuration
tested by the metaheuristic. In PT, one problem to deal with

is its stochastic nature. Each result has an error which is related
to the number of photons used in the simulation.

The main contribution of this work is the development of
an efficient way to solve inverse and optimization RPs using
PT. Specifically the contributions are:
• Efficient resolution of RPs based on a stochastic ap-

proach.
• Estimation of the number of photons in each step of the

optimization process, to reduce the computational effort.
• Optimization of scenes composed of non-Lambertian

surfaces and anisotropic emitters at interactive rates.
• Implementation of a RP solver, that serves as proof of

concept for the proposed approach.
The rest of the paper is organized as follows: In Sec. II the

main concepts used through this work are presented. Sec. III
presents the method developed to solve RPs using PT and
optimization techniques. In Sec. IV are explained the details
of the RP solver, and in Sec. V the main results of the method
are presented. Finally, in Sec. VI the conclusions and further
work are summarized.

II. RELATED WORK

According to Kajiya [4], the rendering equation (Eq. 1)
generalizes a variety of known rendering algorithms, simply
balancing the energy flows from one point of a surface to
another.

Lo(x′→ x) =Le(x′→ x)+ (1)∫
S

fr(x′′→ x′→ x)Li(x′′→ x′)V (x′,x′′)G(x′,x′′)dA′′

In this equation, Lo(x′→x) refers to the radiance (Wsr−1m−2)
in a surface point x from another point x′, fr(x′′→x′→x) is
the bidirectional reflectance distribution function (BRDF), i.e.
the proportion of light reflected from x′′ to x at x′, Li(x′′→x′)
is the incident radiance at x′ from x′′, V (x′,x′′) is a visibility
term which values 1 when x and x′ are mutually visible and 0
otherwise, G(x′,x′′) is a geometry term that relates the distance
between x′ and x′′, their normal’s vectors and the directions of
the emitted and incident rays, and S is the set of all surface
points. More details can be found in Jensen [5].



Eq. 1 can be solved using different approaches. Ritschel
et al. [6] establish that the classical approaches to compute
(interactive) global illumination are: finite elements (e.g.,
radiosity) [7], Monte Carlo ray tracing [4], photon mapping
[3], instant radiosity [8], many-light-based global illumination
[9], point-based global illumination [10], discrete ordinate
methods [11], and precomputed radiance transfer [12]. These
techniques intend to simulate a wide range of phenomena:
direct (local) and indirect (global) illumination, ambient oc-
clusion, natural illumination, single and multiple bounces,
caustics, diffuse and glossy bounces, and scattering. Some of
the implementations of the above approaches claim to compute
the global illumination of a scene at real time rates, but all of
them have difficulties to deal with the scalability, the amount
of bounces, multiple glossy bounces, multiple scattering, and
complex light sources.

Photon mapping includes PT as one of its main components.
Our proposal uses PT in each step of the optimization process,
combined with a statistical method to limit the amount of
photons needed, which results in the speed up of the overall
process.

A. Inverse and Optimization Rendering Problems

According to Tarantola [13], physical theories allow us to
make predictions: given a complete description of a physical
system, we can predict the outcome of some measurements.
The problem of predicting the result is direct or forward
problem. In contrast, inverse problems generally infer the
properties (or model parameters) of a physical system from
observed or desired data. Inverse problems are usually numer-
ically complex and have many or even infinite solutions. They
are of interest in a wide range of fields, including lighting
engineering and lighting design.

Marschner [14], studied the rendering equation and con-
sidered that there are three main kinds of inverse RP: the
inverse lighting problems, the inverse reflectometry problems,
and the inverse geometry problems. In the inverse lighting
problems (related to Le(x′→x) in Eq. 1), the shape and
reflection properties of a scene are known, and the problem
consists in finding the emission in the scene. In the inverse
reflectometry problems the variables of the problem are related
to the reflection properties of the surfaces ( fr(x′′→x′→x) in
Eq. 1). Finally, in inverse geometry problems the unknowns
are linked to the geometry of the object (mainly V (x′,x′′) and
G(x′,x′′) terms in Eq. 1). Two important surveys on IRP are
[1], [2].

An inverse problem can be formulated as an optimization
problem. When the problem consists in approximating a model
using experimental data, it is solved using a linear or nonlinear
least squares method [13]. When the problem includes other
goals and constraints to satisfy, more general optimization
methods are required [15].

An optimization problem consists in finding the solution that
minimizes an objective function from all feasible solutions,
which are limited by a set of constraints [15]. For illumination
purposes, the objective function and the constraints of the RP

are related to lighting intentions. Castro et al. [16] explored a
wide range of optimization techniques to solve economically
optimal lighting positioning. Other authors [17] [18] simplify
the scenes to rectangular spaces, and the optimization RP is
solved through a generalized extremal optimization approach.

To speed up the calculations related to the lighting of the
scene in architectural models, global illumination coherence
is used in [19] with a low-rank radiosity (LRR) approach [20]
in combination with a metaheuristic method for optimization.
In this case, optimal shapes of diffuse sky lights can be
obtained in mere minutes. This method allows to combine
lighting contraints and goals. However, the main restriction to
this method is that it only considers Lambertian emitters and
surfaces.

B. Photon Tracing

Photon tracing (PT) and photon gathering are the two main
steps in the photon mapping [3] process, which is a global
illumination method based on the use of flux elements called
photons. In PT, each photon is emitted from a light source
towards the scene, and then it is reflected, transmitted or
absorbed by a scene element. After each interaction, the
information of the photon is stored in a Photon Map. Then,
the photon mapping uses the photon gathering step to render
the final image. In this step, the information stored is used
along with a ray-tracing method to render the final image.

Photon tracing is a highly parallelizable process, because
the calculation of each photon interaction with the geometry
is independent. Several GPU based approach were used to
implement it, mainly based on CUDA [21] and OptiX [22],
[23]. During the PT stage, if a photon collides with a surface,
and if the diffuse component of the reflection is applied, then
the coordinates, incident direction of the collision, and power
are stored in a structure called Photon Map. In all cases the
photon can rebound on the surface, be absorbed by it, or be
refracted. If the photon is not absorbed, then a new photon is
created and sent from the intersection point toward the scene.
The direction of the new photon is randomly determined,
depending on the BRDF [24] property of the surface.

In this paper a variation of PT is used. Unlike photon
mapping, the first bounce of photons is also stored (in photon
mapping, the energy of the first bounce is measured from
a ray-tracing process that runs in the gathering stage). All
the information needed to evaluate a scene is computed here.
The photon map structure is not needed when the sum of
the power of the photons arriving to a particular surface gives
enough information (see Sec. III). In other cases, such as when
the distribution of the light in a surface is needed, a photon
map structure can be useful in the calculation of the sample
standard deviation or in other statistical methods.

PT is a stochastic process, due to the random nature of the
processes implied in the generation and rebound of photons.
Two executions of the same algorithm may yield slightly
different results. While photon mapping is a biased process,
due to the radiance estimation done during the photon gath-
ering process, the PT component has no bias [5]. Therefore,



the average expected value is always correct, even for small
samples, and the errors in the result are considered as variance.

III. STOCHASTIC OPTIMIZATION USING PHOTON
TRACING

An inverse or optimization RP is a problem based on the
rendering equation, where a set of optimal configurations of a
given scene must be found. The objective of these problems
consist in optimizing a function related to some radiometric
or photometric unit in a scene, subject to certain set of
constraints. This can be mathematically formulated as:

argmin
x

f (x) subject to x ∈ S (2)

where f :S→R represents the objective function to optimize,
S contains all feasible configurations of the scene, which are
usually defined by a set of constraints, and x is a specific
configuration of the scene. For example, in the search of the
optimal position of a point light in a ceiling to maximize
lighting on a table, S is the set of all the points belonging
to the ceiling surface.

In this paper, we use the irradiance Es (W/m2) of a surface
s as the objective function f . The results could be extended
to other units as the radiosity, or the radiance. But irradiance
is specially useful in building design, because it is used to
measure the amount of light that arrives from the sun, or
the light that arrives on an office desk. The equivalent in
photometric units is the illuminance, measured in luxes (lx).

The irradiance can be estimated by adding the power of the
photons that reached s and dividing it by its area (As). An
approximation of Es(x) for N emitted photons (EN(x)) can be
formulated as:

Es(x)≈ EN(x) =
∑p∈P Φp(x)

As
=

Φs(x)
As

(3)

where P is the set of photons that impacted in the surface s,
Φp(x) is the the power of each photon, As is the area of s, and
Φs(x) is the accumulated power arriving on s. Each photon is
emitted with a power proportional to ΦL/N, where ΦL is the
power of the light-source, and N is the number of photons
emitted. An increment in N reduces the power of each photon
(∝ N−1) as well as the confidence interval of Es(x) (∝ N−1/2 ),
but increases the computational effort needed in its calculation.

A. Distribution of objective functions
If we run a Monte Carlo simulation based on PT, where Es(x)
is its desired result, the estimation of Es(x) is guided by the
central limit theorem [25], and its confidence interval (CI)
satisfies a normal distribution (Fig. 1). Therefore, there is a
probability of α% that Es(x) is contained in a CI centered on
EN(x) with radius σN(Es(x))zα:

CIα(Es(x)) = [EN(x)−σN(Es(x))zα , EN(x)+σN(Es(x))zα]

where σN(Es(x)) is the estimated standard deviation of Es(x)
and zα is the critical value associated to the normal distribu-
tion (z90%=1.645, z95%=1.96, z99%=2.575). For instance, the
interval CI95%(Es(x)) means that we are 95% confident that

Fig. 1. Histogram of 4000 samples of EN(x) on a surface in the Hangar
Scene (Fig: 7), and the Normal distribution N(EN(x),σ(EN(x))2)

Es(x) is inside it. The size of the CIα, for a given α varies
proportionally to N−1/2.

When Φs(x)/ΦL � 1, the path of a photon hits a surface
s only once in most cases. Then the standard deviation σ of
EN(x) can be approximated based on the binomial distribution:

σN(Es(x)) =
ΦL

AsN

√
N p(1− p) =

ΦL

As

√
p(1− p)

N
,

where p =
Φs

ΦL

When Φs(x)/ΦL is larger (it could be even larger than 1 in
highly reflective environments), then s could be divided into
several smaller patches s′ until Φs′(x)/ΦL� 1. This strategy
allows the use of the binomial distribution in any case.

B. Comparing Configurations

As explained in Sec. III-A the approximation EN(x) to Es(x)
follows a normal distribution. It is necessary to compare the
values of Es(x) for different configurations x to find the opti-
mum one, during the optimization process. The comparison is
based on the sample mean µ̄(Es(x)) = EN(x) and the sample
standard deviation σN(Es(x)), because the exact value Es(x)
is not known.

Now we proceed to define a set of operators (>α, <α, =α,
and 6=α), used to compare the irradiances Es(x) and Es(y) for
two configurations x and y. These operators mean that we are
α% confident that the relation between the irradiances is >,
<, =, or 6=, respectively. Therefore, given two configurations
x and y it is said that:
• Es(x) >α Es(y) (we are α% confident that Es(x) >

Es(y)) iif the confidence interval of Es(x)− Es(y) (i.e.
CIα(Es(x)−Es(y))) has only positive values. So:

Es(x)>α Es(y)⇔ (4)
µ̄(Es(x)−Es(y))−σ̄(Es(x)−Es(y))zα>0

The approximations EN(x) and EN(y) are independent
random variables, which implies that:

µ̄(Es(x)−Es(y))=EN(x)−EN(y) (5)

σ̄(Es(x)−Es(y))
2=σN (Es(x))

2+σN (Es(y))
2 (6)



Therefore, combining Eqs. 4, 5, and 6 we can conclude
that:

Es(x)>α Es(y) iif (7)

EN(x)−EN(y)>zα

√
σN (Es(x))

2+σN (Es(y))
2

Using the same reasoning it could be said that:
• Es(x)<αEs(y) iif

EN(y)−EN(x)>zα

√
σN (Es(x))

2+σN (Es(y))
2

• Es(x)6=αEs(y) (x and y are distinguishable, mean-
ing that we are α% confident that Es(x)>Es(y) or
Es(x)<Es(y)) iif:

|EN(x)−EN(y)|>zα

√
σN (Es(x))

2+σN (Es(y))
2 (8)

When both configurations are distinguishable, it can be
said that there is a relation of >α or <α among them.

• Es(x)=αEs(y) (x, y are indistinguishable, or we are not
α% confident that Es(x)>Es(y) or that Es(y)>Es(x)) iif:

|EN(x)−EN(y)|<zα

√
σN (Es(x))

2+σN (Es(y))
2 (9)

The above operators are based on statistics, so the relations
proposed can generate false solutions (e.g., it may happen that
Es(x)>αEs(y) but Es(x) < Es(y)).

Given 2 configurations x and y such that EN(x)=αEN(y),
the operator =α should be transformed into 6=α (i.e. <α or
>α) for optimization purposes, by increasing the value of N.
This increment reduces the size of σ̄ proportionally to N−1/2,
allowing to transform Eq. 9 into Eq. 8. But, to reduce in
1/2 the length of a CI an increase of 4× in the number of
photons is required. Since the move from =α to 6=α may
imply a very large number of photons, this slows down the
PT performance in each step of the optimization process.
Moreover, this computational effort could be useless because
both configurations are far from the optimum, and both will
be erased in future optimization steps. Therefore, we have to
administrate efficiently the computational effort, avoiding to
distinguish all early =α problems. To gain efficiency in the
use of the computational resources, we define (see Sec. III-C)
an Indistinguishable Set of Optimum Configurations (ISOC),
and the Superposition Interval associated to it (SIISOC), which
are used to simplify the management of the mentioned set.

C. Optimal Configuration Set

Eq. 9 defines when two configurations are indistinguishable
for a given N. Now, we define that an indistinguishable set of
configurations (ISC) fulfills that

∀x,y ∈ ISC : Es(x) =α Es(y)

When the set contains the optimum configurations it is called
ISOC. Therefore, the objective of an optimization technique
with stochastic functions is to define an ISOC, instead of
finding a single optimal configuration. For the case in which
the optimum is a maximum, ISOC meets the following criteria:

∀x,y ∈ ISOC : Es(x) =α Es(y) (10)
∀z /∈ ISOC ∃x ∈ ISOC : Es(x)>α Es(z)

1) Superposition Interval in an ISOC: Given two configu-
rations x and y, their confidence intervals intersect each other
when the distance between their sample means is smaller than
the sum of their radius:

CI(Es(x))∩CI(Es(y)) 6= /0 ⇔ (11)
|EN(x)−EN(y)|< (σN(Es(x))+σN(Es(y)))zα

If Es(x) =α Es(y) then the intersection of their confidence
intervals is not empty. This happens because:√

σN (Es(x))
2 +σN (Es(y))

2 ≤ σN(Es(x))+σN(Es(y))

and therefore, Eq. 11 is met when Eq. 9 is satisfied.

Es(x) =α Es(y) ⇒ CI(Es(x))∩CI(Es(y)) 6= /0 (12)

On the other hand, the reciprocal is not true: Eq. 11 can be
fulfilled while Eq. 9 is not satisfied.

A generalization of the above property is that the intersec-
tion of all confidence intervals in an ISOC is not empty:

SIISOC =
⋂

∀x∈ISOC

CI(Es(x)) 6= /0

This interval is called superposition interval in an ISOC
(SIISOC). To show its existence, first we define an interval
whose extremes are the maximum of minimums of all CIs
(maxmin) and the minimum of maximums of all CIs (minmax).

maxmin = max
x∈ISOC

{ min(CI(Es(x))) }

minmax = min
y∈ISOC

{ max(CI(Es(y)) }

A second concept to show is that maxmin < minmax (Fig.
2). This happens because, when both numbers belong to the
same CI, the inequality is satisfied by construction (left case
in Fig. 2). When both numbers belong to two different CIs,
these CIs must intersect each other (Eq. 12), therefore, the only
possibility is that maxmin<minmax (middle and right cases in
Fig. 2). A third interesting concept is that all the CIs of the
ISOC, include the [maxmin minmax] interval: ∀z ∈ ISOC,

min(CI(Es(z))≤ maxmin < minmax≤max(CI(Es(z))

These inequalities are true because of the definition of maxmin
and minmax, and because min{CI(Es(z))} ≤ maxmin and
minmax ≤ max{CI(Es(z))}. Therefore, [maxmin minmax] ⊂
SIISOC is satisfied. Finally, by construction, each extreme of
the interval [maxmin minmax] is also an extreme of at least
one CI belonging to the ISOC, then the SIISOC can not be
larger than [maxmin minmax]. Therefore:

[maxmin minmax] = SIISOC



Is(x)

x

minmax

maxmin

x y

minmax

maxmin

Is(x)

x y

minmax

maxmin

Fig. 2. Three possible states in SIISOC construction given an ISOC.

2) Using SIISOC in a rendering problem: The objective of
the optimization process associated to any not-direct RP is to
find an ISOC. In each iteration of the optimization process, a
new configuration x′ is evaluated and compared to the ISOC.
Many x′ are associated with larger confidence intervals of
Es(x′) than at least one element x of the ISOC (in our case
Es(x′)<α Es(x)), but eventually some x′ has better confidence
interval (Es(x′)>α Es(x)), which forces to build a new ISOC.
To do an efficient comparison of x′ against the ISOC, we
propose to use the SIISOC interval. For instance, if CI(Es(x′))
does not intersect the SIISOC and has worse values than the
SIISOC, then x′ should be discarded (Sec. III-C1). But, if
CI(Es(x′)) has better values than the SIISOC, then both the
ISOC and the SIISOC should be modified.

There are three possible states to take into consideration:

1) maxCI(Es(x′))< maxmin (see x′1 in Fig. 3). This means
that the CI of Es(x′) is “below” the SIISOC, so there is a
x ∈ ISOC such that Es(x′) is farther to the objective than
Es(x), and therefore x′ is discarded.

2) CI(Es(x′))∩SIISOC 6= /0 (see x′2 in Fig. 3). In this case it
is needed to check ∀x ∈ SIISOC that Es(x) =α Es(x′) is
satisfied. There are also three cases to consider:

a) If ∃x ∈ ISOC: Es(x′)<α Es(x), then x′ does not belong
to the ISOC.

b) If ∃x ∈ ISOC: Es(x) <α Es(x′), then x must be erased
from the ISOC and x′ included in the ISOC.

c) If ∀x ∈ ISOC: Es(x) =α Es(x′), then x belongs to the
ISOC.

The cases 2a and 2b do not happen simultaneously. In
an ISOC there are not a x and y configurations such that
Es(x)<α Es(x′)<α Es(y). This would mean that Es(x)<α

Es(y). Then, x and y can not belong to the same ISOC.
3) minmax < minCI(Es(x′)) (see x′3 in Fig. 3). This means

that the CI of Es(x′) is “above” the SIISOC, and that
Es(x)<α Es(x′) for at least one x belonging to the ISOC.
Therefore, x′ now belongs to the ISOC. All other x ∈
ISOC must satisfy that Es(x′) =α Es(x), otherwise they
are discarded. For instance, in Fig. 3 the new ISOC is
formed by {x4,x′3}.

The distinction between these three states would reduce the
evaluation time of a new configuration x′. This is specially
true when its CI is worse than the SIISOC (state 1). In state
2, the comparison with the ISOC finishes when a x ∈ ISOC
such that Es(x′)<α Es(x) is found.

Is(x)

SIISOC

SIISOCnew

ISOC { } x′1 x′2 x′3

minmax′

maxmin′

x1 x2

minmax

x3 x4

maxmin

Fig. 3. ISOC, SIISOC, and the three possible states considered when SIISOC
is used in inverse RPs (x′1, x′2, and x′3)

IV. OPTIMIZATION PROCESS

This section illustrates the optimization process used to find
the indistinguishable set of optimal configurations (ISOC). The
process is iterative, as shown in Fig. 4. A configuration x is
applied to the scene and then Es(x) is evaluated using PT, and
used as the optimization function. The process stops after a
number of iterations given. Such number ought be adjusted
taking into consideration the scene complexity, as well as the
characteristics of the optimization variables. The setting of
x implies that the scene objects, the lights and/or material
parameters are modified following certain rules or constraints.
This modification in the scene is done through OptiX using fast
hierarchical data structures (in this work we use a variant of
the BVH called TRBVH [26]), as well as modifying the scene
material properties, which does not require the recalculation of
the data structure. At each iteration there is an ISOC, which
is refined by adding and removing elements, following the
SIISOC strategy (Sec. III-C2).

Apply configuration x

Begin

Calculate
IN(x) using

Photon Tracing

Execute SIISOC
algorithm with x

Find new
candidate x

End

Termination condition fulfilled

Fig. 4. Optimization process

The algorithm implemented follows the concepts intro-
duced in Sec. III, using OptiX to implement PT and VNS
metaheuristic [27] to guide the optimization process1. The
program (RPsolver) consists of two parts: a main optimization
code based on VNS and used to find the ISOC, and a PT
library which is applied to each scene configuration x to
calculate the CI(Es(x)). The PT engine is based on the work

1The source code of the implementation is available at
https://github.com/igui/RPSolver



of Pedersen [28]. RPsolver implements a number of shortcuts
in the process such as:

• The dynamical adjustment of the number of photons
launched in the PT stage depending on the configuration,
the available GPU memory, and the scene complexity.

• The use of a discrete solution space, to avoid the genera-
tion of a large ISOC due to the definition of many close
and indistinguishable (=α) configurations. This shortcut
speeds up the overall process.

• The use of a tabu search metaheuristic [29] for caching
of configuration values, and to avoid the evaluation of
previously visited configurations.

A. Sample size determination

When comparing two configurations it could be useful to
consider that a small value of N often is enough to distinguish
(6=α) their irradiances. Since calculating EN(x) is O(N), using
a small initial sample of photons n can be enough to compare
a candidate to the SIISOC. When a candidate configuration x
is evaluated, our algorithm starts with an initial sample size n
(n� N). If the value of En(x) intersects or is better than the
SIISOC x, then a more accurate estimation with N samples is
performed, and the comparison algorithm is executed again.
Alternatively, the algorithm can start calculating only En(x)
with for a small n and, after the optimization process ends,
EN(x) is computed to all elements in the ISOC, to filter the
real solutions. The algorithm can be configured to use these or
other approaches, depending on the lighting intention as well
as the geometry of the scene. Selecting an appropriate sample
size n can help improve the execution time. A small value of
n results in a very inaccurate value of En(x) and a large set
of ISOC solutions. On the other hand, a large value of n can
be harmful because it takes considerable time for computing
solutions that are far from the final ISOC. The values n and N
are also influenced by the available memory needed to store
the photon map.

B. Domain discretization

To reduce the number of configurations in the ISOC, and to
prevent the output of many similar configurations, the domain
is transformed into a finite set of elements. Here we assume
the well continuity and spatial coherence of the irradiance
function EN(x), which means that close configurations x will
lead to close irradiance values EN(x). Following this line of
thought, we assume that Es(x) is indistinguishable from all
other configurations x′ belonging to the same cell of the grid
(Es(x) =α Es(x′), when x and X ′ belong to the same cell, and
for a given sample size N). In this sense, the domain is mapped
into a kD grid G : M1×. . .×Mk→R.

A tabu search metaheuristic is applied in the algorithm,
where the value of IN(x∗) is computed only if x∗ is the
first candidate explored in the cell G(x∗); each subsequent
candidate falling in that cell will use the cached value of
IN(x∗). When selecting the grid size, it should be taken into
consideration that a coarse mesh can lead to low quality

solutions, and that a fine mesh may imply many iterations
of the optimization process.

V. RESULTS

The objective of this section is to show the main results
when the technique is used to solve some kinds of RPs
using relatively complex scenes. Three sample problems are
analyzed and different performance metrics are shown. We
focus in the measurement of the performance of the algorithm
for different scenes.

A. Test hardware

RPsolver was tested in a desktop Computer. Table I specifies
the hardware details.

CPU Model Intel i5 3470
CPU Frequency 3200MHz
RAM Memory 8192MB
GPU Model GeForce GTX 760
GPU Memory 2048MB
GPU Frequency 980Mhz
GPU Core count 1152
GPU Flops 2258 GFLOPS

TABLE I
TEST HARDWARE SPECIFICATION

B. Test problems

Three scenes are used, each one with a different lighting in-
tention. The objective to achieve is to maximize the irradiance
E on a surface s when the scene has the configuration x ∈ S.
Beyond this, many other problems could be solved. Up to 4
bounces are allowed. For all scenes, the value of N -maximum
number of emitted photons-, is 2.66×106, but the value of n
-minimum number of emitted photons- varies with the scene.
The algorithm stops after 1000 iterations.

1) Cone in Cornell Box: The first problem consists in
finding the best position of a cone in a Cornell Box (Fig. 5)
such that the irradiance on the cone surface is maximized. The
Cornell box used in this problem contains non-diffuse surfaces
represented by a kind of magnifying glass and a reflective
sphere, and a vertical directional light. The lens concentrates
the light in the middle of the scene, generating a caustic. Both
the lens and the sphere are faceted. The scene has a total of
32548 polygons. The value of n is 12544. For this problem the
algorithm refine the ISOC after the optimization process stop,
using N photons for the estimation of the irradiance values.

In this problem the geometry of the scene is modified at
each step. The starting position of the cone is in the corner of
the box and is always at floor level. The optimal position of
the cone is expected to be somewhere below the central point
of the lens, where it concentrates light. After executing the
RPsolver, the solutions found seem to match the expectations,
placing the cone under the center of the lens.



(a) General view.

(b) A solution.

Fig. 5. Cornell Box.

2) Conference Room: The second scene is a meeting room
composed of 644508 triangles, which includes textures in the
blackboard and in the floor (Fig. 6a). The test problem consists
in finding the optimal two light positions for illuminating a
podium near the blackboard. The light sources are two squares
that can be located anywhere in the ceiling. The emitters
sends light equally distributed in every direction (an isotropic
light source). The initial position of the light sources is in
the opposite corner of the room. The optimization function
is the irradiance of the podium, based on the (x,y) position
of the light sources. The lights are expected to move towards
the podium, finding a solution somewhere above it. The value
of n is 9216. For this problem the algorithm is configured
to reevaluate the configuration using N photons, before it is
added to the ISOC as a new solution.

After running the program, the ISOC contains solutions as
shown in Fig. 6b, where the light sources are located directly
above the podium as expected. The target function is relatively
simple and rises near the podium, as is expected.

3) Hangar: The last scene shows a hangar consisting of
161988 triangles, with two lights on the ceiling that simulate
neon tubes. The lighting intention is to maximize the irradi-
ance of a glass box which can be placed anywhere in the floor.
The walls and the floor are symmetrical about the x axis. The
scene presents a texture mapping on the floor and non-diffuse
surfaces like the glass box. Fig. 7 displays of the scene.

While the Cornell Box and the Conference Room have
one solution, the Hangar problem has at least two optimal
solutions, corresponding to the box situated right below one
of each lights. The value of n is 30976. For this problem the

(a) General view.

(b) A solution.

Fig. 6. Conference Room.

Fig. 7. Hangar.

algorithm is configured to refine ISOC at the end using N
photons.

C. Performance analysis

The performance of the RPsolver was tested by running
each test ten times. The Table II shows the time per iteration
for each scene using, in average, a small number of photons
per iteration, as described in Sec. IV-A, and the time using
always N photons.

The time per iteration increments in a sub-linear rate in
relation to the number of polygons, probably due to the use
of acceleration structures (TRBVH) in each PT step, which
allow efficient ray-polygon intersection operations [30].

From the analysis of Table II, can be stated that the
component that imply larger execution times is the PT process.
PT process depends directly on the number of photons. A con-
servative selection of the number of photons, where N photons
are always used just in case, produces a great slowdown of the
algorithm. This is shown in the last three rows of the table.
When a small number of photons is used in many iterations,
they produce rough, yet useful estimate Es(x), as well as large
speed up values.



Cornell Hangar Confer.
Box Room

Reconstruction of
acceleration structures 3.07 7.55 9.55
Avge. Photon Tracing (N�n) 11.47 67.79 156.37
Calculate Hit Count 0.40 1.07 1.93
Other 1.23 1.38 1.36
Total time using n,N ; N�n 16.27 77.79 169.21
Total time with static N 760.45 1564.10 1682.15
Speedup 43.74 20.11 9.94

TABLE II
TIME PER ITERATION PER SCENE, EXPRESSED IN MS.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a set of new techniques are presented to solve
rendering problems. These techniques are based on PT, and
the use of statistical concepts like the confidence interval. The
concepts of ISOC and SIISOC are presented. The geometry
of the scene was optimized (Cornell Box), as well as the
position of anisotropic (Sponza) and isotropic (Conference
Room) lighting. It is possible to work with scenes composed
of hundreds of thousands of elements.

Future work involves replacing the VNS optimization meta-
heuristics with other metaheuristics like population-based ones
[31] that incentives finding more diverse solutions. Using
several initial points can further improve the optimization
speed. Another line of future work is the use of this technique
to solve more complex problems, like the design of optimal
interior shapes and luminaries, considering lighting goals,
reflectometry parameters, and different kind of constraints.
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[9] M. Hašan, F. Pellacini, and K. Bala, “Matrix row-column sampling for
the many-light problem,” ACM Trans. Graph., vol. 26, no. 3, Jul. 2007.

[10] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and
C. Dachsbacher, “Micro-rendering for scalable, parallel final gathering,”
in ACM SIGGRAPH Asia 2009 papers, ser. SIGGRAPH Asia ’09. New
York, NY, USA: ACM, 2009, pp. 132:1–132:8.

[11] S. Chandrasekar, Radiative Transfer. Oxford Univ. Press, 1950.
[12] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments,”
ACM Trans. Graph., vol. 21, no. 3, pp. 527–536, Jul. 2002.

[13] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter
Estimation. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2004.

[14] S. R. Marschner, “Inverse rendering in computer graphics,” Ph.D.
dissertation, Program of Computer Graphics, Cornell University, Ithaca,
NY, 1998.

[15] D. G. Luenberger and Y. Ye, Linear and Non Linear Programming,
3rd ed., ser. International Series in Operations Research & Management
Science. Springer, 2008.

[16] F. Castro, E. del Acebo, and M. Sbert, “Energy-saving light positioning
using heuristic search,” Engineering Applications of Artificial
Intelligence, vol. 25, no. 3, pp. 566 – 582, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S095219761100220X

[17] F. Cassol, P. S. Schneider, F. H. R. Franca, and A. J. S. Neto, “Multi-
objective optimization as a new approach to illumination design of
interior spaces,” Building and Environment, vol. 46, no. 2, pp. 331–338,
2011.

[18] P. S. Schneider, A. C. Mossi, F. H. R. Franca, F. L. de Sousa, and A. J.
da Silva Neto, “Application of inverse analysis to illumination design,”
Inverse Problems in Science and Engineering, vol. 17, no. 6, pp. 737–
753, 2009.

[19] E. Fernández and G. Besuievsky, “Inverse lighting design for interior
buildings integrating natural and artificial sources,” Computers &
Graphics, vol. 36, no. 8, p. 1096–1108, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849312001550

[20] E. Fernández, “Low-rank radiosity,” in Proceedings of the IV Iberoamer-
ican symposium in computer graphics. Sociedad Venezolana de Com-
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