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Abstract—3D CAD models are widely used to improve man-
agement of large-scale engineering projects. Examples include
Building Information Modeling (BIM) and Oil & Gas indus-
trial plants. Maintaining these facilities is a critical task that
often involves anti-corrosive painting of equipment and metallic
structures. Existing CAD software estimates the painting area
including hidden surfaces that are not actually painted in the
field. To improve these computations, we propose an approach
based on Adaptively-Sampled Distance Fields (ADFs) exploiting
the relationship between object areas and Constructive Solid
Geometry (CSG) operations. Tests with synthetic models demon-
strate that our technique achieves an accuracy of 99%. In real-
world 3D CAD models, we were able to reduce the estimated area
by 38% when compared to the naı̈ve calculations. These result
in significant cost savings in material provision and workforce
required for maintaining these facilities.

I. INTRODUCTION

Computer-Aided Design (CAD) systems are widely used to
design, construct, and operate large-scale engineering projects.
In the context of civil construction, Build Information Model-
ing (BIM) [1], [2] is a widely known methodology that em-
ploys data-rich 3D CAD models for diverse analysis through-
out the life-cycle of a facility. The Oil & Gas industry also
takes advantage of these virtual models to improve the quality
of design and management of its enterprises [3]–[5].

Facility maintenance is a complex and decisive task during
the operation phase of these projects. In particular, offshore
oil platforms are subject to strong inclement weather which
demands the constant renewal of anti-corrosive coating. Any
errors in material and work estimation significantly increases
maintenance costs. One of the main efforts to reduce these
is to diminish the amount of people working on the platform
[6]. Therefore, 3D CAD systems can improve the maintenance
planning by efficiently estimating the amount of required
materials while avoiding boarding time and expenses.

Wagner et al. [6] and Cho et al. [7] developed systems that
utilize 3D CAD models to assist the surface area estimation
of structures and equipment. Both used a similar approach
to achieve this goal, in which painting zones must first be
defined, as visualized in Figure 1, and then the objects inside
these zones have their surface area computed and summed-up,
obtaining a rough estimation of the overall paint requirements.

In fact, CAD models typically includes surfaces which
are not painted in real life. These surfaces are produced
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Fig. 1. Example of zones delimited by volumes on the platform.

by the contact or interpenetration between among objects,
as illustrated in Figure 2. In this paper, we reference these
surfaces as hidden surfaces. To estimate more accurately the
amount of painting material required, these hidden surfaces
should not be taken into account. However, naı̈ve painting area
calculations include such hidden surfaces.

(a) (b)

(c)

Fig. 2. Examples of hidden surfaces. In (a), cylinders and circular torus caps
on contact, in (b), a gray box and blue floor on contact and in (c), a blue
cylinder and gray object on interpenetration.



The Boundary Representation (B-Rep) of 3D objects could
be used to eliminate hidden surfaces from the paint area com-
putation, since it enables determining which portion of each
triangle belongs to the geometries’ union boundary. However,
this task can be computationally expensive, especially for
massive 3D CAD models of oil platforms. In addition, iden-
tifying contact can be complicated due to potential numerical
inaccuracies while computing close adjacent surfaces.

Distance fields, as opposed to B-Rep, can more adequately
identify contact and interpenetration among 3D geometries.
This structure efficiently computes the smallest distance be-
tween any point and a geometric surface [8]. Consequently,
distance fields can be employed for solid modeling [9] through
Constructive Solid Geometry (CSG) operations [10].

In this paper, we present an approach, based on adaptively
sampled distance fields (ADFs) and constructive solid ge-
ometry (CSG), capable of computing the painting area from
3D CAD models, without taking into account their hidden
surfaces. Using the developed technique, we were able to
obtain a minimum accuracy of 99.16% in synthetic models
and a reduction of up to 38% in the total painting surface area
of real 3D CAD models, when compared to naı̈ve approaches.
These results contribute to significant material provision and
workforce required for maintenance.

The remainder of this paper is as follows: Section 2 makes
an overview about adaptively sampled distance fields, high-
lighting its triangles surface reconstruction and CSG applica-
tion. In Section 3, we present the proposed approach for paint-
ing area estimation with ADFs. We show the obtained results
in Section 4, demonstrating the effectiveness and accuracy of
our solution. Finally, we conclude this paper in Section 5.

II. ADAPTIVELY-SAMPLED DISTANCE FIELDS

A discrete distance field is a structure that represents an
object of interest by storing the minimum distance from points
in a grid to the object surface. These distances can be stored
with or without sign, distinguishing the object’s interior from
the exterior. Although it is very common to implement discrete
distance fields using regular grids, to capture details on the
object geometry a high resolution grid is necessary, consuming
an excessive amount of memory [8].

Aiming to produce a better representation that consumes
less memory, Frisken et al. [11] introduced the concept
of Adaptively-Sampled Distance Fields (ADF). During its
construction, cells that contain the represented surface are
subdivided until some predefined maximum depth, similar
to the three-color octree [12]. However, on the three-color
octree, these border cells are always subdivided, while the
ADF subdivides only when the error of the reconstructed
distance inside the cell is above a given threshold. Thus, ADFs
consume fewer memory than regular grids and three-color
octrees, and still retains sufficient geometry detail information.
The resulting structure needs fewer cells to represent complex
geometries and produces deeper subdivisions only where there
is enough detail to be preserved.

Adaptively-Sampled Distance Fields can be constructed
using a top-down or bottom-up approach [11]. In the first,
the distance is computed for the root cell’s vertices; then, the
cells are recursively subdivided until the reconstruction error
becomes smaller than the tolerance threshold. In the second
approach, the distance field is computed using a maximum
resolution regular grid; then, groups of eight cells are merged if
none of these cells have children and the error of reconstructed
distances on the merged cell is below the tolerance threshold.

According to Figueiredo et al. [13], an ADF can be classi-
fied as “boundary” or “global”, depending on which types of
cells are subdivided. For the boundary ADF, only the cells
that contain the boundary of the object are considered for
subdivision. For the global ADF, cells that are in the interior or
exterior of the object can also be subdivided. Hence, boundary
ADFs only guarantee accurate distance computation in border
cells, while global ADFs guarantee accuracy for any point in
its domain.

A. Constructive Solid Geometry

Constructive Solid Geometry (CSG) operations [14] can be
combined with ADFs to model complex shapes. Perry and
Frisken [15], for example, developed a system based on ADFs
for sculpting digital characters. The authors implemented a
sculpting tool that applied CSG operations between the object
and the tool fields in order to reshape the geometry surface.

Using the positive-inside/negative-outside sign convention
established in [11], the authors also formalized the CSG
operations using minimums and maximums. From these, the
union, difference and intersection operations can be obtained
by equations 1, 2 and 3, respectively.

dist(A ∪B) = max(dist(A), dist(B)) (1)

dist(A−B) = min(dist(A),−dist(B)) (2)

dist(A ∩B) = min(dist(A), dist(B)) (3)

B. ADF Triangulation

Perry and Frisken [15] proposed an algorithm, based on
SurfaceNets [16], to extract from ADFs isosurfaces repre-
sented by a topologically-consistent mesh with high quality
triangles (close to equilateral) and without cracks. The surface
is reconstructed from distances sampled in the adaptive grid.
The enhanced SurfaceNets algorithm has three basic steps:

1) Assign one vertex to each boundary leaf cell, positioned
at the cell center.

2) Triangulate vertices of three neighboring cells that share
a common edge containing a zero crossing. In order to
avoid redundant triangles, only 6 of the 12 possibles
edges are considered, as shown in Figure 3.

3) After producing all triangles, move vertices from cell
centers towards the surface. Then, to improve the quality
of triangles, vertices are moved towards the average of
its neighbors’ positions.

Triangulation based on adaptive grids may produce two
types of cracks, as shown in Figure 4. The first, at the top of



Fig. 3. ADF cell with edges considered on triangulation highlighted: up-right,
up-front, front-right, bottom-left, bottom-back and back-left.

the figure, occurs when the cells have different sizes and when
the vertices are generated on the faces or edges [17]–[19]. In
this case, the interpolated position produced by neighboring
cells may differ. As the proposed algorithm generates vertices
only at cell centers, this type of crack does not happen.

The second type of crack, at the bottom of Figure 4,
occurs when neighboring cells have different numbers of edge
crossings. Perry and Frisken [15] used a pre-processing step
to avoid this crack, in which the number of zero-crossings
for each face of each boundary cell is compared to the
total number of zero-crossings in faces shared between the
boundary and the face-adjacent neighboring cells. When the
zero-crossings differ, the cell is subdivided using the distance
information of its face-adjacent neighbors, until they match.

Surface Crack

Fig. 4. Types of cracks produced while triangulating adaptive grids. The top
crack does not occur using the enhanced SurfaceNets. The bottom crack is
prevented with a pre-processing step.

III. PAINTING AREA CALCULATION USING ADFS

3D CAD models have a variety of elements represented
as triangle meshes and parametric objects. Hidden surfaces,
which are not painted, appear in two flavors. There are hidden
surfaces due to simplified modeling operations, such as not
removing the caps of piping sections, as illustrated in Figure
2(a). Others are correctly modeled, but hidden by contact after
assembling the objects in the plant, as in Figure 2(b).

In order to estimate the painting area not taking into account
these hidden surfaces, we propose a two-step routine. The

first step consists in computing the ADFs of each mesh.
It is worth pointing out that objects already represented by
implicit surfaces do not require an ADF construction, since
their implicit equations already compute the smallest signed
distance to any given point. The second step of our routine
aims to estimate the individual painting area for all CAD
elements.

A. Computing the ADFs

Occasionally, the meshes found in real models are not
watertight, as seen in Figure 5, which is a prerequisite for
the signed ADF generation. To ensure that we are able to
generate an ADF for all CAD meshes, we first submit them
to a pre-processing stage. During this step, holes found on
the meshes are covered employing a simple fan triangulation
strategy, assuming they are convex. In fact, no non-convex
hole was found in our tests.

(a) (b)

(c) (d)

Fig. 5. Non watertight real examples. (a) and (b) shows a circular torus
without cap. In (c) we show the opening, in red, of the highlighted semi-
sphere in (d).

After the pre-processing stage, inspired by the tiled gener-
ation used in [15], we use a hybrid approach to construct an
ADF for the mesh. We apply the bottom-up method to obtain
an ADF with half of the maximum allowed depth, avoiding
an initial high-resolution grid and its associated disadvantages,
and proceed to the maximum depth with the top-down ap-
proach. We follow the strategy of a signed global ADF, since
it provides accurate distance calculation at any point of its
domain and, consequently, accurate area estimation.

During ADF construction, the criterion established to decide
if a cell needs subsequent division is the reconstruction error



at the cell center and each of its faces’ centers. This criterion
differs from the one applied in [15], which also uses the
reconstruction error in the edges’ centers. By disregarding the
error at the edge centers we greatly improve the time spent
to compute the ADF without significant influence on the later
area estimation.

Aiming to accelerate the ADF computation, we take advan-
tage of a kd-tree structure [20] to obtain faster signed distances
from points to the represented mesh. The sign of the distance
can be determined by the dot product between the normal
of the closest triangle and the direction from the point to the
triangle. However, when the point is closer to a vertex or edge,
this can lead to errors, since the normal at a vertex or edge is
not well defined. To address this issue, we used the pseudo-
normal concept developed by Aans and Brentzen [21], [22].

B. Painting Area Estimation

An alternative method to estimate the total painting area
would be to construct an union ADF using all objects of
interest in the scene. However, to obtain such ADF for a
significant amount of objects would demand an excessive
memory consumption. Furthermore, we want to have access
to each object area, since different painting material can be
employed to different objects.

We then estimate the painting area of an object relative to
the scene, relying on a relation between the object surface
areas and boolean operations. Without the loss of generality,
consider a scene composed by three objects, illustrated in
Figure 6. The area of object A is composed by its painting
and its hidden surface areas, so Ao = Ap +Aho, where Ao is
the total object area, Ap is the painting area and Aho is the
object hidden surface area, demonstrated in Figure 7.

A	   B	  C	  

Fig. 6. Scene example in which we aim to compute the painting area of
object ’A’.

We observed that the surface area of the difference between
A and the scene, Ad, illustrated in Figure 8, is the combination
of A painting area, Ap, and the scene’s hidden surface area,
Ahs. Thus the difference area is given by Ad = Ap + Ahs.
Finally, the intersection surface area, Ai, illustrated in Figure
9, is the sum of the hidden surfaces from both A and the scene,
that is Ai = Aho +Ahs.

Thus, the painting area of A can be estimated as:

Ao +Ad −Ai = (Ap +Aho) + (Ap +Ahs)− (Aho +Ahs)

= 2(Ap)

Thefore,

Ap =
Ao +Ad −Ai

2
(4)

To compute the difference and intersection surface areas,
first we obtain the difference and intersection ADFs. We
construct the difference ADF applying the CSG difference
operation between A and the scene with N objects, that
is dist(A − Scene) = min(dist(A),−dist(i),−dist(i +
1), ...,−dist(N)). The intersection ADF is built as the union
of the intersection between A and each object of the scene,
so (A ∩ Scene) = (A ∩ i) ∪ (A ∩ (i+ 1)) ∪ ... ∪ (A ∩N).

Constructing the difference and intersection ADFs in a
simplistic way, testing the object of interest with all other
objects in the scene, can lead to a high computational cost.
To reduce this cost, we take advantage of Bounding Volume
Hierarchy (BVH) [23], a hierarchical tree often used in colli-
sion detection that provides the scene objects that may have
interference with an object of interest.

A	  

Fig. 7. Object ’A’ with green as painting area and red as hidden surface area.

Fig. 8. A−Scene with blue as scene hidden surface area and green as object
painting area.

Fig. 9. A∩Scene with blue as scene hidden surface and red as object hidden
surface area.



After computing the difference and intersection ADFs, we
modify the enhanced SurfaceNets algorithm to only compute
the surface area of the reconstructed surface instead storing
all produced triangles, thus avoiding an excessive memory
consumption. To achieve this, we consolidate the second and
third steps of the original reconstruction algorithm into a single
step, in which, for each triangle generated in the second step,
we move its vertices towards the surface, compute its area
and discard it. The areas are then accumulated, obtaining the
area of the represented surface. This modification worsens
the quality of the triangles, since the vertices are not moved
towards the average of its neighbors’ positions. However,
generating triangles close to equilateral is not a decisive factor
for area computation.

C. Handling Contact
The approach described so far does not handle contact,

since there is no real intersection between contacting objects.
We introduce the concept of access tolerance to address this
shortcoming. Access tolerance is a constant that represents an
envelope on the objects, illustrated in Figure 10, indicating a
minimum distance for physical access so that the painting can
be performed. When applying this tolerance the intersection
operation between two objects is given by:

dist(A ∩B) = min(dist(A) + tol, dist(B) + tol) (5)

A	   B	  B	  A	  

Fig. 10. Scene with access tolerance (dashed) applied to construct the
intersection ADF between ’A’ and ’B’.

However, as we apply the access tolerance concept to
calculate only the intersection area, an error is inserted on
the area estimation. The hidden surface areas of both scene
and object get slightly bigger, observed in Figure 11. Thus,
the intersection area computation introduces an error:

Ai = Aho +Ahs + error, (6)

and the area estimation:

Ao +Ad −Ai = 2(Ap)− error

Therefore,
Ao +Ad −Ai

2
= Ap −

error

2
(7)

We attenuate this error while moving the triangles vertices
towards the surface during the modified enhanced SurfaceNets.
Our approach discounts the access tolerance by increasing
the step taken in the gradient direction. This process can
be visualized in Figure 12. It is worth pointing out that the
described approach will always estimate a slightly smaller
area, due to the error inserted by the access tolerance.

A	  A	   B	  C	   B	  C	  

Fig. 11. Access tolerance applied in Figure 6 scene with the intersection area
growth highlighted.

Fig. 12. Vertex p moving towards the surface in the gradient direction g with
a step that discounts the access tolerance t.

IV. RESULTS AND DISCUSSION

To evaluate our methodology, we ran tests with synthetic
controlled models, as seen in Figure 13. We designed them to
represent scenes that simulate both contact and interpenetra-
tion of hidden surfaces. Setting the maximum ADF depth at
8, reconstruction error threshold at 10-4 and access tolerance
at 5 × 10-3, we were able to estimate the total painting area
with an accuracy of 99.16% for the sphere scene, 99.4% for
the box scene and 99.45% for the cylinder scene.

Fig. 13. Three synthetic models: spheres with interpenetration, boxes with
contact and cylinders also with contact.



Fig. 14. Model 5, a real delimited zone.

We then tested our painting area calculation method on 5
real models:

1) Valve with 12 geometric objects (Figure 15(a)).
2) Vessel with 73 geometric objects (Figure 15(b)).
3) Piping with 725 geometric objects.
4) Real delimited zone with 1,582 geometric objects.
5) Real delimited zone with 4,450 geometric objects (Fig-

ure 14).

(a) Model 1 (b) Model 2

Fig. 15. Another real models examples.

We then compare the painting area estimation with the
simplistic approach that computes the entire surface area, as

used in [6]. Analyzing the results shown in Table I, we observe
a maximum reduction of 38.0% and minimum of 7.9%. We
also notice that a smaller percentage reduction can represent
a significant amount of area in large models, such as in model
5.

TABLE I
COMPARISON BETWEEN OUR APPROACH AND THE TOTAL SURFACE AREA

(TSA), SHOWING THE PERCENTAGE AND ABSOLUTE REDUCTION.

Model TSA[m2] Ours[m2] Red.[m2] Red.[%]

1 2.387 1.579 0.808 33.8

2 190.376 117.954 72.422 38.0

3 29.228 19.303 9.925 33.9

4 396.675 365.245 31.430 7.9

5 7,132.650 6,551.490 581.16 8.1

To perform the painting area estimations we used a com-
puter with 32GB of RAM and an Intel(R) Core(TM) i7-
4810MQ processor. The memory consumption and processing
times were measured to analyze how our approach scales
for different scenes. We noticed that memory consumption is
directly influenced by the number of meshes, as observed in
Table II, since we compute all their ADFs before proceeding
to the area calculation step. It is important to highlight that the
ratio between the number of meshes and the number of implicit



surfaces is highly dependent of modeling process and can vary
widely from model to model. We also noticed that the time
spent depends on the total number of objects, regardless of
being meshes or implicit surfaces. This makes sense since all
objects must have their difference and intersection computed
to estimate the overall painting area.

TABLE II
NUMBER OF IMPLICIT SURFACES AND MESHES, MEMORY CONSUMPTION

AND PERFORMANCE OBTAINED DURING THE PAINTING AREA ESTIMATION
ON REAL MODELS.

Model Imp. Surf. Meshes Memory[MB] Time[sec.]

1 10 2 69.62 18.12

2 35 38 689.87 119.50

3 427 298 1,986.56 577.42

4 435 1,147 11,448.32 1,656.38

5 844 3,606 24,094.72 5,655.53

Naturally, complex scenes demands more memory and time
to be processed. Nevertheless, when reducing the maximum
ADF depth to 7, the time spent for model 5 decreased to
1,371.27 seconds, 75.7% smaller, and consumed 14,069.76
MB, 41.6% less memory. At the same time, the estimated area
was 6,578.580m2, 0.4% greater. Therefore, ADFs with smaller
depths use less resources but also produce relatively accurate
results. The user must then decide if the lower precision is
acceptable for a specific application.

V. CONCLUSION

This paper presented a novel approach for accurate estima-
tion of painting area using 3D CAD models. Our technique
successfully eliminates the hidden surfaces that appear during
the modeling process to improve the precision of the area cal-
culation. To achieve this, we used ADFs combined with CSG
operations, accelerated with kd-tree and BVH structures. The
proposed algorithm achives high performance by exploiting
the relationship between an object’s area, its difference and
intersection with the remainder of the scene.

To handle contact between geometries, we introduced the
concept of access tolerance: a minimum distance for physical
access so that painting can be performed. When applying
the access tolerance for intersection computation, an error is
inserted. However, we attenuate this error by discounting the
tolerance while reconstructing the triangle meshes.

The results demonstrated the effectiveness of our approach
by estimating the painting area with at least 99.16% accuracy
in synthetic models and a reduction of 38.0% or 581.16m2 in
real-world 3D CAD models. This reduction directly translates
into significant cost savings in material provision and work-
force for facility maintenance.

It is worth pointing out that our approach can be used for
other goals such as validating the 3D CAD model during early
design stages, prior to construction. To do so, we could use
the access tolerance concept to make sure that all surfaces that
need painting maintenance can be physically reached once the
facility is built. Another possible application of our technique

is to estimate the amount of material required to construct a
model using a 3D printer.

The high memory consumption when the model contains
several meshes deserves attention. As future work, we suggest
that the ADF meshes should be constructed on demand,
during processing, and discarded when it is guaranteed that the
structures will not be used anymore. Also as future work, we
suggest the investigation of an adaptive maximum ADF depth,
in which the refinement ceases when the difference between
the N and N − 1 levels are below some tolerance, in terms
of surface areas.
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