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Abstract—The production of sensory substitution equipment
for the visually impaired (VIP) is growing. The aim of this project
is to understand the VIP context and predict the risks of collision
for the VIP, following an analysis of the position, distance, size
and motion of the objects present in their environment. This
understanding is refined by data fusion steps applied to the
Situation Awareness model to predict possible impacts in the
near future. With this goal, a new architecture was designed,
composed of systems that detect free passages, static objects,
dynamic objects and the paths of these dynamic objects. The
detected data was mapped into a 3D plane verifying positions
and sizes. For the fusion, a method was developed that compared
four more general classifiers in order to verify which presented
greater reliability in the given context. These classifiers allowed
inferences to be made when analyzing the risks of collision in
different directions. The architecture designed for risk prediction
is the main contribution of this project.

I. INTRODUCTION

According to the World Health Organization (WHO) report
[1], there were an estimated 285 million people with visual
impairment in the world in 2014. Visually impaired people
(VIP) have mobility problems and this has a major impact on
social inclusion. The research and consequent development
of sensory support and navigation technologies for visually
impaired people (VIP) is increasing [2]–[8]. These systems
are designed to provide locomotion based on features extracted
from the environment.

VIPs require technologies that go beyond just indicating
the desired destination; these technologies must recognize
patterns, contextualize aspects of the environment and indicate
what action should be taken to ensure the safety of the VIP.
Due to the difficulties that the VIPs have with orientation in
specific environments, this project presents a system composed
of computer vision techniques and analysis of images that
provide data for the detection of obstacles present in the scene
also informing their locations, their distances, their movements
and directions. Fig. 1 presents a simulation of an indoor
environment containing the VIP and various obstacles.

This Sensory Analysis System For Visually Impaired People
(SAS-VIP) introduces a new data fusion architecture based on
contexts similar to those established by a person with vision
to support VIP decision making. According to Zhu et al. [9], a
context refers to current values and specific data that provide
the user with an activity or situation.

  

(a) Simulation (Indoor environment)

  

(b) Simulation with different angle

Fig. 1. (a) Indoor environment containing the VIP and various obstacles. (b)
The same environment (a) from a different angle

Contributions: In an environment there may be a set of
contexts. A context can be formed through the relationship
that entities have with the goal that a user must achieve.
An entity can be an object, a person, or an area Zhu et al.
[9]. If any entity is considered relevant to VIP traffic without
collisions, it can be chosen to form a context. In this way,
this paper presents a new architecture that predicts collision
risks for usual contexts (with obstacles) present in indoor
environments and this is the main contribution of this project.
This architecture was designed based on the Salerno Model for
high-level fusion. According to Liggins et al [10], this model
incorporates concepts from the Joint Directors of Laboratories
(JDL) model and the SAW model proposed by Endsley [11].

Locomotion in unknown environments that contain static
objects (SO) and dynamic objects (DO) is one of the main
difficulties that VIP must deal with. Several technological
solutions have been presented in order to assist the VIP to
find out their position, which elements are in their way and
where is the safest place to move around. In most of these
architectures, different types of sensors were used, such as
those that detect distance, presence, motion and colors [2],
[5], [6], [12]–[14]. Typically these sensors are used as data
sources. However, the systems do not have progressions to
more refined fusion phases in order to correct errors, remove
redundancies and generate decisions that a human being can
trust.

Other applications have been produced [15]–[18] to provide
alternative directions for the VIP but few have attempted a



deeper analysis of the objects present in the scene, which
can perform data fusion and make decisions based on the
Situation Awareness (SAW) level of projection. This project
fits into contexts where data fusion is applied as a fundamental
technique in decision making and aims to reach higher data-
fusion levels in order to forecast possible collisions in the
near future. Thus, the main contribution of this project is the
development of an architecture that performs the modeling
of a dataset used to make inferences. These inferences are
then applied in order to analyze the risks of collision in all
directions that the VIP might move.

This paper is divided into six sections. Section I has already
presented a brief contextualization of the VIP problem and
the contributions that this project can make. In Section II, a
comparison is made between the most recent related works
found in the literature and the present project to see what
possible contributions this study will provide for VIP mobility
and for the state of the art architecture. Section III presents
the proposed architecture that predicts collision risks in indoor
environments. Section IV presents the experiments performed
using the concepts covered in Section III. In Section V,
the results obtained from comparing different classifiers are
discussed. Section VI presents the final considerations.

II. RELATED WORK

There are projects that apply different techniques to solve
specific navigation problems. Some projects ( [16], [7], [19],
[20]) detect nearby obstacles and indicate a region with a
potential collision. Other projects use equipments such as
tags or code labels (RFID or QR-Code) ( [4], [3], [21]) that
are installed in the environment. This strategy is interesting
to provide the VIP with the appropriate place to move or
recognize objects but it is not suitable to inform possible
collisions with dynamic objects or obstacles that do not have
RFID. This facility requires prior planning at all locations
where the VIP will be traveling. SAS-VIP was designed
not to rely on technologies installed in the environment or
remotely requested information. Another important feature that
should be emphasized is the dependency of installing multiple
RFIDs in the environment. If there is no RFID in a certain
place, the system does not have basic information for decision
making and the system loses its purpose. Thus, systems using
technologies such as RFID, QR Codes or any other type of
remote information, should be integrated with other systems
that complement the mobility needs of VIP so that they dont
depend only on sources of data implanted a priori.

In the study by Pundlik et al. [22], an RGB camera and
gyro-sensor are used to analyze the optical flow, check camera
movements and detect possible nearby static and dynamic
objects. Their project has a similar objective to that of the
present work, referring to the detection of obstacles, but it uses
different sensors and techniques. When only an RGB camera
is used, the exact position of an obstacle cannot be calculated,
which makes it difficult to indicate a reliable collision-free
direction. The RGB camera also has many problems related to
lighting. However it is an alternative for outdoor environments.

The infra-red camera used in this project allows reliable
calculations of distances on the X, Y and Z axes and has no
lighting restriction to its indoor use. However, the techniques
implemented in this project are specific to closed environments
due to the exhaustive use of the IR sensor. Pooling these two
studies could make a significant contribution to VIP equipment
for use in different environments.

Joseph et al. [23] developed a system that adopts the Kinect
motion sensor, to obtain a disparity map and addresses the
use of social sensors to provide data from sites and social
networks that support VIP to find out if there is any danger to
mobility in a given region. With these data sources, the SAW
can be generated, which allows the production of more reliable
information. However, Joseph’s system depends on data feeds
provided by others. In the context of support systems for VIPs,
there is nothing in the literature that describes an architecture
containing computer vision techniques and embedded machine
learning to establish data fusion at a level that predicts colli-
sions or accidents between a VIP and environmental elements.
An important feature of this project is to provide the VIP with
the possibility of making inferences to analyze the collision
risk.

III. SENSORY ANALYSIS SYSTEM FOR VISUALLY
IMPAIRED PEOPLE (SAS-VIP)

For the development of the architecture proposed here,
first we analyzed the different ways of grouping the set of
characteristics of the detected stationary objects (SO) and
dynamic objects (DO). The process of detecting these objects
can be seen in Fig. 2, where the moments of acquisition of
these data are presented through images.

  

(a) Detection and tracking - 1

  

(b) Detection and tracking - 2

  

(c) Detection and tracking - 3

  

(d) Detection and tracking - 4

Fig. 2. Indoor environment with obstacles



The green contours in Fig. 2 represent the dynamic objects.
The blue dashed outlines in the images 2b, 2c, 2d, of the same
figure, illustrate some positions that are stored and which allow
for the generation of the path followed by DO. The red and
orange outlines of image 2d display the SO and free passage
(FP) respectively. In the same figure, the black line shows the
route taken by a DO.

For authentic analysis of all the obstacles and information
present in the environment, the objects had to be mapped in a
three-dimensional plane with real world coordinates. For this
to be done, all distances were converted to millimeters.

Based on these concepts, the SAS-VIP architecture was
then developed using SAW. The SAS-VIP architecture (Fig.
3) consists of three modules: an Input and Output Module
(I/O) (section III-A); a Vision Module (VM) (section III-B);
and a Fusion Module (FM) (section III-C).
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Fig. 3. SAS-VIP architecture

A. Input Module and Output (I/O)

The SAS-VIP Input and Output Module (Fig. 3) consists of
a Kinect sensor as input and a stereo headset as output. The
Kinect basically has three sensors; an accelerometer and two
video cameras (Infrared (IR) and RGB).

In this work, we only use the IR and RGB camera. The
objective of the IR is to provide frames in real time, containing
scene depth maps, for the Vision Module, which will be
used to detect static and dynamic objects present in the
environment.

The RGB camera was used to differentiate between the
movement of the dynamic object and the camera movement.
Finally, in this module, there is feedback to the VIP through
sounds (s) or beeps (b) provided by the Fusion Module for
orientation.

B. Vision Module (VM)

The VM is composed of four submodules, which together
are responsible for the extraction of characteristics, such as the
3D position of static and dynamic objects and the direction of
free passages.

1) Depth Map Submodule (DMS): The architecture pre-
sented in this article uses a Microsoft Kinect RGB-D as the
acquisition sensor (AS). In this submodule, given the frames
(30 fps) (IRi, i = 1..30) from the AS, its color maps for the
3D distances of the scene objects are converted into appropri-
ate matrices (DMi, i=1..30) with values in millimeters (mm)
associated with these values (x,y,k), where (x,y) represents the
image coordinates and k the intensity value (RGB channels)
from the VIP. A method was then developed that converts the
value k to millimeters, generating the value Z (in millimeters).

2) Static Object Segmentation Sub-module (SOSS): This
submodule separates the static objects present in the scene
that are less than 2250mm (millimeters) away from the VIP, in
order to avoid collisions. Also, the direction of free passage is
provided. Segmentation of these static objects is accomplished
by means of a Threshold (SOSSso) that scans the depth
image (DM(x,y,Z)) eliminating the background where Z is
more than 2250mm. This filter (SOSSso) means that only the
obstacles in the foreground and which generate greater risks
of impact in a short period of time are analyzed.

The direction of free passage is also detected in SOSS. To
find out the free passage, another Threshold (SOSSfp) filter
was applied to the depth image (DM(x,y,Z)) excluding data
where Z is greater than 3000mm.

Distances have been predefined based on the information
needed by a VIP to move safely. A VIP walking, on average,
at 0.75 m/s, needs to know which obstacles pose the greatest
risk of collision. At this speed, the VIP has approximately 2.5
seconds to bypass close obstacles and approximately 4 seconds
to proceed in the direction of a detected free passage until the
system detects a new FP. These measures were used in the
experiments after conducting interviews with VIP following
the guidelines of the GDTA (SAW model) [24].

An algorithm (Algorithm 1) was developed to present the
data flow of the architecture (see Fig. 3) with respect to
detection of SO and FP. Each instruction has a previous
explanation.

The SOSS, was implemented using the thresholding tech-
niques based on the depth map. In it, only the IR sensor is
used as the AS (line 1) in Algorithm 1. The DMS receives
data supplied by the IR sensor (line 2) and generates the
depth map containing the distances of all the coordinates
(DM(x, y, Z) shown in lines 3 and 4). The SOSS, in turn,
applies thresholding techniques to detect the static objects (line
5) and free passages (line 6). Thus, in lines 7 and 8), their
contours and their centers of mass respectively (lines 9 and
10) are calculated. To generat the edge, a threshold filter was
used, followed by the Canny edge detection filter to eliminate
remaining noise and, consequently, produce a better quality
result for the area calculation. When the detector provides a



region bounded by a curve or a closed contour, its area can
be calculated.

The 3D position of an object is calculated based on its center
of mass but, for each contour performed on the detected object,
the (x, y) coordinates of the beginning and of the end of the
contour are stored. In this way, the widths and heights are
made available.

In lines 11 and 12) 3DPM refer to the centers of mass
(SOn(x, y, Z), FP (x, y, Z) ) with the distance (Z) already
calculated in millimeters (line 11 and 12). The 3DPM is
then responsible for converting the values (x, y) in pixel to
millimeters and providing the 3D position of the SO and the
FP (line 13) to be mapped onto a single reference system.
Finally, the 3DPM submits the beeps at the calculated position
in millimeters to the stereo headset.

Initially a method was used that emits a beep produced
specifically by means of the distance to the detected object.
The beeps for static objects are produced from the left side of
the headset and the dynamic objects on the right side.

Algorithm 1: DETECTION OF STATIC OBJECTS

Input: V ideoIR
Output: SO and FP detected

1 while (Capture V ideoIR) do
2 (〈IR1, IR2, . . . , IRn〉) ← convertFrame(V ideoIR)

3 Θ ← DMframes(〈IR1, IR2, . . . , IRn(x, y, k)〉)
4 (〈DM1, DM2, . . . , DMn(x, y, Z)〉) ← Θ

5 SOSegment ← Segmentation(threshold < 2250mm, IR1)
6 FPSegment ← Segmentation(threshold > 3000mm, IR1)
7 findContours(SOSegment, SOContour)

8 findContours(FPSegment, FPContour)

9 SO(x, x, Z)← CMW(SOContour)

10 FP (x, x, Z)← CMW(FPContour)

11 SO(X,Y, Z)mm ← 3DPM(SO(x, x, Z))

12 FP (X,Y, Z)mm ← 3DPM(FP (x, x, Z))

13 return SO(X,Y, Z)mm, FP (X,Y, Z)mm

3) 3D Position Submodule (3DPS): The 3D Position Sub-
module (3DPS) is responsible for converting the reference
system formed in pixel(x, y) and millimeters (Z) to a reference
system (X,Y, Z) based only in millimeters. This mapping
is performed in three dimensions using the same reference
system (millimeters) from the DO position (DOn(x, y, Z)m).

The conversion of a pixel present in the 2D plane to the
3D is performed by means of measurements that correspond
to the pixel size(x, y) in the distance (Z) in which it lies. It
is emphasized that the distance was converted to millimeters
(Z) by DM. All relevant objects had their positions converted
from pixels to millimeters using Equations 1 and 2.

Dxmm = xpx ∗
Dzmm

Sxpx
(1)

Dymm = ypx ∗
Dzmm

Sypx
(2)

• The unknown variables xpx and ypx represent the position
of the object in the image coordinates (in pixels) on the
x-axis and the y-axis respectively.

• Dzmm = Distance of the object in millimeters.
• Sxpx and Sypx = The amount of pixels in the image on

the respective axes (640 x 480).
• In this way, the position of the object in millimeters on the

x-axis (Dxmm) and on the y-axis (Dymm) is calculated.

4) Dynamic Object Segmentation Submodule (DOSS):
The DOSS extracts features related only to moving objects
present in the VIP field of view. Acquiring and relating these
characteristics to the environment is important for the data
fusion system in providing a safe direction for VIP movement.

Another algorithm (Algorithm 2) was developed to present
the data flow of the architecture (see Fig. 3) with respect to
detection of DO. Each instruction has a previous explanation.
In this algorithm, the IR and RGB sensors are both used as the
AS (line 1). The DMS receives data supplied by the IR sensor
(line 2) and generates the depth map containing the distances
of all the coordinates (DM(x, y, Z) shown in lines 3 and 4).
The DOSS receives data supplied by the RGB and IR sensor
(lines 5 and 7).

For the dynamic object detection process, Farneback Optical
Flow (FarnebackOF ) was used to differentiate between the
movement of the dynamic object and the camera movement
(see line 6) but, after detection, the tracking is performed by
background subtraction (line 7). In this way, when the system
detects a dynamic object, the system issues an alert for the
VIP to slow down so that the BS will better detect the path
of the dynamic object.

The DOSS was developed using the Mixture of Gaussians
technique to connect components. This technique was de-
veloped by reducing the sensitivity in the BS process, after
increasing the Threshold (varThreshold). This threshold is
the quadratic distance between the pixel and the sample
(segmented object) used to decide if the pixel is near it. In
the segmentation process for dynamic objects, being more
complex, a minimum area for contour generation was defined,
as well as the application of smoothing, dilation and erosion
filters.

After detecting the dynamic object, its contour (line 8) and
its center of mass (line 9) were calculated. CMW refer to the
centers of mass (DO(x, y, Z)) with the distance (Z) already
calculated in millimeters. The 3DPM is then responsible
for converting the values (x, y) in pixel to millimeters and
providing the 3D position of the DO (line 10) to be mapped
onto a single reference system. Finally, the 3DPM submits
(line 11) the beeps at the calculated position in millimeters to
the stereo headset.

The DO analysis can produce some different information
about safer paths to follow. Although a moving object pro-
duces a high collision risk but, at the same time, its trajectory
may indicate a safer region for the VIP to move in in the
future.



Algorithm 2: DETECTION AND TRACKING OF DYNAMIC
OBJECTS USING FarnebackOF AND BS
Input: V ideoIR and V ideoRGB

Output: Detection and tracking of DO
1 while (Capture V ideoIR and V ideoRGB) do
2 (〈IR1, IR2, . . . , IRn〉) ← convertFrame(V ideoIR)

3 Θ ← DMframes(〈IR1, IR2, . . . , IRn(x, y, k)〉)
4 (〈DM1, DM2, . . . , DMn(x, y, Z)〉) ← Θ

5 (〈RGB1, RGB2, . . . , RGBn〉) ← convertFrame(V ideoRGB)

6 if DetectionDO([FarnebackOF ], RGB1) then
7 DOSegment ← Segmentation([BS], varThreshold = 150, DM1)

8 findContours(DOSegment, DOContour)

9 DO(x, x, Z)← CMW(DOContour)

10 DO(X,Y, Z)mm ← 3DPM(DO(x, x, Z))

11 return DO(X,Y, Z)mm

C. Fusion Module (FM)

The FM aims to generate contextualized information to
provide safe, reliable mobility for the VIP. The FM is com-
posed of three processes: the Perception Process (PEP), the
Comprehension Process (COP) and the Projection Process
(PROP). Each process belonging to the FM is intended to
provide the information needed to make the decisions.

1) Perception Process (PEP): This process analyzes the
characteristics of relevant objects in the scene. The contex-
tualization of these objects provides the requirements for the
highest levels of abstraction of the SAW. Fig. 4 represents
the operation of the architecture, which aims to analyze the
collision risks in different directions (DR) related to different
distances (DS). The architecture was based on the features
extracted from Fig. 2 and then a representative map (X, Z) was
produced containing the directions on the X axis and distances
on the Z axis.

Through intervals and intersections between DR and DS,
fields were generated (Map (DR, DS)) that indicate the po-
sition of important decision-making instants. These instances
are represented by circles with the following colors: 1- Static
objects (red); 2- Dynamic objects (green); 3- Paths created by
DO (Blue); 4- Free passage (Yellow).

The map in Fig. 4, shows that in directions 1,2 and 3 (red
circles) there is an SO at a distance of 2000mm. This obstacle
is wide and, because of this, it appears in directions 1 to
3 as well. Next to it, in directions 4 to 10 (yellow circles),
there is an FP 3000mm away. The directions 6 to 8 (blue
circles, Fig. 4), represent a path already performed by another
dynamic object at a distance of 4500mm, ending its movement
in directions 3 to 5, but only 1250mm away from the DV. The
green circles, a dynamic object is detected in real time but at
more than 4000mm distance.

By calculating the position and size of the obstacles, they
could be mapped in 3D and the dataset that makes up an
inference analyzed empirically. It should be noted that, to
calculate the position and size of the objects, equations 1 and
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2 presented in subsection III-B3 were used.
2) Comprehension Process (COP): The Comprehension

Process (COP) performs the second phase of the FM. In the
COP, a new data fusion is performed, but using information
that has already been refined by the above process. Analysis
of objects is carried out, based on their behavior, actions,
intentions, relevance and capability [10].

The architecture in this project shows that all detected
elements can be mapped in real time. After collecting a
set of mapped data, a database was created to classify the
collision risk probabilities present in each direction. Thus, it
was possible to generate a learning model that would allow
inferences to be made.

In order to check the possibilities of collision risks in each
direction, it was necessary to contextualize: the position of
the SO and the DO, the position of the FP and the paths
followed by the DO. With this data mapped in a 3D plane,
it was possible to classify for each direction the following
collision risks: 1- Low; 2- Moderate; 3- High; 4-VeryHigh.
Table I shows clearly the composition of the database that
generated the learning model.

For every direction where an obstacle was detected, the
distance to the FP or path made by DO was stored in
millimeters, which allowed the definition of the collision risk.
The symbol ? was inserted in situations where no information
was detected. The dataset created has more than one hundred
(100) lines as shown in Table I (Lines 1-8). This table is just
an example of a part of the dataset

The created dataset has more than one hundred (100)
different sets of data as shown in Table I (Lines 1 to 8). The
model tries to balance all attributes of the relationship.

3) Projection Process (PROP): The Projection Process
(PROP) is the third phase of the FM. This process needs



TABLE I
TRAINING DATASET

Example SOmm DOmm FPmm Pathsmm class
1 ? 4530 3005 2030 low
2 2200 2180 ? 720 moderate
3 850 1610 ? 700 high
4 1640 980 ? 1600 veryhigh
5 ? ? 3150 600 low
6 1700 2425 ? 630 moderate
7 ? 1350 ? 980 high
8 ? 760 ? 1065 veryhigh

to merge the information produced by the COP in order to
sketch situations in the near future. The PROP projects the
actions of objects in relation to the VIP to define the possible
collisions for a given route. Inferences with elements and
current situations are made that project potential collisions.

As already seen for COP, the learning process was carried
out to create a model that would allow inferences to be made.
In this process (PROP), the inferences are executed in all the
directions specified in Fig. 4. The possibility of moving in a
safer direction is also verified, after the inferred results, since a
set of 3 consecutive directions is required with little collision
risk. This is because the width of the space a person will
occupy is more than one direction.

IV. EXPERIMENTS

The VM module of the SAS-VIP architecture provided the
basic features for the four navigation systems. The VM was
written in the C++ language with the help of computational
vision and real-time image processing techniques from the
OpenCv [25] library. For the experiments, the Kinect device
was placed at the front of the waist of the VIP. Inside a
backpack, there was an auxiliary battery to power the sensor
and a small computer for processing the system.

All the characteristics were obtained indoors with static
and dynamic objects of different sizes, positions and lighting
(see Fig. 5 and 6). For the moving objects, the direction and
the average speed during the period of detection were also
modified. Experiments were carried out with all the processes
of SAS-VIP architecture to validate the information that the
Fusion module needs to provide inferences for a given context.

A. Static Object Segmentation Submodule

This submodule separates the static objects present in the
scene that are less than 2250mm away from the VIP, in order
to avoid collisions. Also, the direction of free passage is
provided. Segmentation of these static objects (see item 5c
of Fig. 5) is accomplished by means of a Threshold (line 5,
Alg. 1) that scans the depth image (DM(x,y,Z)) eliminating
the background where Z is more than 2250mm (Algorithm
1). This filter (Threshold) means that only the obstacles in the
foreground and which generate greater risks of impact in a
short period of time are analyzed.

The direction of free passage is also detected in SOSS. To
find out the free passage, another Threshold (line 6, Alg. 1)

filter was applied to the depth image (DM(x,y,Z)) excluding
data where Z is greater than 3000mm millimeters away from
the VIP (see item 5f of Fig. 5).

  

(a) Indoor environment

  

(b) Depth Map
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(f) Free Passage

Fig. 5. Static object segmentation

Fig. 5 have the following composition: Items (5a, 5d)
show the images of the indoor environment and Items (5b,
5e) are the respective depth maps; Item 5c show contour
resulting from the static object segmentation method (line 7,
Alg. 1); Item 5f show contour resulting from the free-passage
segmentation method (line 8, Alg. 1).

It should be noted that any obstacle detected overlaps a free
passage way detected in the same direction. This overlapping
is necessary when the edge of the free passage invades
the region containing an obstacle and this happens in the
composition of the inferences shown in Figura 4.

B. Dynamic Object Segmentation Submodule

In order to provide more refined data for dynamic object
analysis, a segmentation algorithm that isolates the dynamic
objects from the scene (background) has been defined. The tar-
geting method used for this purpose is Background Subtraction
(BS). This technique is widely used to identify objects that are
in motion;

1) Background Subtraction: In Fig. 6, two instants are
obtained in a short time sequence and they have the following
composition: Instant 1 (6a, 6b, 6c); Instant 2 (6d, 6e, 6f).
Each instant is composed of three images, which show: the
IR camera image (6a, 6d); the segmented dynamic object (6b,
6e); and the contour of the segmented dynamic object (6c, 6f).
From these characteristics, it is possible to calculate the center
of mass and the width of the dynamic object. However, this
segmentation technique requires stable images.

With a defined reference system and with the objects in
the environment mapped in the 3D plane, it is also possible to
reconstruct the trajectory of any dynamic object. The routes are
usually produced for people on the go and provide good traffic
possibilities for VIP. So, choice of the paths is an important
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Fig. 6. Dynamic object segmentation

part of the generation of SAW in the defined context (collision
risk), indicating routes with greater chances of collision-free
passage. A video with different experiments can be seen in
the link: (https://youtu.be/IUSdxCCLznk).

C. Fusion Module

To make a comparison between classifiers, the information
produced by the PEP to feed the dataset (see Fig. 4) were
used. Table II shows the results of the training processes
of four classifiers using cross validation with the value of
10 Folds. This table consists of the following features: the
classifiers used; the Correctly Classified Instances (CCI) for
each classifier; the average Precision (avg Pc) of each training;
the Mean Absolute error (MAerror) rate. For this comparison,
the following classifiers were used: Multilayer Perceptron,
Bayesian Network, Naive Bayes and Decision Tree J48.

TABLE II
COMPARISON OF CLASSIFIERS WITH CROSS VALIDATION - FOLDS 10

Classifiers CCI avg Pc MAerror
Multilayer Perceptron 94.2% 94.6% 7.41%

Bayesian Network 64.4% 68.6% 18.8%
Naive Bayes 97.1% 97.2 % 3.04%

J48(Decision Tree) 65.3% 72.7% 25.7%

V. RESULTS AND DISCUSSION

The following tables present the results of some inferences
produced for the context of collision risks according to the
method proposed in Fig. 4. Table III presents 20 inferences
applied to ascertain the quality of the learning models gener-
ated with different classifiers. It presents data similar to those
used to create a dataset of Training, in Table I.

In line 3 of Table III, the absence of both SO and DO means
there is a free passage. This means that the collision risk in
this direction is low. In line 5, a DO was detected at a longer

TABLE III
INFERENCES - SUPPLIED TEST SET

Example SOmm DOmm FPmm Pathsmm class
1 ? 4420 3015 2015 low
2 ? ? 3150 915 low
3 ? ? 3315 ? low
4 ? 4300 3250 ? low
5 ? 4870 3085 1315 low
6 2110 ? ? 1270 moderate
7 ? 2855 ? ? moderate
8 2050 2850 ? 1000 moderate
9 ? 2710 ? 910 moderate

10 2020 2680 ? 1000 moderate
11 1155 ? ? 705 high
12 ? 1615 ? ? high
13 830 1510 ? 710 high
14 1210 1645 ? 630 high
15 1215 ? ? 795 high
16 1005 1460 ? 1520 veryhigh
17 ? 1010 ? 1505 veryhigh
18 750 ? ? ? veryhigh
19 ? 850 ? 980 veryhigh
20 ? 770 ? 1065 veryhigh

distance (4870mm), not generating too much risk, and also,
informs that there was a detection of a free passage greater
than 3000mm (distance from the VIP) and a very close path
(1315mm).

These data suggest that the VIP has a low collision risk in
the next few moments following that direction. In line 8, an
SO (2050mm) and a DO (2850mm) were detected, but there
is a previously followed DO path very close. So, here, the
collision risk is moderate. In the case of line 13, even if a
path (730mm) has already been detected, a SO (830mm) has
also been detected very close, making the risk high. On line
19, the risk becomes very high because the DO is close and
the path detected is behind it; that is, the path indicates a good
area for moving into but it is behind the DO. Table IV shows
the results of the inferences corresponding to Table III.

TABLE IV
RESULTS OF THE INFERENCES

Classifiers CCI avg Pc MAerror
Multilayer Perceptron 100% 100% 0.04%

Bayes Net 80% 84.4% 13.3%
Naive Bayes 100% 100% 0.01%

J48(Decision Tree) 70% 75.6% 25.1%

Table IV allowed us to conclude that the Naive Bayes
and Multilayer Perceptron classifiers provided safer decision
making when compared to Bayes Net and Decision Tree J48.
This is due to the wide variation that can occur in the data
that make up the inferences. In training models, where value
ranges such as the presence of obstacles between 1000mm

and 1500mm are limited, the Bayes Net and Decision Tree
J48 increase the number of correctly sorted instances.

The results shown in Table IV are also important to confirm
the reliability of the architecture. For even with some classi-
fication techniques not reaching 100% CCI, it is feasible to



feed the database in a supervised way and to improve the
learning model. In addition, a safe direction can be found
because the results of all inferences influence the indicated
direction. As shown in Fig. 4, 16 inferences are made for
the SAS-VIP to provide the final direction. The final direction
must be composed of at least three consecutive directions, due
to the width of the VIP. Therefore, if one direction does not
have a CCI inference, the joint result of the other inferences
(related to neighboring directions) can minimize this problem.

VI. CONCLUSION

The SAW model has been applied in a variety of projects.
However it has not really been explored in support systems
for navigation and sensory analysis by VIPs. The level of
its use decreases substantially when the data fusion reaches
the levels of comprehension and projection. Many projects
developed to support VIP locomotion indicate the existence
of obstacles, their position, distance and alternative routes to
follow. However, few have applied the prediction of impacts
based on the comprehension of contexts.

This project developed an architecture that provides a set of
feature extractors to enable the perception and comprehension
of the environment. The prediction of impacts is resulting
from a set of inferences made in different directions. The
results of the Vision techniques were validated by means of the
fusion module. Without the availability of these characteristics,
inferences could not be made.

In this way, this project has made important contributions
to the development of navigation systems for VIP aiming to
predict and avoid collisions. Among these contributions are:
the development of an architecture to analyze the scene, the
distance and position of static and dynamic objects; dynamic
object path analysis; the conversion of the obstacle positions
in the 2D plane to the 3D plane; indication of the direction
that has the least collision risk.

VII. ACKNOWLEDGMENT

We are grateful to the Brazilian funding agency FAPESP –
Project No. 2017/26421-3. Our thanks go as well to UFSCar-
DC, and IFSP, SP, Brazil.

REFERENCES

[1] S. P. Mariotti, “World health organization (who)– visual impairment and
blindness,” http://www.who.int/mediacentre/factsheets/fs282/en/, Tech.
Rep., Aug 2014.

[2] K. Y. Chan, U. Engelke, and N. Abhayasinghe, “An edge detection
framework conjoining with {IMU} data for assisting indoor navigation
of visually impaired persons,” Expert Systems with Applications, vol. 67,
pp. 272 – 284, 2017.

[3] M. L. Mekhalfi, F. Melgani, A. Zeggada, F. G. De Natale, M. A.-M.
Salem, and A. Khamis, “Recovering the sight to blind people in indoor
environments with smart technologies,” Expert Syst. Appl., vol. 46,
no. C, pp. 129–138, Mar. 2016.

[4] C. Tsirmpas, A. Rompas, O. Fokou, and D. Koutsouris, “An indoor
navigation system for visually impaired and elderly people based on
radio frequency identification (rfid),” Information Sciences, vol. 320, pp.
288 – 305, 2015.

[5] S. Mascetti, D. Ahmetovic, A. Gerino, C. Bernareggi, M. Busso,
and A. Rizzi, “Robust traffic lights detection on mobile devices for
pedestrians with visual impairment,” Computer Vision and Image Un-
derstanding, vol. 148, pp. 123 – 135, 2016, special issue on Assistive
Computer Vision and Robotics -.

[6] N. Bourbakis, S. K. Makrogiannis, and D. Dakopoulos, “A system-
prototype representing 3d space via alternative-sensing for visually
impaired navigation,” IEEE Sensors Journal, vol. 13, no. 7, pp. 2535–
2547, July 2013.

[7] A. Aladren, G. Lopez-Nicolas, L. Puig, and J. J. Guerrero, “Navigation
assistance for the visually impaired using rgb-d sensor with range
expansion,” IEEE Systems Journal, vol. PP, no. 99, pp. 1–11, 2014.

[8] J. Xiao, S. L. Joseph, X. Zhang, B. Li, X. Li, and J. Zhang, “An assistive
navigation framework for the visually impaired,” IEEE Transactions on
Human-Machine Systems, vol. 45, no. 5, pp. 635–640, Oct 2015.

[9] Y. Zhu, R. Y. Shtykh, and Q. Jin, “A human-centric framework for
context-aware flowable services in cloud computing environments,”
Information Sciences, vol. 257, pp. 231 – 247, 2014.

[10] M. Liggins, D. Hall, and J. Llinas, Handbook of Multisensor Data
Fusion: Theory and Practice, Second Edition, ser. Electrical Engineering
& Applied Signal Processing Series. CRC Press, 2008.

[11] M. Endsley, B. Bolte, and D. Jones, Designing for Situation Awareness:
An Approach to User-Centered Design. Taylor & Francis, 2003.

[12] H. Jabnoun, F. Benzarti, and H. Amiri, “Visual substitution system for
blind people based on sift description,” in Soft Computing and Pattern
Recognition (SoCPaR), 2014 6th International Conference of, Aug 2014,
pp. 300–305.

[13] S. C. Pei and Y. Y. Wang, “Census-based vision for auditory depth
images and speech navigation of visually impaired users,” IEEE Transac-
tions on Consumer Electronics, vol. 57, no. 4, pp. 1883–1890, November
2011.

[14] Y. Tian, W. R. Hamel, and J. Tan, “Accurate human navigation using
wearable monocular visual and inertial sensors,” IEEE Transactions on
Instrumentation and Measurement, vol. 63, no. 1, pp. 203–213, Jan 2014.

[15] L. T.-L. V. N. Pham, Huy-Hieu, “Real-time obstacle detection system
in indoor environment for the visually impaired using microsoft kinect
sensor,” 2016.

[16] C. K. C. A. F. Kanwal Nadia, Bostanci Erkan, “A navigation system
for the visually impaired: A fusion of vision and depth sensor,” Applied
Bionics and Biomechanics.

[17] M. L. Mekhalfi, F. Melgani, Y. Bazi, and N. Alajlan, “Toward an assisted
indoor scene perception for blind people with image multilabeling
strategies,” Expert Syst. Appl., vol. 42, no. 6, pp. 2907–2918, Apr. 2015.

[18] D. Ahmetovic, “Smartphone-assisted mobility in urban environments
for visually impaired users through computer vision and sensor fusion,”
in Mobile Data Management (MDM), 2013 IEEE 14th International
Conference on, vol. 2, June 2013, pp. 15–18.

[19] P. Costa, H. Fernandes, P. Martins, J. Barroso, and L. J. Hadjileontiadis,
“Obstacle detection using stereo imaging to assist the navigation of
visually impaired people,” Procedia Computer Science, vol. 14, pp. 83
– 93, 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1877050912007727

[20] C. K. Lakde and P. S. Prasad, “Navigation system for visually impaired
people,” in 2015 International Conference on Computation of Power,
Energy, Information and Communication (ICCPEIC), April 2015, pp.
0093–0098.

[21] R. Ivanov, “Indoor navigation system for visually impaired,” in
Proceedings of the 11th International Conference on Computer Systems
and Technologies and Workshop for PhD Students in Computing on
International Conference on Computer Systems and Technologies, ser.
CompSysTech ’10. New York, NY, USA: ACM, 2010, pp. 143–149.
[Online]. Available: http://doi.acm.org/10.1145/1839379.1839405

[22] S. Pundlik, M. Tomasi, and G. Luo, “Collision detection for visually
impaired from a body-mounted camera,” in 2013 IEEE Conference on
Computer Vision and Pattern Recognition Workshops, June 2013, pp.
41–47.

[23] S. L. Joseph, J. Xiao, B. Chawda, K. Narang, and P. Janarthanam,
“A blind user-centered navigation system with crowdsourced situation
awareness,” in Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER), 2014 IEEE 4th Annual International Conference on,
June 2014, pp. 186–191.

[24] N. H. Cordeiro, A. M. B. Dourado, G. da S. Quirino, and E. C. Pedrino,
“A data fusion architecture proposal for visually impaired people,”
in 29th SIBGRAPI Conference on Graphics, Patterns and Images,
SIBGRAPI 2016, Sao Paulo, Brazil, October 4-7, 2016, 2016, pp. 158–
165. [Online]. Available: https://doi.org/10.1109/SIBGRAPI.2016.030

[25] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with
the OpenCV Library. O’Reilly Media, 2008.


