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Abstract—Visualization is an important tool in the analysis
and understanding of networks and their content. However,
visualization tools face major challenges when dealing with large
networks, mainly due to visual clutter. In this context, network
simplification has been a main alternative to handle massive
networks, reducing complexity while preserving relevant patterns
of the network structure and content.

In this paper we propose a methodology that rely on Graph
Signal Processing theory to filter multivariate data associated to
network nodes, assisting and enhancing network simplification
and visualization tasks. The simplification process takes into
account both topological and multivariate data associated to
network nodes to create a hierarchical representation of the
network. The effectiveness of the proposed methodology is as-
sessed through a comprehensive set of quantitative evaluation and
comparisons, which gauge the impact of the proposed filtering
process in the simplification and visualization tasks.

I. INTRODUCTION

Networks (or graphs) are important structures for modeling
systems whose elements bear a pairwise relationship.

Among the analytical tools designed to analyze networks,
visualization plays a crucial role, assisting users in the un-
derstanding of important information such as network com-
munities and their relationship. However, visualization tools
face challenges when dealing with large networks. For in-
stance, when large networks are drawn as standard node-
link diagrams, the visualization can easily become cluttered,
hampering the visual analytic tasks. Network simplification
mechanisms have been a main alternative to get around
visual clutter, making large networks manageable in terms of
visualization. Most network simplification tools rely on node
adjacency information to build a hierarchical representation
of the network while preserving important structures in each
level of the hierarchy. Nonetheless, networks typically carry
attributes associated to their nodes, which should not be
disregarded during the simplification process. In fact, network
attributes can be useful to identify clusters of similar elements
and also to investigate the behavior of particular individuals
in a global network scenario.

Since most network simplification methods does not account
for attribute information, they are prone to group nodes (or
edges) with very different content during the simplification
process. Moreover, the few techniques able to handle attribute
information do not perform well when facing elements whose
content are very distinct from other attributes (outliers), result-
ing simplified networks with a few meta-nodes representing
most of the original nodes and several of the “outliers” as

single nodes. Therefore, those methods tend to emphasize
outliers rather than communities and their relations.

In this work we propose a methodology that improves
network simplification tasks while avoiding the issues pointed
above. The proposed methodology relies on both topological
and attribute information to accomplish the network simpli-
fication. More specifically, our approach makes use of spec-
tral filtering schemes derived from Graph Signal Processing
(GSP) theory [1]. The proposed filtering process smooths out
attributes with similar content and discriminates attributes with
distinct information, making the simplification process less
sensitive to outliers while better grouping “similar” nodes.
Differently from other hierarchical simplification techniques
that focus only on the simplification, our methodology also
improves the visualization of the attributes, facilitating their
understanding.

The effectiveness of our methodology is assessed through a
number of experiments and comparisons against other simpli-
fication schemes.

In summary, the main contributions of this work are:
• A generalization of Graph Spectral Filtering theory for

multivariate data.
• A hierarchical network simplification methodology based

on the proposed filtering scheme.
• A study of the effect of the Graph Spectral Filtering on

the network simplification process.

II. RELATED WORK

In this section we review existing techniques that rely on
node collapse schemes to perform network simplification.

Several existing techniques rely only on network topology
information to accomplish the simplification. Good examples
of topology-based simplification are Phrase Nets [2] and
Compressed Adjacency Matrix [3], which collapse nodes with
the same neighbors. Power graph analysis [4]–[6] also collapse
nodes that share similar neighbors, but using more relaxed
constraints in terms of how to compare the neighborhoods.
Other examples of techniques that rely only on topological
information to perform network simplification are Ask-Graph
View [7], which relies on hierarchical clustering, and Bastian
et al [8], which uses persistent homology to detect clique
communities on complex networks.

Matching in a graph [9] is another mechanism commonly
employed to perform simplification from topological infor-
mation. Matching is an important tool to create hierarchical



representations so as to leverage graph analysis [10] and
visualization [11], [12].

Techniques that rely only on topological information are
quite limited as to the type of network they can play with,
fostering the development of simplification methods able to
handle both topology and network attribute content. Some
of those content-based methods make use of optimization
schemes to group similar nodes [13]–[16], being spectral
clustering an important alternative in this context [17].

Matrix factorization has also been employed to simplify
large networks [18]. For instance, the Vegas [19] system
uses SymNMF [20] to summarize citation networks. Multi-
vis [21] is an information visualization technique that builds
upon tensor decomposition to simplify networks built from
email content. Dias et al. [22] rely on Non-Negative Matrix
Factorization (NMF) to generate hierarchical representation
of networks, comparing the effect of different factorization
schemes in simplification process.

In the context of network visualization, several methods
have been proposed to visual simplify networks based on
their topology and attribute content. OnionGraph [23] and
Pivot Graph [24] for instance perform semantic aggregation
while Elmqvist et al. [25] propose a visualization scheme that
generates a hierarchical representation from node’s attributes.
However, most hierarchy-based visualization techniques as-
sume that the hierarchy is given as input, accomplishing only
the visualization [26], [27].

Techniques described above do not rely on filtering schemes
to help the simplification process, being this a major con-
tribution of the present work. Our approach combines graph
spectral filtering and matching in a single context, producing
hierarchical representations of networks where similar nodes
are properly grouped in each level of the hierarchy. Moreover,
the proposed spectral graph filtering scheme reduces the noise
on the data associated to the nodes of a network, making the
visualization of network structures and the node content itself
cleaner and easier to interpret.

III. GRAPH FOURIER TRANSFORM

Graph Signal Processing (GSP) [1] aims to develop tools
for processing data defined on irregular domains such as
graphs. The GSP framework has already been used to assist
information visualization applications such as the visual anal-
ysis of urban mobility data [28] and dynamic networks [29].
Before describing the proposed filtering scheme that will be
used to support network simplification tasks, we present the
mathematical and computational foundations of Graph Fourier
Transform and Spectral Filtering, which are the basis of our
methodology.

A. Graph Fourier Transform

Let G = (V,E) be a undirected graph, where V is the set of
nodes {v1, v2, ..., vn} and E the set of edges {(vi, vj), i 6= j}.
A weighted adjacency matrix A = (aij) is a matrix where
each entry aij represents the weight of the edge (vi, vj) in E
(aij = 0 if the edge is not in E).

A signal is a function f : V → R defined on the nodes of G
that associates a scalar f(vi) to each node vi ∈ V . The signal
can be represented as a vector in Rn, where the ith component
of the vector represents the signal value at the node vi.

The (non-normalized) graph Laplacian matrix is given by
L = D − A, where D is a diagonal matrix with entries
dii equal to the sum of the elements in the i-th row of A.
Since A is symmetric, real and positive semi-definite, the
graph Laplacian is a real, symmetric, and positive semi-definite
matrix. Therefore, it has a complete set of orthonormal eigen-
vectors {ul}l=1,2,...,n with corresponding non-negative real
eigenvalues {λl}l=1,2,...,n. Zero appears as an eigenvalue with
multiplicity equal to the number of connected components of
the graph [30]. Considering a connected graph, the eigenvalues
can be ordered as 0 = λ1 < λ2 ≤ λ3 ≤ ... ≤ λn and zero is
an eigenvalue whose corresponding eigenvector is a constant
vector. The set of eigenvalues σ = {λ1, λ2, λ3, ..., λn} is
called the spectral domain of L.

Let ul(vj) be the the jth coordinate of eigenvector ul. The
Graph Fourier Transform (GFT), f̂ : σ → R, of a signal f is
defined as the expansion of f in terms of the eigenvectors of
the graph Laplacian:

f̂(λl) = 〈ul, f〉 =

n∑
j=1

ul(vj)f(vj) (1)

Given the Graph Fourier Transform f̂ , the signal f can be
recovered via the inverse Graph Fourier Transform (iGFT),
which is defined as:

f(vi) =

n∑
l=1

f̂(λl)ul(vi) (2)

If we denote by U the (orthogonal) matrix with columns
given by the eigenvectors ul, the GFT and iGFT can be
obtained by matrix multiplication as follows:

f̂ = UT f f = Uf̂ (3)

The eigenvalues and eigenvectors of the graph Laplacian
play a similar role as frequencies and basis functions in the
classical Fourier theory. As said before, zero is an eigenvalue
whose corresponding eigenvector is a constant vector (assum-
ing the graph is connected). The eigenvectors associated with
low eigenvalues λl (low frequencies) vary slowly across the
graph; i.e., if two nodes are connected by an edge with a large
weight, the values of the eigenvector at those locations are
prone to be similar. The eigenvectors associated with larger
eigenvalues (larger frequencies) oscillate more and they are
more likely to have dissimilar values on adjacent nodes.

B. Graph Spectral Filter

A graph spectral filter is a function ĥ : σ → R that
associates a scalar value ĥ(λl) to each eigenvalue λl ∈ σ.
We can define frequency filtering, or graph spectral filtering,
of a signal f as:

˜̂
f(λl) = f̂(λl)ĥ(λl), (4)
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Fig. 1. Central figure represents a graph with signal defined by a step function
(the nodes signal are 0 or 1) with noise added (their signal are 0.5). Left and
right figures show the result of applying a low pass and an enhancement filter
to the step function.

where f̂ is the graph Fourier transform of f and ĥ is a graph
spectral filter. Using the inverse graph Fourier transform we
can obtain the filtered version f̃ of f in the graph domain:

f̃(vi) =

n∑
l=1

f̂(λl)ĥ(λl)ul(vi). (5)

Using the matrix notation, f̃ can be obtained as follows:

f̃ = UHUT f (6)

where H is a diagonal matrix with entries ĥ(λ1), ..., ĥ(λn).
In this work we will study the effect of two different filters,

the low-pass filter and the enhancement filter. We call a filter
as low-pass if it does not significantly affect frequencies in
the left most part of the spectral domain (low-frequencies)
but it attenuates, i.e., reduces, the magnitude of frequencies
in the mid-right region of the spectral domain. In contrast,
high-pass filters attenuate low-frequencies and preserve high-
frequencies. An enhancement filter emphasizes/preserves both
the low- and high-frequencies simultaneously, reducing the
magnitude of frequencies in the mid part of the spectral
domain.

Let λcut be a real number where 0 < λcut < λn. A low-
pass filter ĥl can be defined as:

ĥl(λl) =

{
1, if λl 6 λcut,
0, otherwise. (7)

For example, the local mean on the adjacent nodes of the
graph signal is a low-pass filter. But using different values for
λcut we have different low-pass filters.

Let 0 < λcut1 < λcut2 < λn. An enhancement filter ĥe can
be defined as:

ĥe(λl) =

{
1, if λl 6 λcut1 or λl > λcut2
0, otherwise. (8)

We will use the low-pass filter and the enhancement filter
defining as before. The effect of the two filters on a step
function with noise can be seen in Figure 1.

IV. SPECTRAL FILTERING IN MULTIDIMENSIONAL DATA
AND NETWORK SIMPLIFICATION

Given a network G, the proposed methodology to build a
hierarchical representation of G relies on build a hierarchy
by collapsing edges connecting similar (meta)nodes. Each
collapse leads to a new meta node representing a pair of
collapsed (meta)nodes.

Some issues must be handled when building a hierarchical
representation via edge collapse. In order to collapse similar
nodes we need first to measure the similarity between adjacent
nodes. Our proposal is to use spectral filtering to process
attributes associated to the nodes of a network and then
calculate the similarity between nodes from the filtered data.
However, the spectral filtering theory demands a single scalar
value associated to each node of the network, while in our
context we may have a vector of attributes associated to each
node. Therefore, we need to adapt the spectral filtering theory
to this context.

A. Spectral Filtering in Multidimensional Data

In this subsection we show how to adapt the spectral graph
filtering to multivariate data.

Let G = (V,E, F ) be a network, where V is the set of nodes
with |V | = n and E the set of edges. F is an attribute matrix of
size n ×m where the i-th row corresponds to the numerical
attributes associated with the node vi. In other words, each
entry fij in F corresponds to the value of the attribute j
in the node vi. Each column of F represents one of the m
attributes, so we have an n-dimensional array containing real
values for each attribute. We denote by f j this n-dimensional
array containing the j-th attribute (coordinate) associated to
the nodes in V . Recalling that a signal on the graph can be
represented by an array in Rn, f j : V → R can be seen as
a signal defined on G. This signal will be represented by the
array f j and the value of the signal on the node vi is defined
by f j(vi) = fij .

Now we can use all the Graph Signal Theory defined above
to process each signal f j by simply replacing the signal f by
f j in the definitions from Section III.

We represent by F̂ the matrix n ×m where each column
f̂ j corresponds to the GFT applied to the j-th column of F .
The value f̂ j in the eigenvalue λl is F̂jl = f̂ j(λl). Therefore,
F̂ can be calculated by matrix multiplication as follows:

F̂ = UTF (9)

Given a spectral filter ĥ, we can compute the filtered version
˜̂
f j of f̂ j in the graph domain via iGFT, (denoted as f̃ j),
resulting in the filtered matrix F̃ . We will always use the same
filter ĥ in every signal f j . Therefore, the matrix F̃ containing
filtered signals f̃ j can be obtained as follows:

F̃ = UHUTF (10)

B. Node Similarity.

Given filtered attributes, we have to find similar nodes which
will be the candidates to be collapsed during the construction



of the network hierarchical representation. The main issue is
how to measure the similarity between adjacent nodes?

Given two nodes vk and vs, and their corresponding at-
tributes f̃k and f̃s (rows in F̃ ), we can calculate the similarity
between those nodes using the Euclidean or Mahalanobis
distances between vk and vs. Given an edge (vk, vs), the
weight of this edge will be defined as the value of the similarity
between the nodes vk and vs. Therefore, collapsing edges with
large weights corresponds to merging highly similar nodes.

C. Hierarchical Network Simplification

The hierarchy representing the original network in different
levels of detail is built using a methodology similar to the one
proposed by Dias et al. [22], which relies on a matching in a
graph to collapse nodes (or edges).
Matching in a graph. There are several advantages in
collapsing nodes based on matching. The matching tends to
point a large number of edges to be collapsed in each step of
the hierarchy construction. Moreover, the collapse of an edge
does not conflict with the others, making possible to collapse
many edges simultaneously.

A subset of edges M ⊂ E is a matching in G if no two
edges in M are adjacent, that is, edges in M do not share
a common node. This property guarantees that edges in M
can be collapsed without conflicts. A matching M is called
maximal if there is no other matching M ′ such that M ⊂M ′.
Given a weighted set of edges E, where w(e) is the weight
associated to the edge e ∈ E, let C(M) =

∑
e∈M w(e) be the

total cost of a matching M , and M be the collection of all
matchings on G. A matching M ∈M is a maximum weighted
matching (MWM) if C(M ′) ≤ C(M) for every M ′ ∈M.

Instead of the maximum weighted matching (MWM), we
calculate an approximation of MWM, the sorted maximal
matching (SMM). The SMM is computed by sorting the edges
in E in descending order of weights; then a matching set M
is built by adding edges to M in the sorted order. If an edge
to be added is incident to an edge already in M then it is
discarded and the next edge in the sorted list is considered.
The process follows until all edges are considered.

The SMM is not guaranteed to be maximal nor of maximum
weight. However, it always includes the edge with the largest
weight in the matching list, ensuring thus that the two most
similar nodes will always be collapsed in each step of the
hierarchy construction. Moreover, the computation of SMM is
computationally more efficient than the MWM.
Hierarchy. We adopt superscript indexes to represent levels
of the hierarchy, (vj)t corresponds to a (meta)node in the t-th
level of the hierarchy, t = 0 is the original network. We denote
by |(vj)t| the number of nodes from the original graph merged
into (vj)t. Since the row f̃j of F̃ corresponds to the row fj
in the attribute matrix F , we define a new filtered matrix (F̃ )t
with rows given by:

(f̃j)t =
1

|(vj)t|
∑

s∈(vj)t

f̃s (11)

In other words, (f̃j)t is the average of the rows in F̃ cor-
responding to nodes in (vj)t. Entries in (f̃j)t can also be
interpreted as values of a signal on a meta-node. This merging
mechanism avoids repeated computation of the signals, GFT,
filtering and iGFT in each level of the hierarchy. Therefore,
the hierarchy construction is computationally viable and math-
ematically sound.

V. DATASETS AND METRICS

The effect of our methodology is assessed using different
high-dimensional datasets. Those datasets, jointly with three
quality metrics, are used to evaluate and compare the effect
of the graph spectral filtering in the simplification process.

A. Datasets

Table I list datasets used in our work with number of nodes
and attributes of each dataset. The hierarchical simplification is
performed until the finer level contains exactly the number of
metanodes in last column. College Football dataset [31] pro-
vides information about the game table of a College Football
Division in 2000. We associate multivariate data to each node i
by creating a feature vector xi with dimension 115, where each
entry xij stores the number of times that the team i played
against the team j. The network is constructed by creating
edges between nodes (teams) that face each other in the
season. Ecoli dataset [32] contains protein localization sites.
Iris dataset [32] is a well known database found in the pattern
recognition literature. Each instance is a different iris plant
and the attributes represent length/width of the sepal/petal of
this iris plant. Wine dataset [32] was created using the results
of a chemical analysis of wines grown in the same region in
Italy. The analysis determined the quantities of 13 constituents
found in each of the three types of wines. Another dataset of
wines is Wine Quality dataset [33]. These data is made of
white variants of the Portuguese “Vinho Verde” wine. The
numerical attributes represent the results of physicochemical
tests for each wine. The network in last four datasets was built
using the KNN-graph derived from the dataset using 18, 12, 13
and 69 neighbors respectively. VIS Conference dataset [34]
contains information of papers published at the IEEE VAST,
InfoVis, and SciVis conferences. A node represents an author.
Nodes are connected if the authors collaborated at least once.
The node information is derived from the titles of the papers
authored, as a term-frequency matrix (bag-of-words).

nodes attributes clusters
College Football 115 115 12
Ecoli 336 7 8
Iris 150 4 4
Wine 178 13 5
Wine Quality 4898 11 10
Vis Conference 966 458 10

TABLE I



B. Metrics of Validation

The effectiveness of our methodology is assessed using
three different metrics from other works, modularity, ∆–
Measure, and K-Way Ratio Cut Cost Metric. These three
metrics quantify the quality of clusters on a graph. In our
tests, each meta-node in a coarser level of the hierarchy is
considered as a cluster comprising nodes from the original
network, allowing the use of those metrics.
Modularity. It was used by Newman [13] and Wang et al. [18]
to validate their simplification methods. Networks with high
modularity have dense connections within defined clusters and
sparse connections among different clusters. Assuming that the
nodes are labeled according their cluster, let eij be the fraction
of edges connecting nodes from cluster i to cluster j and
ai =

∑
j eij . A partition Φ = {G1,G2, ...,Gk} of a network

is a set of smaller components that divides the network. The
modularity Q of a partition Φ is:

Q(Φ) =
∑
i

(eii − a2
i ) (12)

where Q = 0 indicates random groupings and Q = 1 indicates
the maximum modularity, created by well structured clusters.
∆–Measure. The ∆-measure [14], [15] assesses the quality of
group formation by measuring pairwise relationships between
the clusters. Let Φ = {G1,G2, ...,Gk} be a partition of the
nodes from G such that Gi ∩ Gj = ∅, for all i 6= j, and

PGj (Gi) = {u| u ∈ Gi and ∃ v ∈ Gj s.t. (u, v) ∈ E}.

Making pi,j = (|PGj (Gi)| + |PGi(Gj)|)/(|Gi| + |Gj |) we
define the ∆-measure as:

∆(Φ) =
∑
Gi,Gj∈Φ

= (δGj (Gi) + δGi(Gj)) (13)

where δGj (Gi) = |PGj (Gi)| if pi,j ≤ 0.5 and δGj (Gi) = |Gi| −
|PGj (Gi)| otherwise. To obtain the average contribution of the
clusters, we divide it by k. The smaller the result, the better
the cluster formation.
K-Way Ratio Cut Cost Metric. The K-Way Ratio Cut Cost
Metric [17] measures the cost of a graph cut generating a k-
way partition Φ = {G1,G2, ...,Gk}. Let Eh be the sum of the
weights of the edges with exactly one end in Gh. The cut cost
can then be defined as:

cost(Φ) =

k∑
h=1

Eh

|Gh|
(14)

The smaller the K-Way Ratio Cut Cost, the better the partition.

VI. RESULTS AND COMPARISONS

In this section we present a comprehensive set of experi-
ments and comparisons that assess the impact of the proposed
filtering methodology into the network simplification process.
Specifically, our experiments aim to answer the following
questions:

1) How does spectral filtering impact into the network
simplification process?

2) How is the network topology affected in each level of
the hierarchy?

3) How does the filtering process impact the visualization
of attributes?

All datasets used for comparison in this paper are small
for network simplification, which usually involves massive
networks. Our objective in these comparisons was to show
the effect of filtering the data. The matching set is defined
to choose edges on all the network, not only on one region
of the network. This global behavior allows to simplify all
the network homogeneously independent of the size of the
network. As previously mentioned, in our tests and examples
we fix the number of nodes in the coarser level of the
hierarchy.

A. Node-Link Visualization and Clustering Behavior

In the following we compare node-link visualizations of the
network simplification process involving filtered and raw data.
Nodes are colored according to the meta-node in the coarser
level of the hierarchy. More specifically, nodes belonging to
the same meta-node on the coarser level have the same color in
all levels of the hierarchy. The size of each meta-node reflects
the number of nodes collapsed on it.

Figure 2 depicts four levels of the hierarchical network
simplification process for the Ecoli dataset using both raw
(top row) and low-pass filtered (bottom row) data. Notice
that the size of the meta-nodes in the coarser level of the
hierarchy differs considerably when using raw and filtered
data. The meta-nodes resulting from low-pass filtered data are
more homogeneous in terms of their size. In contrast, when
using raw data, the simplification process groups most of the
original nodes in a few meta-nodes while producing meta-
nodes containing only one or two of the original nodes.

A similar behavior can be seen in Figure 3. When raw data
is used, meta-nodes with a few nodes are produced in the
coarser level of the hierarchy. More homogeneous meta-node
sizes are produce when low-pass filtered data is employed,
preventing that large meta-nodes show up in the process.

We are not searching necessarily for clusters with similar
sizes, but avoid clusters with very few nodes. Because we are
trying to find a desired number of clusters. Only two or three
nodes can not represent a real cluster. The simplification with
the low-pass filter doesn’t present the clusters with similar
sizes always as can be seen on section VII.

B. Attribute Visualization

In this section we show the impact of the filtering mecha-
nism when visualizing the attributes associated to the nodes.
To this end we rely on parallel coordinates as visual metaphor,
where each node in the original network corresponds to a
polyline in the parallel coordinates diagram. Nodes belonging
to the same meta-node in the coarser level have the same color
in the diagram.

The Iris Dataset Network has been built and simplified such
that only three meta-nodes remains in the coarser level. The
corresponding parallel coordinates visualization is depicted in
Figure 4. Notice that in this case the simplification using
raw and filtered data results in similar visualizations, what
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Fig. 2. Network Simplification steps of the ecoli dataset using raw data (top) and low-pass filtered data (bottom).
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Fig. 3. Network Simplification steps of the wine dataset using raw data (top) and low-pass filtered data (bottom).

is expected, as the attributes in the Iris data set can already
discriminate the groups.

Attributes from the Ecoli dataset, in contrast to the Iris
dataset, can not clearly discriminate the groups, as one can
notice from the parallel coordinates visualization depicted on
left most image in Figure 5. The mid and right images in Fig-
ure 5 show visualizations from simplifications accomplished
using filtered data. Notice that groups are better defined in
the visualizations involving filtered data, mainly in the low-
pass filtered case, showing that the simplification is grouping
together nodes with similar content. The enhancement filter
also emphasizes high-frequencies, so preserving differences
while bringing closer similar nodes.

Figure 6 shows a similar analysis but using the Wine

dataset simplified until three (top) and five (bottom) meta-
nodes remains in the coarser lever of the hierarchy. Notice
that while the visualization using raw data does not allow to
clearly identify the groups, the visualizations resulting from
filtered data are much cleaner, revealing the groups. Once
again, groups are better defined when low-pass filtered data
is used.

C. Quantitative Evaluation
In this section we evaluate the simplification process using

quantitative measures. The goal is to gauge whether spec-
tral filter negatively impacts in the quality of the simplified
network. As we shall show, that is not the case, that is, the
quality of the networks simplified from filtered data are better
or similar than the ones simplified using raw data.



RAW DATA LOW PASS FILTER ENHANCEMENT FILTER

Fig. 4. Iris Dataset simplified until three meta-nodes remain in the coarser
level.

RAW DATA LOW PASS FILTER ENHANCEMENT FILTER

Fig. 5. Ecoli Dataset.

Figure 7 left shows the result of applying the modularity
metric in networks simplified from raw and filtered data.
Notice that the modularity from filtered data is better for the
Ecoli, Iris and Wine datasets. For the Iris dataset the difference
was very small. For the Wine Quality and College Football
datasets the results are practically the same.

Similar results are observed when using the ∆-measure
(Figure 7 center) and the K-Way Ratio Cut Cost Metric (Figure
7 right). In fact, the better quality of simplifications resulting
from filtered data is even easier to notice when ∆ and K-Way
Ratio metrics are used as quality measures.

VII. DISCUSSION AND LIMITATIONS

The proposed methodology turned out to be quite effective
in most of the experiments we performed, showing that our
choice of filtering data before accomplishing network simpli-
fication is an attractive alternative. We are not saying that is
always better to filter the data, but that spectral filters are an
alternative to be considered when simplifying networks based
on both topology and attribute information.

The design of optimal filters to operate in specific datasets
is a problem that we are planning to investigate in a follow up
work. In fact, a multitude of filtering schemes can be explore,
being spectral graph filtering theory a rich research field.

For networks with a big central cluster and isolated small
clusters like the VIS Conference network (Figure 8), the pro-
posed methodology for simplification may not work perfectly,
since two small clusters have left on the finer level when
we simplified the network until we have ten metanodes. But
comparing our result with the HNMF method [22], the HNMF
without a filter presented a higher number of isolated small
metanodes. Basically dividing the dataset on only four clusters.
Using our methodology to filter the attributes allied with the
HNMF, we can identify eight clusters well defined.
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Fig. 6. Wine Dataset simplified until three (top) and five metanodes (bottom)
remains in the coarser level.

VIII. CONCLUSION

We proposed a generalization of the theory of Graph Spec-
tral Filtering to the context of network simplification. We
provided a new methodology to perform and improve hier-
archical network simplification using attribute data associated
to the nodes of the network. Our methodology relies on graph
signal processing to filter the data before simplification. The
proposed methodology was assessed and compared against
simplifications performed using raw data. The results show
that simplifications using filtered data tends to be of better
quality when compared against the ones involving raw data,
showing our approach is an attractive alternative.
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