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Abstract—It is well known that image classification problems
can be effectively solved by Convolutional Neural Networks
(CNNs). However, the number of supervised training examples
from all categories must be high enough to avoid model over-
fitting. In this case, two key alternatives are usually presented
(a) the generation of artificial examples, known as data aug-
mentation, and (b) reusing a CNN previously trained over a
large supervised training set from another image classification
problem — a strategy known as transfer learning. Deep learning
approaches have rarely exploited the superior ability of humans
for cognitive tasks during the machine learning loop. We advocate
that the expert intervention through visual analytics can improve
machine learning. In this work, we demonstrate this claim by
proposing a data augmentation framework based on Encoder-
Decoder Neural Networks (EDNNs) and visual analytics for the
design of more effective CNN-based image classifiers. An EDNN
is initially trained such that its encoder extracts a feature vector
from each training image. These samples are projected from
the encoder feature space on to a 2D coordinate space. The
expert includes points to the projection space and the feature
vectors of the new samples are obtained on the original feature
space by interpolation. The decoder generates artificial images
from the feature vectors of the new samples and the augmented
training set is used to improve the CNN-based classifier. We
evaluate methods for the proposed framework and demonstrate
its advantages using data from a real problem as case study — the
diagnosis of helminth eggs in humans. We also show that transfer
learning and data augmentation by affine transformations can
further improve the results.

I. INTRODUCTION

Given an image training set with examples from all cat-
egories, we wish to train a Convolutional Neural Network
(CNN) for image classification [1]–[3]. We know that CNNs
with deep neural architectures can be very successful in
image classification, as well as in other applications. However,
they often require a high number of supervised samples per
category to avoid model overfitting — i.e., high classification
accuracy on the training set with low accuracy on unseen test
sets. Regularization techniques, such as dropout methods, are
usually applied to amend the problem [4], [5]. In addition to
dropout, two important alternatives are (a) data augmentation

(the generation of artificial examples) [6]–[8] and (b) transfer
learning (the weight refinement of a CNN previously trained
over a large supervised training set from another image clas-
sification problem) [9]–[13].

In this work, we present a framework for data augmentation
that exploits two directions:

1) the capability of Encoder-Decoder Neural Networks
(EDNNs, also known as auto-encoders) to extract image
features and reconstruct an approximation of the same
image with no label supervision [14]–[17];

2) the superior ability of humans in understanding, by a
suitable projection, the distribution of the samples in a
given feature space to augment the number of supervised
examples.

Our approach is inspired on recent works that have exploited
visual analytics to train pattern classifiers [18], understand
deep learning [19], and improve deep neural networks [20].

From a small training set with images from all categories,
we first train an EDNN in order to extract image features
for sample projection (Figure 1). The training samples are
projected from the encoder feature space onto a 2D coor-
dinate space using some suitable dimensionality reduction
algorithm [21]–[24]. The expert includes points to the pro-
jection space and the feature vectors of the new samples are
obtained in the original feature space by interpolation, where
we proposed a triangulation based interpolation method on
the encoded feature space. The decoder generates artificial
images from the feature vectors of the new samples and this
augmented training set is used for the design of a CNN-based
image classifier. Therefore, by adding points to each category
on the projection space, the user is indirectly creating examples
of images, as synthesized by the decoder, with slight texture
and color variations with respect to the original ones. We
advocate that this data augmentation process guided by visual

Fig. 1. An overview of the data augmentation system guided by visual
analytics for deep learning.



Fig. 2. Real images (left) of helminth eggs, one for each specie, and examples
of similar impurities (right).

analytics can improve the design of the CNN-based classifier.
In addition, transfer learning [10]–[12] can considerably

improve the effectiveness of the CNN training. It requires
the adaptation of the input and output layers to the problem,
which might not be possible always. Data augmentation by
affine transformations are among the most commonly used
techniques [25], [26], but they can also impair the perfor-
mance of the CNN-based classifier if wrongly chosen [13].
We evaluate the impact of transfer learning and the most
suitable affine transformation to further improve our results.
The advantages of our framework are demonstrated by using
data from a real problem as case study — the diagnosis of
helminth eggs in humans. In this application, we count on
an automated system that reads and segments objects from
images of optical microscopy slides, separates those objects
into three groups of intestinal parasites (helminth eggs and
similar impurities; protozoa cists and similar impurities; and
helmith larvae and similar impurities), extracts image features,
and classifies the objects of each group according to their
specie or as fecal impurity [27], [28]. We use examples of
the eight most common species of helminth eggs in Brazil
and their similar fecal impurities (Figure 2). Impurities that
differ from all species of parasites are previously eliminated by
image processing. Even so, the number of similar impurities in
a microscopy slide can be from tens to hundreds times higher
than the number of parasites. In our training set, for instance,
the less prevalent species really require data augmentation.
The objects must also be aligned by their principal axis at
the center of the image, which helps the CNN to cope with
variations in object position.

II. RELATED WORKS AND RELEVANCE OF THIS
CONTRIBUTION

The combined use of visual analytics and machine learning
techniques has mostly been focused on assisting the user to
understand, extract information, and/or take actions in a given
application. Jeong et al. [29] developed a visualization system
to understand Principal Component Analysis. The system al-
lows the user to select a cluster of data items in one coordinate
space and visualize the corresponding items highlighted. Choo
el al. [30] presented a visual analytics system that uses Linear
Discriminant Analysis for feature space reduction and allows
the user to visualize data clusters and decide the class of new
examples. Heidemann [31] presented an inter-active learning
system that combines the user’s mental model of the class
definition with a classification model trained by examples to
facilitate the detection and correction of label inconsistencies.

In neural networks, visual analytics has played a role in
understanding how deep learning creates effective classifica-
tion systems. Rauber et al. [19] studied CNNs by visualizing
their neuron activity during machine learning. They observed,
for instance, the increasing separation among categories on
dynamic t-SNE projections [24] of the hidden layers of a CNN
as they approach the last layer. Rauber et al. [18] also proposed
a visual analytics system to select the most relevant features
for the design of pattern classifiers. Liu et al. [32] presented
a visual analytics system to help machine learning experts in
the understanding, diagnosis, and refinement of CNN-based
classifiers. Cashman et al. [33] purposed an interactive tool
to visualize the gradient flow during the training of Recurrent
Neural Networks. Pezzoti et al. [20] presented a progressive
visual analytics system that supports the design of deep neural
networks (DNNs) by showing the link between filters and
patterns they detect on training.

In regard to the deep learning models called generative,
due to their independence of supervised samples, there are
specific networks: Deep Boltzmann Machines [34], Generative
Adversarial Networks [35], and Encoder-Decoder Neural Net-
works [14]–[17]. We have chosen EDNNs, since the encoder
can reduce an input image into a feature vector for a suitable
projection while the decoder can reconstruct an artificial
image, similar to the original ones, from an interpolated feature
vector.

Despite the number of data augmentation techniques [25],
[26], [36], we could not find methods that use the decoder of
an EDNN and not even visual analytics for data augmentation.
There are methods that create artificial data to train a more
effective EDNN [36], but not methods that decode feature
vectors artifically created. Therefore, as far as we know, the
present work is seminal in the generation of artificial feature
vectors by the user, as guided by visual analytics, and in the
conversion of those features into an artificial image.

III. DATA AUGMENTATION GUIDED BY VISUAL
ANALYTICS

Figure 1 has been used to shortly introduce the proposed
framework for data augmentation guided by visual analytics.
In this section, we provide more details about each operation.

A. Convolutional Neural Network (CNN)

The framework relies on a CNN to extract image features
and classify patterns. A CNN usually consists of convo-
lutional neural layers (which include neural activation and
might include other non-linear operations, such as pooling and
normalization), fully-connected neural layers, and a decision
layer [3]. The role of the convolutional layers is to extract
a high dimensional and sparse feature vector from each input
image. We call this the convolutional feature vector (FVCNV ),
which will be useful in one of the experiments for data
augmentation. Fully-connected layers can play the role of
feature space reduction with neuron specialization [19] and,
finally, the decision layer outputs the category of the input
image.



In principle, one could use any type of effective neural
network for image classification. We decided for CNNs, such
as AlexNet [2], GoogleNet [37], VGG-16 [38], ResNet [39],
and DenseNet [40], due to their success in a wide variety of
applications [41]–[43].

In order to reduce the chances of overfitting our model,
the number of supervised examples per category (images with
their true label) must be high. In many scientific applications,
however, this is not always possible, due to high acquisition
costs, high annotation costs, or even the scarcity of available
data. This actually defines two types of problems for our
framework: (a) small supervised training sets, which is the one
addressed in this work, and (b) large and mostly unsupervised
training sets with a low number of supervised samples per
category. In (a), data augmentation is crucial. In (b), one may
benefit of a label propagation procedure from supervised to
unsupervised samples. In our framework, the user could act for
label propagation guided by visual analytics. However, even
in (b), might exist categories with a few samples asking for
data augmentation. Therefore, for the sake of simplicity, we
will focus on (a) only.

CNNs can be trained by filter learning, architecture learn-

ing, or transfer leaning [13]. In architecture learning, the net-
work weights are randomly selected, under certain constraints,
and some algorithm finds the best hyperparameters (e.g.,
number of layers, sizes of the filters in each layer, stride in
pooling, etc.) [44]. In filter learning, the weights are randomly
initialized and subsequently optimized by backpropagation.
Transfer learning, on the other hand, uses as weight initializa-
tion the resulting network trained for another image classifica-
tion problem with plenty of supervised samples per category,
where a fast weight refinement by backpropagation usually
suffices to train the network for a new image classification
problem. However, this approach, might requires the images to
be cropped and/or resized to adapt the data to the input of the
network, also the output layer must be adapted to the required
number of categories. Architecture learning is not largely
used as filter and transfer learning, but it can usually provide
better results. However, filter learning and transfer learning
is consistently the best approach to cope with scenarios with
small data [13]. We assess the performance of our framework
using the two most common approaches, filter learning and
transfer learning. In any case, some dropout method [4], [5]
is part of the training protocol of a given CNN, working as
regularizer to reduce the chances of overfitting. Roughly, these
methods simply set to zero the weights of connections or the
output values of neuron activations randomly selected during
training, thus avoiding the network to strongly rely in a small
set of neurons.

B. Projections from nD to 2D

By exploiting suitable projections from nD to kD, where
n > k, k = 2, 3, one can analyze and interact with the
projected samples in order to understand the structure of their
distribution in nD. We found simpler and yet effective to work
with 2D and nonlinear projections by using algorithms such

Fig. 3. Eight examples of original images (left) and their reconstruction (right)
by a convolutional EDNN.

as t-SNE [21] and LAMP [22]. An advantage in using LAMP
is that users can rearrange the position certain points in the
visual space in order to steer the projection. As we will see
later, the ability to interact with the layout has implications to
the subsequent data augmentation step (Section III-D).

Once data is projected in the visual space, new samples
can be drawn in 2D based on the position of the projected
data. The new sampled points are mapped back to the feature
space from which images are synthesized so as to build the
augmented data. An EDNN is required to encode real image
feature vectors for projection and decode artificial image
feature vectors from user manipulation.

C. Encoder-Decoder Neural Network (EDNN)

An EDNN is an unsupervised machine learning approach
that relies on a criterion function to encode an input image
into a compressed feature vector and decode the feature vector
into an approximated reconstruction of that image. It can
rely on fully-connected and/or convolutional neural layers for
this task. We define the encoder feature vector (FVENC) for
sample projection as the one produced at the output layer of
the encoder (Figure 1).

Figure 3 shows examples of input and output images of
an EDNN. We have evaluated several types of EDNNs in
regard to their capability to (a) create feature spaces where the
categories are separated from each other as best as possible (in
nD and consequently in 2D, as shown in [18]) and (b) decode
images with slight variations of color and texture (not critical
distortions). Several types have succeeded according to [14],
[17], but the convolutional EDNN [16] was the best according
to both criteria. We believe this is related to the small size
of the training set, which makes easier to estimate weights
for considerably less neuron connections. Since the encoder
feature vectors are not used to help image classification (which
is an interesting issue to be addressed in a future work), we
decided for convolutional EDNNs. Figure 3 shows examples of
artificial images decoded for data augmentation by this type of
EDNN. Although some detail is lost, the reconstructed images
are still highly resembling its original input.

D. Manipulation

The main idea in manipulation is to add new samples,
especially to the smaller categories. By data augmentation,
we expect a considerably higher number of artificial samples
after manipulation. The expert must then identify confident
regions to insert 2D points from a given category. By doing
that, the corresponding nD feature vectors of the artificial
samples must be interpolated by taking into account the nD



feature vectors of the original training samples. Manipulation
can also involve rearrangement of the samples in 2D for
data augmentation, such that the user can further separate
the categories. For instance, the LAMP technique [22] allows
users to drag some points (control points) so as to bring closer
the points belonging to the same class, steering the projection
to reflect the user provided arrangement.

1) Delauney Triangulation-based Data Augmentation: The
Radial Basis Function interpolation is often applied in multi-
dimensional data interpolation [45]. However, the interpolated
data has led in our application to saturation in the features,
thus saturating the decoder image reconstruction as well. An
Example of saturated image can be found in Figure 4.

Fig. 4. Examples of saturated images obtained after decoder reconstruction
of RBF interpolated samples.

Therefore we followed a different approach for data inter-
polation that is better suited for our problem. Devising an
automatic method to detect confident regions, add points in
2D, as well as interpolate them back to the high dimensional
nD space.

Let X = {x1, . . . , xm} be a set of nD points and
Y = {y1, . . . , ym} be the image of X in 2D obtained via
multidimensional projection. The two-dimensional layout can
be interactively tweaked by users so as to better group the
classes in the visual space. Given X and Y , the proposed
triangulation-based data augmentation methodology operates
in three steps: triangulation, new data generation, and data
interpolation.

The first step, triangulation, builds the Delaunay triangu-
lation from the points in Y and labels triangles according
to the vertices’ class. Specifically, a triangle is labeled as
belonging to a class ’A’ if all its three vertices are labeled as
’A’. Otherwise the triangle is labeled as invalid. The left image
in Figure 5 illustrates labeled (colored) and invalid triangles
for a given input Y .

The second step draws a set of s points from bivariate
Gaussian distributions centered in each point from Y with
covariance given by �I , where I is the 2⇥ 2 identity matrix
and � is the length of the diagonal of the bounding box of
Y . Sample points lying inside a labeled triangle is considered
for the augmentation process while points inside invalid trian-
gles or outside the triangulation hull are disregarded. Points
considered for the augmentation are labeled according to the
triangle they lie in. Figure 5 right depicts points considered
for the augmentation when s = 20 points per Gaussian are
drawn.

Let py be a point considered for augmentation and ty =
[yr, ys, yt], yr, ys, yt 2 Y the triangle containing py . The trian-
gle ty has a counterpart triangle tx = [xr, xs, xt]xr, xs, xt 2
X in the original nD space, where yr, ys, yt are the image of
xr, xs, xt in the visual space. Therefore, py can be mapped

Fig. 5. Delauney triangulation of training data (left), and augmented samples
inside valid triangles (right).

TABLE I
NOMENCLATURE ADOPTED TO DESCRIBE EXPERIMENTS.

S0 Helminth eggs without impurities.
S1 Helminth eggs with impurities (the real problem).
T0 CNN trained by filter learning.
T1 CNN trained by transfer learning.
A0 Original image training set (i.e., set without data

augmentation).
A1 Augmented training set by visual analytics using t-SNE

and triangulation-based interpolation.
A2 Augmented training set by visual analytics using LAMP

and triangulation-based interpolation.
A3 Augmented training set by visual analytics using LAMP,

sample rearrangement, and triangulation-based
interpolation.

A4 The same as A3, but without impurity projection.
A5 The same as A3, but concatenating FVENC and FVCNV

for sample projection.
A6 Augmented training set by random translations from A0.
A7 Augmented training set by random translations from A5.

back to the nD space by simply computing a point px 2 tx
with the same barycentric coordinates as py 2 ty . The
third step of the proposed augmentation technique repeats
the process above for all points considered for augmentation,
giving rise to a new set of points in the nD space that is input
in the decoder to generate the sought augmented data.

IV. EXPERIMENTAL SETUP

This section describes the dataset of helminth eggs, the ar-
chitectures of the EDNN and CNN, and the data augmentation
methods used to evaluate our framework. The nomenclature
adopted in the following sections are described in Table I.

A. Image Dataset of Helminth Eggs

All experiments are performed in a dataset containing
12, 691 images of helminth eggs, already segmented, aligned,
and centered at the image. This dataset contains an unbalanced
numbers of samples from eight species of eggs and similar
fecal impurities, as the ninth category (Table II).

The number of impurities similar to each of those species is
very high, which makes the problem atypical. The impurities
appear as white noise all over the projection of the other cate-
gories. Some species, such as H.diminuta and E.vermicularis,
are also low in number. This makes data augmentation essen-
tial. However, typical image classification problems are better
represented by the case we exclude impurities from the dataset.
Therefore, we define two scenarios to evaluate the framework



TABLE II
IMAGE DATASET OF HELMITH EGGS.

Species # samples
H.nana 501
H.diminuta 83
Ancilostomideo 286
E.vermicularis 103
A.lumbricoides 835
T.trichiura 435
S.mansoni 254
Taenia 379
Impurities 9,535

Fig. 6. LAMP 2D projection of dataset without impurities. User was allowed
to rearrange control points to better group the classes.

S0 A typical scenario in general image classification prob-
lems, as defined by the dataset of helminth eggs with no
impurities (Figure 6).

S1 The real scenario of our application, as defined by the
dataset of helminth eggs with impurities (Figure 7).

In both scenarios, in order to simulate small supervised
training sets, we randomly selected 40 training images per
category, totalizing 320 samples for S0 and 360 samples for
S1. For network training, it is also important that the training
sets are balanced. The remaining samples were used to test the
accuracy of the system on unseen samples (the unbalanced test
set).

B. The Architecture of the EDNN

Some experiments were guided to select the number of con-
volution layers and the number of filters in each convolution

Fig. 7. LAMP 2D projection of dataset with impurities. The impurities class
is divided in many clusters in the whole space. User was allowed to rearrange
control points to better group the classes.
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Fig. 8. Convolutional EDNN used for the experiments.

layer. First, we compared the created feature space with the
categories separated from each other and the decoded images,
while we were adding one more layer. Considering just one
layer for encode, the separability of feature space and the
decoded images not performed well. Thus, we considered
2 and then 3 layers and the separability seems adequate. A
higher number of layers could require a pre-trainning method
as initialization. To choose the number of filters we began with
8 filters per layer and we observed the decoded images. We
increased the number of filters per layer and the reconstructed
images presented color and texture more similar with the
original images. In this way, we have considered 32, 16 and
8 filters per layer respectively.

The architecture of the convolutional EDNN used in all
experiments is given in Figure 8. We denote Convolutional
(C), Max Pooling (P), Upsampling (U) and Fully Connected
layers (FC), all interleaved by Relu activation units, except
by the last layer that presented Sigmoid activation units. The
Sigmoid activation unit at the last layer is responsible for
generating different values in range [0, 1] and result in the
output image.

An ordinary normalization was made with the images before
the training, i.e., we made a normalization that could recover
a RGB image later. Thus, we divided each pixel of image
by 255. We trained the convolutional EDNN during 1000
epochs and refined the network weights by backpropagation.
We used the Mean Squared Error as cost function. We also
tested the Cross Entropy as cost function, but the resulting
images seemed saturated. In order to obtain the reconstructed
images by the synthetic feature vector, we saved the network
weights.

C. The Architecture of the CNN

Given its simplicity, we decided to develop our CNN based
on AlexNet, whose architecture is presented in Figure 9. We
denote Convolutional (C), Normalization (N), Max Pooling
(P) and Fully-Connected layers (FC), all interleaved by Relu
activation units.

This network has been trained by filter and transfer learning,
depending on the compared method. In filter learning, we
initialized the CNN with an xavier distribution, as described
in [46], as it is well known to help convergence on Deep
Networks. For transfer learning, we used the weights provided
in the Caffe framework [47] for initialization. In both cases
160 epochs were used to train/refine weights by backpropaga-
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Fig. 9. The architecture of the AlexNet [2].

tion, with a starting learning rate of 0.001 (0.0001 for transfer
learning) reduced by a factor of 0.1 each 40 epochs.

D. Compared Methods

We have evaluated our framework for the training sets of
eggs without (S0) and with (S1) impurities, trained the CNN
by filter (T0) and transfer (T1) learning, and used each data
augmentation method below from A0 to A7. Any data aug-
mentation approach should be able to obtain higher accuracy
on the test set in comparison with A0, which represents the
original training set S0 or S1 without data augmentation. We
observed, for instance, that data augmentation via rotation and
scaling degrade the performance of the CNN, making the
results worse than A0 for both S0 and S1. This should be
expected since we have mentioned the importance of aligning
the objects by their principal axis at the center of the image
to help the CNN with variations in object position. However,
the nuclei of the cells can appear anywhere inside them. This
makes important to slightly and randomly translate the objects
from the center of the image for more effective data augmen-
tation. In this case we translate the images from a uniform
random distribution of [�20, 20] pixels in both dimensions.
Methods A6 and A7 illustrate that, being A7 based on visual
analytics. Methods A1 and A2 compare different projection
algorithms. The comparison between A2 and A3 shows the
importance of the interpolation technique. A3 indicates the
importance of rearranging samples on the projection space to
better separate the categories.

In order to facilitate reasoning, we have tried a few tricks to
improve visualization in the scenario S1. Method A4 does not
project impurities (Figure 6), so the user adds only artificial
samples of parasites. In method A5, the convolutional feature
vector (FVCNV ) of the CNN trained by transfer learning
is concatenated to the encoder feature vector (FVENC) to
improve visualization with impurity projection (Figure 10).
After interpolation, FVENC is recovered for the generation of
the corresponding artificial image by the decoder. Methods A6
and A7 are only tested on the real and most difficult scenario
with impurities.

Our automated method for generating new samples, can
potentially create different number of samples per classes.
For this reason, in all cases, the augmented training sets are
reduced to present the same number of samples per class for all
methods. In A7, however, we evaluate further improvements
of A5 when random object translations are added to the

Fig. 10. LAMP 2D projection of Eggs data set concatenated with CNN
features, improving the visual class separation even in the scenario with
impurities, reducing the user effort to better group the classes.

TABLE III
CNN TRAINED BY FILTER LEARNING (T0) ON THE TRAINING SET

WITHOUT IMPURITIES (S0).

Kappa Accuracy
A0 0.7734 0.8095
A2 0.9117 0.9276
A3 0.9209 0.9354

augmented training set. Evaluating the gain of combining both
data augmentation strategies.

V. EXPERIMENTS AND RESULTS

In this section, we present the experiments and results with
the methods A0 to A7. First, we evaluate the impact of data
augmentation by visual analytics and the importance of the
projection and interpolation algorithms on the simpler scenario
S0. Second, we evaluate our tweaks to improve visualization
in the real scenario S1. Finally, we evaluate the further im-
provements for the real scenario S1, when combining multiple
techniques to address overfitting.

A. Importance of Data Augmentation by Visual Analytics

Table III shows a toy example, where we ignore the presence
of impurities, in order to assess the effectiveness of our pro-
posed approach according to two metrics, kappa and accuracy.
Where our approach shows a considerable increase for both.
Comparing the effect user driven sample rearrangement, notice
that the rearrangement shows a slightly better result when
compared with the augmentation withouth user intervention,
which indicates the advantage of using a projection algorithm
that allows sample rearrangement such as LAMP.

In our experiments we are considering 1198 artificial sam-
ples added to S0 (with a new training roughly 4.5⇥ bigger).
And, for S1, we have added 1598 artificial samples (train-
ing roughly 5.5⇥ bigger). The only exception lies in A7,
which combines two data augmentation approaches. Figure 11
present some examples of some artificial images.

Including our augmented samples, we create a denser ver-
sion of our data manifold, creating a smoother gradient in the
backpropagation. Figure 12 compares the learning curve for



Fig. 11. Artificial images generated for experiments A4 (top) and A5
(bottom).
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Fig. 12. The training loss and test accuracy along the epochs for both
augmented and no augmented datasets.

A3 and A0. Note that, our proposed augmentation devises a
faster network convergence in a smoother loss curve.

B. Impact in the Presence of a Diverse Class

In order to assess the performance of our approach, we
consider here, a more challenging scenario, since the presence
of impurities in the training set can really impair the effec-
tiveness of the CNN and considerably reduce the effectiveness
gain of A3 over A0 (Table IV). Reinforcing the importance
of tricks to improve visualization, we evaluate a different
visualization technique (A1), as well as an improvement on the
features themselves. Method A4 shows that data augmentation
by visual analytics can still produce considerable effectiveness
gains over A0, when we focus on improving the feature sep-
arability. Finally, in A5, the combination of visual based and
affine data augmentation indicates they provide uncorrelated
samples, indicating its combination can improve even further
the performance.

C. Further Improving Data Augmentation by Visual Analytics

Transfer learning is not always possible and data augmen-
tation by affine transformations can, in some cases, degrade
the CNN’s performance. However, for this particular applica-
tion, transfer learning and data augmentation by random ob-
ject translations can provide considerable effectiveness gains.

TABLE IV
CNN TRAINED BY FILTER LEARNING (T0) ON THE TRAINING SET WITH

IMPURITIES (S1).

Kappa Accuracy
A0 0.1717 0.2546
A1 0.1948 0.2831
A3 0.2872 0.4554
A4 0.2947 0.4631
A5 0.4553 0.6781

TABLE V
CNN TRAINED BY TRANSFER LEARNING (T1) ON THE TRAINING SET

WITH IMPURITIES (S1).

Kappa Accuracy
A0 0.5432 0.7522
A5 0.5964 0.7924
A6 0.5927 0.7882
A7 0.6556 0.8329

Compare, for instance, A0 in Table V with A0 in Table IV and
the gain of A6 over A0 in Table V. Indeed, for this application,
A6 can produce comparable results with data augmentation
by visual analytics. Note that, due to transfer learning, the
differences between A5, and A6 are not relevant. However, A7
shows considerable effectiveness gain over the others when
transfer learning, data augmentation by random translations,
and data augmentation by visual analytics are combined.

VI. CONCLUSION

We have presented a visual analytics system to improve
the performance of CNN-based image classification by data
augmentation. Our system relies on a neural encoder to
extract image features, projection, addition, and interpolation
algorithms to create artificial supervised samples, and a neural
decoder to convert them into artificial training images. We
have demonstrated the advantages of the proposed system for
simple and complex scenarios, as created from a real problem
— the diagnosis of helminth eggs in humans. We have also
demonstrated the possibility of combining our approach with
other techniques that reduce overfitting.

For future work, we intend to address problems with large
and mostly unsupervised training sets. We believe that the
larger amount of unsupervised samples in the EDNN will
improve the separation among categories on the projections.
Additionaly, data augmentation will benefit with label propa-
gation from supervised to unsupervised samples, as guided by
visual analytics. The visual analytics loop can also include
changes in the EDNN and CNN, which will complete the
proposed framework to address image classification problems.

ACKNOWLEDGMENT

The authors are grateful to FAPESP grants #2014/12236-
1 and #2016/25776-0 and CNPq grant 302643/2013-3 and
302970/2014-2. The views expressed are those of the authors
and do not reflect the official policy or position of the São
Paulo Research Foundation.

REFERENCES

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-

mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.



[4] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proceedings of the 30th

International Conference on Machine Learning, 2013, pp. 1058–1066.
[5] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, January 2014.

[6] P. Y. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional
neural networks applied to visual document analysis.” Institute of
Electrical and Electronics Engineers, Inc., August 2003.

[7] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and
J. Schmidhuber, “High-performance neural networks for visual object
classification,” CoRR, vol. abs/1102.0183, 2011. [Online]. Available:
http://arxiv.org/abs/1102.0183

[8] D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep
neural networks for image classification,” CoRR, vol. abs/1202.2745,
2012. [Online]. Available: http://arxiv.org/abs/1202.2745

[9] Y. Xia, “Fine-tuning for image style recognition,” 2015.
[10] R. Caruana, “Learning many related tasks at the same time with

backpropagation,” in Proceedings of the 7th International Conference

on Neural Information Processing Systems, ser. NIPS’94. Cambridge,
MA, USA: MIT Press, 1994, pp. 657–664.

[11] L. Torrey and J. Shavlik., Transfer learning, 2009.
[12] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring

mid-level image representations using convolutional neural networks,”
in 2014 IEEE Conference on Computer Vision and Pattern Recognition,
June 2014, pp. 1717–1724.

[13] A. Z. Peixinho, “Learning image features by convolutional networks un-
der supervised data constraint,” Master’s thesis, University of Campinas
(UNICAMP), Brazil, Aug 2017.

[14] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” Journal of Machine

Learning Research, vol. 11, pp. 3371–3408, December 2010.
[15] D. Kingma and M. Welling, “Auto-encoding variational bayes,” 2013.
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