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Abstract—Knowing the state of the disconnect switches in a
power distribution substation is important to avoid accidents,
damaged equipment, and service interruptions. This information
is usually provided by human operators, who can commit errors
because of the cluttered environment, bad weather or lighting
conditions, or lack of attention. In this paper, we introduce an
approach for determining the state of each switch in a substation,
based on images captured by regular pan-tilt-zoom surveillance
cameras. The proposed approach includes noise reduction, image
registration using phase correlation, and classification using a
convolutional neural network and a support vector machine fed
with gradient-based descriptors. By combining information given
in an initial labeling stage with image processing techniques to
reduce variations in viewpoint, our approach achieved 100%
accuracy on experiments performed at a real substation over
multiple days. We also show how modifications to the standard
phase correlation image registration algorithm can make it more
robust to lighting variations, and how SIFT (Scale-Invariant
Feature Transform) descriptors can be made more robust in
scenarios where the relevant objects may be brighter or darker
than the background.

I. INTRODUCTION

Distribution substations are the part of the electric power
delivery system responsible for converting the high transmis-
sion voltage to medium voltage, and directing electric power to
distribution lines. Disconnect switches (also called disconnect-
ing switches or disconnectors) are used in substations to re-
configure the network and isolate equipment for maintenance.
A medium-sized substation can have dozens of disconnect
switches, and a single city can have dozens of substations.
That makes remotely operated, automated switches not always
economically viable — given the conditions inside a substa-
tion, they require proper insulation and frequent maintenance,
raising costs when compared to manual switches, which are
operated by a human using a long pole. Figure 1 shows a
disconnect switch.

Knowing the state (open or closed) of each switch in a
substation is important to avoid accidents, damaged equip-
ment, and service interruptions. As most switches are manually
operated, this information is usually provided in reports by
humans, who can commit errors due to lack of attention, bad
weather or lighting conditions (rain, fog, nighttime), or simply
because of the cluttered environment (see Fig. 2).

In this paper, we propose an approach for identifying the
state of each disconnect switch in a substation by analyzing

images captured by regular pan-tilt-zoom (PTZ) surveillance
cameras. Cameras can be installed and maintained without
disrupting power distribution services, and a single camera
can monitor multiple switches, besides being used for other
surveillance tasks, reducing the cost of the system as a whole.
On the other hand, image-based recognition has to deal with
some of the same problems that lead to human errors, such as
rain, fog, and bad lighting. Disconnect switches are also not
designed to be particularly distinctive, having no special color
or texture, and being surrounded (or even partially occluded)
by other similar structures and equipment. Furthermore, be-
sides variations caused by grime and oxidation, switches with
the same function and electrical specification can have very
different appearances, as seen in Fig. 3.

The approach described in this paper tackles those problems
by working on images obtained from pre-programmed camera
framings, with additional information about each switch being
given in an initial labeling stage. That way, the system knows
beforehand the approximate location of each switch in an im-
age. After noise reduction and image registration using a phase
correlation algorithm [1], we employ classifiers to determine
the state of each switch. Two techniques were tested: a small
convolutional neural network (CNN) [2], [3], and a support
vector machine (SVM) [4], [5] fed with descriptors extracted
by a modified version of the description stage from the
Scale-Invariant Feature Transform (SIFT) [6]. The proposed
approach achieved 100% accuracy on experiments performed
at a real-world substation on the course of multiple days.
Additional contributions of this paper include modifications to
the image registration algorithm, which was made more robust
to lighting variations; and to the SIFT descriptors, which were
made more robust in scenarios where the relevant objects may
be brighter or darker than the background.

The rest of this paper is divided as follows. Section II
discusses related work. The proposed approach and the ex-
periments performed to evaluate it are described, respectively,
in Sections III and IV. Section V concludes the paper and
points to future work.

II. RELATED WORK

The idea of using image processing and machine vision for
monitoring substation equipment is not new. For example, a
patent from 1998 describes that idea in general terms [7]. It



Fig. 1. Close view from a closed disconnect switch.

Fig. 2. Disconnect switches in a substation, among other structures and
equipment. At least 27 switches are visible in this image.

mentions disconnect switches as a possible target for moni-
toring, but algorithms are only briefly mentioned in a high-
level manner. Other work address detecting or recognizing
the state of various types of substation equipment based on
images (including from thermal or infrared cameras) [8]–[12],
but research dealing specifically with disconnect switches is
not common.

Chen et al. [13] describe a system for detecting and de-
termining the state of disconnect switches in transmission
substations. For detection, they employ histograms of oriented
gradients (HOG) [14] and linear discriminant analysis (LDA)
[15]; and for state recognition, projection profile analysis and
SVMs [4], [5]. They obtained good results (90% precision and
98.2% recall for closed switches) on a dataset containing a few
hundred images. Although they address a similar problem to
the one we are dealing with, their technique is not directly
applicable in our scenario, as they explore the shape and
symmetry of the contact area from a single model of high
voltage switch, while our work deals with several models of
medium voltage switches, which have different characteristics.

III. PROPOSED APPROACH

To be a viable alternative to other sensors, an image-based
system for determining the state of disconnect switches must
achieve very high accuracy. Given the challenges posed by
the setting, that may prove too difficult for an approach that

Fig. 3. Disconnect switches. All these switches have the same function and
electrical specification. Each image shows a switch with its base point at the
lower right quadrant. In the uppermost 9 images, that switch is open, in the
bottommost 9 images, it is closed.

receives an arbitrary image, locates switches, and determines
their states. One possible solution would be adding to the
switches markers displaying distinctive colors or patterns
(e.g. QR codes), which could be used not only for detection,
but also for identifying each switch. However, that solution
requires power distribution to be halted for installation, and
needs frequent maintenance to keep markers clearly visible.
Moreover, the patterns must appear with a high enough reso-



Fig. 4. Overview of the proposed approach.

Fig. 5. A camera framing showing multiple switches.

lution, demanding cameras with highly precise PTZ control.
Our approach is non-intrusive, and combines image pro-

cessing and machine vision techniques with data input by a
human in an initial labeling stage. That data allows the system
to know beforehand the approximate location of each switch in
an image (note that any monitoring system must contain data
about the switches, which must be uniquely identified in the
power delivery system). Figure 4 shows an overview of the
stages in the proposed approach. The following subsections
detail each of those steps.

A. Data Labeling

Data labeling is part of the system setup, and occurs only
once for each installation of the system. In this stage, a
human operator defines a number of camera framings (PTZ
settings) that show the monitored switches approximately
(but not strictly) sideways, so that a change in state can
be approximately described as a rotation of the conductive
part (the switch “arm”). Once the framings are defined, the
following data is given about each switch in each framing:

• The switch identifier in the power delivery system.
• A base point around which the conductive part rotates.
• Two line segments over the sides of the conductive part.

A centerline is computed between these segments.
• A point of view flag that indicates if the switch opens by

rotating to the left or to the right in the image.
The system must be able to cope with small imprecisions on

the points given by the operator. Figure 5 shows an example
of a framing, with the monitored switches highlighted. Figure
6 shows a zoomed-in view of a labeled switch.

B. Noise Reduction

To reduce noise, especially under low lighting, each input
image is generated as the average of several captures (100, in

Fig. 6. A labeled switch.

(a) (b)

Fig. 7. Detail from a region from a single capture (a) and the average of 100
captures (b). Contrast was equally enhanced for both images, to emphasize
the difference in noise levels.

our tests), taken in quick succession. This also makes objects
passing quickly in front of the switches (such as rain drops)
almost invisible. Figure 7 exemplifies the impact of this simple
noise reduction measure.

C. Image Registration

Our approach was designed to work with regular surveil-
lance cameras, positioned at a distance that allows the same
camera to monitor several switches using different PTZ set-
tings. This type of setup introduces variations when trying to
reproduce the preset camera framings. The impact of these
variations may be positive or negative — they can help
machine learning algorithms to generalize better and avoid
overfitting; or make learning a good model harder. To verify
how these variations affect the results, our approach includes
an optional image registration step.

Since the framing variations observed in our test setup were
small enough to be approximated by translations, we employ
a computionally inexpensive phase correlation algorithm [1]
to align each input image to a reference. This algorithm
is based on the fact that translations have small influence
on the magnitude of the Fourier spectrum, while leading to
mensurable changes on the phase. Given images f and g, we
compute their respective discrete Fourier transforms (DFT)
F{f} and F{g}, and obtain the normalized cross power
spectrum C by:



C =
F{f}F{g}∗

|F{f}F{g}∗|
(1)

Here, F{g}∗ denotes the complex conjugate. We then
convert C back to the spatial domain:

c = F−1{C} (2)

The final cross-correlogram r is obtained by taking the
real and imaginary parts of c (cr and ci, respectively), and
computing the magnitude in cartesian form:

r(x, y) =
√
cr(x, y)2 + ci(x, y)2 (3)

The offset between images f and g is estimated by taking
the position of the peak intensity in r in relation to the origin
(which is usually shifted to the center of the image). Sub-pixel
accuracy can be achieved with interpolation techniques [1].

The shift between the images would be perfectly determined
if the images were circularly shifted versions of each other
(i.e. if elements that “leave” the image “re-enter” it at the
opposite side). That is not the case in a real setting, where
framing variations and time differences may result in new
objects entering the scene, but as long as the scene remains
mostly the same, a good estimation is possible. However,
the scenario we consider also has severe lighting differences
between images. This proved problematic for the original reg-
istration algorithm, so we have added a modification: instead
of taking the DFT from the original images, we take it from
the magnitude G of their gradient fields, computed by:

G(x, y) =
√
Gx(x, y)2 +Gy(x, y)2 (4)

where Gx and Gy are the partial derivatives from an image
f :

Gx(x, y) = f(x+ 1, y)− f(x− 1, y) (5)

Gy(x, y) = f(x, y + 1)− f(x, y − 1) (6)

As gradient magnitudes are stronger over edges, registration
is then guided by the scene structure and the shape of objects
instead of pixel intensities. To exemplify this, Fig. 8 shows the
normalized cross-correlograms computed, respectively, from
two images and from their gradient magnitudes. It can be
seen that the original images produce a large region with high
values (in this example, in fact, the peak does not correspond to
the correct translation between the images), while the gradient
magnitudes produce a better localized peak.

The proposed modification was effective in improving im-
age registration results under varying light. Figure 9 shows
the average from 81 captures of the same scene, without
image registration, with the original algorithm, and with the
modified version. The amount of blur obtained without image
registration is determined by the variations that occur when
the camera tries to reproduce the preset PTZ settings. The
modified version resulted in less variation than the original

(a)

(b)

Fig. 8. Phase correlation between two images (a), and between the
magnitudes of their gradient fields (b). Both images were captured using the
same camera PTZ settings, at different times, and include a small translation.

algorithm — in fact, the original algorithm produced some
incorrect results, in some cases performing worse than not per-
forming image registration at all. In Sec. IV, the performance
of the system as a whole with and without image registration
will be compared.

D. Samples Extraction

The training samples and input images used by the classi-
fication algorithms are not the full images captured by the
cameras. Instead, we use the information given during the
labeling stage to crop a square region around each switch, with
the base point (bx, by) positioned at the lower right quadrant.
The region size is based on the length c of the centerline,



(a)

(b)

(c)

Fig. 9. Region from the average of 81 captures of a scene, without image
registration (a), with the original image registration algorithm (b), and with
the modified version (c).

and scaled to a fixed size w × w (256 × 256 pixels, in our
tests), with scale factor s = w/(2c). The region may also
be mirrored, based on the point of view flag m, which has a
value of 1 or -1. All these transformations are represented by
an affine transformation matrix T :

T =

∣∣∣∣ s ·m 0 −s · bx ·m+ w · 0.65
0 s −s · by + w · 0.65

∣∣∣∣ (7)

Each sample will show the conductive part of one monitored
switch at the right or the bottom, respectively for closed or
open switches. The samples from Fig. 3 were extracted in this
manner. Note that other switches may appear inside the same
image, but only one switch will be analyzed in each sample.

E. State Recognition (Convolutional Neural Network)

Machine learning techniques are employed to determine the
state of the monitored switch in each sample. The approximate
position of the monitored switch in an image is known, thanks
to the information given in the labeling stage. This has a direct
impact on the models that will be learned: while there is
still a large variety of possible situations, a model does not
have to describe every possible aspect a switch may have, nor

distinguish between switches and other structures — it only
has to decide if the switch shown in a sample is open or closed.

The first technique we consider is a small convolutional neu-
ral network (CNN) [2], [3] with the architecture summarized
in Table I. The network is trained from scratch using the Adam
optimizer [16], using categorical cross-entropy as the loss
function. We tested many other, more complex, architectures,
including some that are commonly used in practice [17], but
they were prone to overfitting — this is partially due to the
relatively small number of training samples we used, as well
as the limited number of points of view. By keeping the
network small, we were able to avoid overfitting while keeping
classification highly successful.

TABLE I
ARCHITECTURE OF THE CONVOLUTIONAL NEURAL NETWORK. DOF:

DEGREES OF FREEDOM; CV: CONVOLUTION; MP: MAX. POOLING; LRN:
LOCAL RESPONSE NORMALIZATION; FC: FULLY CONNECTED.

PROCESSING SEQUENCE GOES FROM THE TOP TO THE BOTTOM.

Input Size Operation Activation DOF

32×CV 3× 3× 3

256× 256× 3 MP 2× 2 ReLu 896
LRN

16×CV 3× 3× 32

128× 128× 32 MP 2× 2 ReLu 4,624
LRN

64× 64× 16 flatten — —

65536 16× FC ReLu 1,048,592
dropout 20%

16 2× FC softmax 34

One important factor when training the network is providing
images from all the switches, both open and closed, under
various lighting and weather conditions. Since we will have
multiple samples coming from the same framings, we also
add random modifications to the samples, to prevent the
model from learning to describe objects in the background.
We modify a random rectangular region from each sample,
in the upper or left half, for images containing, respectively,
open or closed switches. Possible modifications include blur,
mirroring, and changing the brightness.

F. State Recognition (Descriptor + SVM Classifier)

A second alternative was tested for determining the state
of each switch, using a “descriptor + classifier” approach. For
classification, we use a support vector machine (SVM) [4],
with a radial basis function kernel and parameters automati-
cally selected by a grid search [5].

Descriptors are extracted by a modified version of the
description stage from the scale-invariant feature transform
(SIFT) [6] (i.e. without interest point detection and orientation
assignment). For each pixel in sample f , we compute the
gradient magnitude G (see equations 4, 5 and 6), as well as
the orientation θ:

θ(x, y) = tan−1(Gy(x, y)/Gx(x, y)) (8)



Fig. 10. Two captures of the same switch at different times. Although the
state remained the same, differences in lighting make the conductive part
darker than the background in the first capture, but brighter at some points in
the second capture.

The region is then split into a grid of 12 × 12 blocks,
and a histogram of gradient orientations is computed for each
block, with 8 orientation bins per histogram. The magnitude
at each pixel position is divided into up to 8 histogram bins
using trilinear interpolation. The final descriptor is obtained
by concatenating all the values from the histograms from
each block, resulting in a vector with 12 × 12 × 8 = 1152
dimensions. Since we are interested in describing the entire
region, we remove the weighting based on the distance to the
region center. To make the descriptor more robust to lighting
variations, it is normalized to an unit vector, has any values
above 0.2 truncated, and is then normalized again.

Besides using different grid sizes and weight parameters,
we also modified the SIFT algorithm by limiting gradient
orientations to the interval [0, 180◦). The modified orientation
θ2 is computed by:

θ2(x, y) =

{
θ(x, y) if θ(x, y) < π
θ(x, y)− π otherwise. (9)

As gradient orientations indicate the direction of change in
contrast, this modification makes bright-dark and dark-bright
transitions the same. This will turn the descriptor less capable
of describing textures, but more robust in situations where the
relevant objects may be brighter or darker than the background
(and potentially more compact, as fewer histogram bins are
needed to cover the same orientations). An example is shown
in Fig. 10 (the images are in grayscale because SIFT uses
only image intensities). Even though the state of the switch
remained the same, the orientation of the gradients along the
sides of the conductive part will change at some points, due
to differences in lighting. The proposed modification attempts
to reduce the impact of these differences on the extracted
descriptors. The effect of this modification on the system as a
whole was tested, as reported in Sec. IV.

Note that descriptors could be extracted from images with
different sizes. However, we took the same fixed-size samples
used by the CNN, to test both techniques under the same
conditions.

Fig. 11. Example image from the 3D model of the substation. Labels 1 and
2 indicate structures added to support the installation.

IV. EXPERIMENTS AND RESULTS

The proposed approach was tested on images collected from
a real distribution substation, over the course of multiple days.
The prototype was written in the Python1 language, using the
OpenCV2, TensorFlow3 and TFLearn4 libraries. The following
sub-sections detail the experimental setup, how the dataset
was created, and the tests performed to evaluate the proposed
approach.

A. Experimental Setup

To collect images, we installed 4 regular PTZ surveillance
cameras, with resolution 1920 × 1080, on a distribution sub-
station in the city of Curitiba, Brazil. The substation has two
horizontal rows containing disconnect switches, one with 36
switches and the other with 69. The cameras were positioned
so that each row is monitored by two cameras, with each
switch being visible approximately sideways from at least one
camera. These cameras are capable of reproducing framings
only in an approximate manner, and given that higher zoom
levels lead to more sensitivity to small motor imprecisions,
this prevented us from framing individual switches, so at least
3 switches are monitored in each framing. When describing
the variations as translations, we observed shifts of up to 40
pixels in any direction. Each camera has 8 or 9 framings, with
a total of 34 different framings. Four 100W LED illuminators
were installed for nighttime illumination.

Since this setup demanded construction work in a risky
environment, a 3D model of the substation was created prior
to the system installation, so that the positions of cameras,
illuminators and new structures could be planned (see Fig. 11).

B. Dataset Creation

To create the dataset, we collected images over a period of 9
days, between 11/28/2017 and 12/06/2017. During this period,
which includes nighttime, the weather was mostly clear, with
light fog or light rain on some occasions. Sunlight sometimes
produced bright spots and strong shadows with visible edges,

1www.python.org
2www.opencv.org
3www.tensorflow.org
4tflearn.org



and gusts of wind made some images blurry. Overall, the
dataset covers a wide range of capture conditions, except for
snow, heavy rain and heavy fog.

A total of 4,114 images was collected. These images were
divided in two sets, with the 1,601 images collected between
12/03 and 12/06 being used for training the models, and
the remaining 2,513 images for testing them. The number of
training and test samples extracted from these images is shown
in Table II.

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES IN THE DATASET.

Open Switches Closed Switches Total

Train 2,095 4,014 6,109

Test 3,205 6,285 9,490

C. Tests

To evaluate the performance of the proposed approach, we
trained models using the training samples, and used them to
determine the state of the switches in the test samples. To cope
with the randomness when modifying the samples, as well as
in the initial CNN weights, each test result is obtained by going
through 5 train-test runs, discarding the best and worst results,
and taking the mean of the 3 remaining results (this mean was
also very close to the median in all tested cases). Six variations
of the proposed approach were tested, with and without the
image registration stage, using a CNN or descriptor+SVM for
classification, and with and without limiting the orientations in
the descriptors. The same modified samples were used for all
variations. Table III shows the number of errors and percentage
of correct results (regarding the total number of test samples)
with each variation.

TABLE III
MEAN NUMBER AND PERCENTAGE OF ERRORS OBTAINED WITH

DIFFERENT VARIATIONS OF THE PROPOSED APPROACH.

Technique Registration Limit ori. Errors % Correct

CNN Yes — 6.33 99.93%

CNN No — 47.67 99.50%

Desc.+SVM Yes Yes 0 100%

Desc.+SVM Yes No 16.67 99.82%

Desc.+SVM No Yes 0 100%

Desc.+SVM No No 54.33 99.43%

All the variations performed well, with perfect accuracy in
some cases. Registering the input images and limiting gradient
orientations improved the results. The approach based on a
descriptor and an SVM performed better than the CNN, but
we note that a different network architecture, possibly trained
with a larger variety of examples to avoid overfitting, could
possibly attain the same results.

One relevant question when evaluating an approach based
on machine learning is: what do the models actually describe?
By design, the descriptors are based on the magnitude and
orientation of gradients, with stronger contribution from pixels

around image edges. Understanding the innards of a CNN
is a more complex problem [3], but we have observed that
many of the filters in the first layer produce strong responses
around image edges with different orientations. Based on this,
we raised the hypothesis that both models could be learning to
identify the general orientation of the conductive part from the
switches, which has two nearly parallel edges, mostly vertical
for closed switches, and mostly horizontal for open switches.
To test this hypothesis, we have extracted rotated samples,
and evaluated them using the learned models. Testing several
images, with both models, there seems to be a direct relation
between the angle of the conductive part and the detected state
(see Fig. 12). This hypothesis will be further investigated in
future work.

Fig. 12. The output of the system is related with the angle of the conductive
part in the image. The same behavior was observed for models learned using
CNNs and descriptors+SVMs.

V. CONCLUSIONS AND FUTURE WORK

We introduced an image-based approach for identifying the
state of disconnect switches in power distribution substations.
By combining knowledge provided by a human in an initial
labeling stage with image processing techniques, the proposed
approach achieved 100% accuracy in tests performed at a
real-world substation. We tested variations considering models
learned by CNNs and by a combination of gradient-based
descriptors and SVMs. Modifications to the image registration
algorithm and to the description stage from SIFT are additional
contributions of this paper.

In future work, the proposed approach will be further tested
on images captured over a longer period of time, as well
as in other substations. Furthermore, although the proposed



approach was highly successful when recognizing situations
observed during training, it remains unknown if the learned
models can be directly employed for other substations, or when
the switches cannot be maneuvered during training. These
scenarios may create new challenges, requiring additional
training, or different strategies for improving dependability,
such as cross-checking results for switches visible by more
than one camera, or combining the outputs from different
classifiers. A challenge that will be addressed in future work
is the case of “almost closed” switches — switches that seem
closed but are not fully pushed, due to human errors or rust.
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