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Abstract—The generation of triangular meshes typically in-
troduces undesired noise which comes from different sources.
Mesh denoising is a geometry processing task to remove this
kind of distortion. To preserve the geometric fidelity of the
desired mesh, a mesh denoising algorithm must maintain the
object details while removing artificial high-frequencies from the
surface. In this work, we propose a two-step algorithm which
uses adaptive patches and bilateral filtering to denoise the normal
vector field, and then update vertex positions fitting the faces to
the denoised normals. The computation of the adaptive patches
is our main contribution. We formulate this computation as local
quadratic optimization problems that can be controlled by a set
of parameters to obtain the desired behavior. We compared our
proposal with several algorithms proposed in the literature using
synthetic and real data. Our algorithm yields better results in
general and is based on a formal mathematical formulation.

I. INTRODUCTION

Nowadays 3D surface models are used in several fields
and industries such as medicine, engineering, entertainment,
geo-exploration, architecture and cultural heritage. Processes,
such as multi-view stereo reconstruction, 3D scanning, 3D
imaging, and CAD modeling usually yield triangular meshes.
The data generated by these techniques should be processed
to be available for production, visualization, simulation, or
animation. This processing step is called digital geometry
processing which is a field of computer science that uses
mathematical models and algorithms [1].

3D surface models obtained from real-world data usually
present undesired noise, that can result in problematic effects
on later applications. For example, depth-sensing cameras
reconstruct noisy surfaces due to the physical limitations of
the sensors. As another example, surfaces reconstructed from
medical data can present different noise introduced in different
steps of the reconstruction process [2].

These models are treated using denoising techniques that
seeks to remove high-frequency noise while preserving high-
frequency features, such as edges and other details. The
denoising step is essential in a typical geometry processing
pipeline. Denoising is still a challenging problem because it
is difficult to distinguish features from noise.

In a discrete setting, 3D surface models are commonly
represented as triangle meshes due to its simplicity and easy
processing. The denoising task over meshes is called mesh
denoising, and it is related to the modification of the geometric
properties of the mesh.

In this work, we propose a new algorithm for detail-
preserving mesh denoising following a conventional two-step

scheme. The first step filters the normal field, and the second
one updates vertex positions to adapt them to the filtered
normals. The normal field filtering is performed using adaptive
patches that represent the neighborhood of a given sample
point. The final result of the filtering algorithm strongly
depends on the computation of the patches. The main contri-
bution of this work is the determination of these patches. We
formulate this determination as a local quadratic optimization
problem controlled by parameters that yield flexibility for the
proposed algorithm.

We performed several experiments to compare it with other
denoising algorithms, using synthetic and real data. The results
that we obtained show that our proposal successfully removes
the noise while preserving-details, and in most test cases it
works better than other methods.

This document is structured as follows. In Section II we
present some previous work relevant to our problem. In
Section III we explain how we compute the adaptive patches,
and how to discretize and implement them. In Section IV we
explain how our denoising algorithm works. In Section V we
describe experiments and results. Finally, in Section VI we
present the conclusions and future work.

II. PREVIOUS WORK

Based on a diffusion process, numerous anisotropic filters
were proposed [3]–[7] extending the idea of anisotropic diffu-
sion of 2D grids to 3D surfaces. Hildebrant and Polthier used
a prescribed mean curvature flow simplifying the diffusion
process [8]. He and Schaefer proposed a method for sharp
features preservation [9] using L0 minimization.

The bilateral filter for images was an important inspiration
for many anisotropic mesh filters. The adaptation of this
filter was introduced by Fleishman et al. [10] and Jones et
al. [11], and then generalized by Solomon et al. [12]. Two
step methods, consisting in normal field filtering followed
by vertex updating, were proposed adopting an anisotropic
behavior [13]–[15]. Using a bilateral filter for normal field
filtering, Zheng et al. proposed an iterative and global scheme
for mesh denoising [16]. Wei et al. introduced a bilateral
normal filtering using face normals and vertex normals to reach
more robustness [17]. Using a guidance signal generated by
computing an average normal from consistent patches, Zhang
et al. proposed an extension of the joint bilateral filter [18].
Later, Li et al. tried to improve the consistent patch definition
proposing a new metric [19].



Recently, using binary optimizations, Yadav et al. proposed
a normal voting tensor to denoise the normal field and then
update vertices [20]. Then, the same authors proposed an
edge-weighted Laplace operator to avoid face normal flip and
to be more robust to high-intensity noise [21]. They use a
bilateral normal filtering with a Tukey’s bi-weight function as
bilateral weighting. Wei et al. proposed the usage of consistent
neighborhoods, generated from a tensor voting analysis, to
compute new vertex positions [22].

Our adaptive patch computation follows the idea of com-
puting consistent patches as shown in [18], [19], and [22],
performing a new optimization procedure proposed here. Our
denoising algorithm uses these patches to filter the normal field
in an iterative manner, including an optional step that performs
a bilateral filtering [16] over the new normals to obtain even
smoother results.

III. ADAPTIVE PATCHES COMPUTATION AS AN
OPTIMIZATION PROBLEM

This section presents the mathematical formulation of our
proposed algorithm. Here the patch computation is written as a
quadratic minimization problem. We first describe the problem
as a continuous surface and then we deal with triangular
meshes, the discrete form of the surface.

A. Continuous setting

Let X be a 2-manifold embedded in R3, and a patch X ′ a
subset of X that represents the neighborhood of a reference
point x′ ∈ X . The patch we seek should adapt to the desired
shape to preserve sharp features while denoising flat regions.
Using the normal vector field as shape descriptor, we expect
that flat regions have low normal variation, and sharp feature or
curved regions have higher normal variation. In order to reach
adaptation, the patch should be piecewise constant regarding
the shape descriptor, so the normal difference between any
points within it should be minimum.

Finding the solution X ′ can be formulated as a quadratic
optimization problem, penalizing the error between two points
xi ∈ X ′ and xj ∈ X ′ as qij = ||ni − nj ||, where ni and nj
are the normals of xi and xj respectively. Unfortunately, in a
discrete setting, finding a crisp subset X ′ results in an NP-Hard
combinatorial problem. Based on fuzzy set theory [23], we
can relax the problem defining a fuzzy membership function
u : X → [0, 1] over the entire domain X . This function defines
which is the degree of inclusion of a point xi ∈ X to the patch
X ′. Instead of finding the subset X ′, now we have to find the
function u. The solution u = 0 minimizes the problem for all
cases using the latter formulation, resulting in a patch with
area zero. To avoid this, we add a constraint for u, such that
the sum of the area of X weighted by the membership function
u should be equal to a fixed value a0.

To obtain a desired solution for our mesh denoising algo-
rithm we propose the following functional to find a member-
ship function u that:

min
u
α

∫
xi∈X

∫
xj∈X

qijuiujdada+ β

∫
xi∈X

||x′ − xi||uida

+γ

∫
X

||∇u||2da+ δ

∫
xi∈X

||n′ − ni||uida

s.t. u ∈ [0, 1] ∧
∫
xi∈X

uda = a0,

(1)

where uk = u(xk), and n′ is the normal of the reference point
x′.

The first term in eq. 1 penalizes the difference between
the normals of any two points contained in the domain X .
The second seeks to enforce compact solutions by penalizing
the distance between any point of the patch and the reference
point x′. The third term penalizes the squared gradient norm
of u to obtain smoother solutions. The fourth term is a little
more complicated. Depending on the influence of each of the
previous terms we can obtain a solution that does not include
the reference point. This solution may have no coherence with
the desired reference point normal. For example, if we have
a noisy cube and we are computing a patch with a reference
point close to an edge, the solution can lie in the wrong face if
there the region is flatter. This fourth term allows us to mitigate
this problem. The parameters (α, β, γ, δ) in this equation
control the importance of each term relative to the others.

B. Discretization

As our denoising algorithm works over triangular meshes,
we have two candidates to use as sampled points to represent
the manifold: vertex positions and face centroids. We opted
to use face centroids because our algorithm uses the normal
field generated by face normals. A triangular mesh M can
be represented as a set of m vertices V = {v1, . . . , vm}
and a set of n faces F = {f1, . . . , fn}. Each face (trian-
gle) is described by the three indices of its vertices. The
position of the mesh vertices can be represented as X =
{x1, . . . ,xm} where xi = x(vi) = (x(vi), y(vi), z(vi))

T .
Face centroids can be represented as C = {c1, . . . , cn} where
ci = c(fi) = (x(fi), y(fi), z(fi))

T . In a similar way, we
can represent face normals as N = {n1, . . . ,nn} where
ni = n(fi) = (nx(fi), ny(fi), nz(fi))

T . Given a face f
defined by the vertices v1, v2 and v3, its corresponding normal
can be obtained by n = (x2−x1)×(x3−x1). The direction of
the normal depends on the face orientation. In order to obtain
a coherent normal field, faces must share the same orientation.

If we define the patch as a crisp subset, i.e., u is either 0 or 1,
we can represent it as a subset of faces F ′ ⊆ F . In our formu-
lation we define a membership function over this domain (F ),
so we can represent it as a vector u = {u1, . . . , un}T where
ui represents the membership value of face fi. Given that our
sampled points are the face centroids and we want to integrate
over the entire domain we need the area correspondent to each
point. We assume that the area for each centroid ci is the area
of the corresponding face, fi. These areas can be represented



as a vector a = {a1, . . . , an}T or as a diagonal matrix A such
that (aii) = ai.

The first term of the optimization problem has a quadratic
form and in a discrete setting can be rewritten as fol-
lows:

∑n
i=1

∑n
j=1 qijuiaiujaj . Using a matrix form we have:

uTATQAu, where A is the diagonal matrix containing
face areas and Q is an error matrix containing all normal
differences between two faces (or centroids). Each entry of Q
is defined by qij = ‖ni − nj‖.

For the term that penalizes the distance between any point to
the reference point, we use the distance between centroids and
the corresponding face areas. We can consider a n×n matrix
D containing all distances between two pair of points: dij =
‖ci−cj‖. The distance term is linear, so if the reference point
index is k we can use the kth column of D in the optimization
problem. For convenience we will call this vector as d. Also,
we have to integrate this penalization over the involved area.
Let us denote the area of the reference point as a′ (area of the
reference face) and the ith entry of d as di. This term can be
described by a′

∑n
i diaiui, and in a matrix form by dTa′Au.

For the third term we have to define a gradient norm opera-
tor in a matrix form. To simplify the operator, we approximate
it with the following formulation. We assume that u is constant
over all the face (triangle), so the gradient norm is zero within
it. For this reason, we only need to integrate the gradient norm
over the face edges. Adopting this scheme, for each point
over an edge sharing faces fi and fj , the gradient should be
orthogonal to the edge, and has only two possible directions
depending on u values. We can think about it as a 1D gradient,
such that the norm of the gradient over an edge point is equal
to |ui−uj |. Following this idea, integrating the gradient norm
over all points of the edge, results in the following expression:
‖eij‖|ui − uj |, where ‖eij‖ is the corresponding edge length.

With this formulation we can define the gradient norm
operator as the following matrix:

G = (gij) =


∑

fk∈Nf (fi)
‖eik‖ i = j

−‖eij‖ fj ∈ Nf (fi)
0 otherwise

(2)

where Nf (fi) is a set containing edge based neighboring faces
of fi, and ‖eij‖ is the lenght of the edge that shares faces fi
and fj . So, the squared gradient norm of u can be calculated
as follows: ‖∇u‖2 ≈ (Gu)2 = uTGTGu.

When giving more importance to this term, we obtain
more regular solutions, i.e., with a lower variation of u. It
is essential to balance the importance of this term to obtain
regular solutions and be careful about too smooth solutions
which are not helpful for our denoising algorithm, once these
solutions tend to be not adapted to the object shape.

The coherence term which penalizes the difference between
the normal of a point and the normal of the reference point is
linear. So we can discretize it in the same manner as in the
distance to the reference point discretization. Let us denote the
area of the reference point as a′ (area of the reference face)
and the normal of the reference point as n′. We can write this
term as a′

∑n
i ‖ni−n′‖aiui, and in a matrix form as fTa′Au,

where f is a n dimensional vector containing in ith position
the normal difference between the reference face and the face
fi.

The lowerbound and upperbound constraints can be repre-
sented by the vectors 0 and 1, which are n-dimensional vectors
containing in all their entries zeros and ones respectively. The
area constraint results in a single linear constraint

∑n
i aiui =

a0, whose matrix representation is: aTu = a0. In practice, we
restrict the domain of the optimization problem to a regular
neighborhood limited by a given radius and by a maximum
number of faces or variables for the optimization problem (the
nearest ones to the reference point). So the mentioned mesh
M , represents a subset of the entire mesh we want to denoise.

Considering the parameters that controls the optimization
behavior we have the following quadratic optimization prob-
lem for each face centroid of the mesh:

min
u
αuTATQAu+ βdTa′Au+ γuTGTGu+ δfTa′Au

s.t. 0 ≤ u ≤ 1 ∧ aTu = a0.
(3)

Factorizing, it leads to a typical quadratic optimization
problem with bound constraints and a single linear equal-
ity constraint. Unfortunately, this formulation can result in
non-convex optimization problems. Non-convex optimization
algorithms have a high computational cost. For this reason,
we use a local minima solution. The flexibility provided by
the parameters allows the formulation to obtain the desired
solution.

IV. DENOISING ALGORITHM

Our algorithm deals simultaneously with unit normals and
vertex positions. The parameters that weight these contribu-
tions are dependent on the size of the object. To simplify
matters and establish a feeling for the optimal value of these
parameters we apply a uniform scale to the object to transform
the average length of the edges to the value one. After the
denoising process, we retrieve the original scale. These scale
steps are the pre and post-processor, respectively, of our
algorithm.

The proposed algorithm consists of four main steps. The
first is the computation of all information used to compute the
adaptive patches. At first, we compute areas, centroids and
normals for all faces. Then, we define the regular neighbor-
hoods used to reduce the domain of optimization problems.
These neighborhoods depend on two additional parameters:
the maximum Euclidean radius, ρ and a maximum number of
variables for the optimization problems, nvar. Once we have
the regular neighborhoods, we can compute the matrices d, a,
f , A, Q, and G for all faces, as explained in the discretization.

The second step is the computation of the adaptive patches
corresponding to each face. We set up the optimization prob-
lem terms using the matrices computed in the previous step.
To simplify matters, the parameters α, β, γ, and δ are the same
to all patches, and the area constraint a0 is fixed to 20% of
the total regular neighborhood area. Then, we use a quadratic



programming solver to find a solution. The result of this step
are the membership functions, u.

The third step consists of two normal field filtering substeps,
with the second being optional. The first filtering substep uses
the membership values of u as weights to filter normals, so
the new normal of a face fi is computed as follows:

n′
i =

∑
fj∈F ′

njujaj , (4)

where F ′ is the subset of faces representing the regular
neighborhood, uj is the membership value of face fj , aj is the
area of face fj , and n′

i the new normal. After this computation
n′
i is normalized. We update the normals performing a number

of iterations (np).
The second optional substep filters the new normals n′

i,
following a bilateral scheme introduced by [16]. The main dif-
ference here is that this substep uses neighborhoods based on
a Euclidean radius instead of topology based neighborhoods.
For a face fi the new normal can be computed as follows:

n′
i =

1

W (fi)

∑
fj∈F

ajKc(dj)Ks(||nj − ni||)nj , (5)

where F ′ is the subset of faces representing the regular
neighborhood, W (fi) is the normalization factor, and Kc and
Ks are Gaussian kernel functions. We can execute this step in
an iterative manner like in the previous case (nb).

In the last step we fit faces to the filtered normals by
adapting vertex positions. Taubin proposed in [13] to use
orthogonality between the new normal and the edges of the
corresponding face. There are different ways to approximate
a solution to this formulation. In this work we adopt the
approach of [15], which defines the new vertex position as:

x′
i = xi +

1

|Fv(vi)|
∑

fk∈Fv(vi)

n′
k(n

′
k · (ck − xi)) (6)

where Fv(vi) represents the set of faces shared by the vertex
vi, n′

k the new normal of face fk and ck the centroid of fk. We
perform this update iteratively for a given number of iterations
(nv).

We summarize all of these steps in Algorithm 1 which re-
ceives as input a noisy mesh and the parameters for denoising,
and returns the new vertex positions of the denoised mesh.
We can temporarily store matrices in order to avoid excessive
space consumption. All normal and vertex updating loops
are simultaneously executed. This algorithm can be executed
iteratively to obtain smoother results (ne).

V. RESULTS

Denoising algorithms are usually evaluated by measuring
the similarity between the resulting output and the desired
output (ground truth). To test the algorithms we used irregular
meshes with sharp features, large flat areas and large rounded
areas.

To measure the distance between meshes we use four
different quantities: distance, normal, curvature and volume.

Algorithm 1 Denoising algorithm
1: procedure DENOISE(X ,F ,ρ,nvar ,α,β,γ,δ,np,nb,nv)
2: (A,C,N)←computeAreasCentroidsNormals(X,F)
3: computeNeighborhoods(F ,C,ρ,nvar)
4: for each fi ∈ F do
5: (F ′,u = ∅,d = ∅,a = ∅)← neighborhood(fi)
6: (d,a, f ,A,Q,G)← matrixComp(F ′, A, C,N )
7: H← αATQA+ γGTG
8: b← βdT a′A+ δfT a′A
9: a0 ← 0.2·sum(a)

10: u← argminu uTHu+ bu
s.t. 0 ≤ u ≤ 1 ∧ aTu = a0.

11: neighborhood(fi) ← (F ′,u,d,a)

12: for it← 1 to np do
13: for each fi ∈ F do
14: (F ′,u,d,a)← neighborhood(fi)
15: ni ← normalize

(∑
fj∈F ′ njujaj

)
16: for it← 1 to nb do . Optional Step
17: for each fi ∈ F do
18: (F ′,u,d,a)← neighborhood(fi)
19: ni ← 1

W (fi)

∑
fj∈F ′ ajKc(dj)Ks(||nj − ni||)nj

20: for it← 1 to nv do
21: for each vi ∈ V do
22: xi ← xi +

1
|Fv(vi)|

∑
fk∈Fv(vi)

n′
k(n

′
k · (ck − xi))

23: return X

Distance-based: L2 vertex-based mesh-to-mesh error metric
(L2VBE) [24], [25]. Normal based: L2 normal-based mesh-
to-mesh error metric (L2NBE) [24], [25]. Curvature based:
Discrete mean curvature error metric (DCE) [26]. Volume
based: volume error ratio (VE). We can also visually evaluate
the results of denoising algorithms rendering the resulting
meshes using flat shading.

We implemented the proposed algorithm in C++ program-
ming language, using the half-edge data structure contained
in OpenMesh library [27]. To solve the quadratic optimization
problems we used the CPLEX library1. All our experiments
were performed on an Intel (R) Core (TM) i7-4770 CPU @
3.40GHz processor with 16,0 GB RAM and Windows 8.1 64-
bit operating system.

The meshes used in the experiments are from the
AIM@SHAPE Shape Repository [28], the SHREC15: Range
Scans based 3D Shape Retrieval [29] and The Stanford 3D
Scanning Repository2. The parameters of other algorithms
used in our test cases were provided in the corresponding
work. When the test case was not presented in the referenced
paper, we manually adjust the parameters following the au-
thors’ recommendations. The parameters used for our work
are shown in Table I. We fixed ρ = 2.0 and nvar = 100.

A. Evaluation of the proposed denoising algorithm

The first example is the sharpSphere mesh corrupted with
artificial Gaussian noise. We try to eliminate the noise using

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer

2http://graphics.stanford.edu/data/3Dscanrep/



TABLE I
PARAMETERS USED FOR OUR PROPOSAL.

mesh (α, β, γ, δ, ne, np, nb, nv)
SharpSphere (1.0, 2.0, 0.8, 8, 3, 3, 5, 10)
Dragon (1.0, 1.0, 0.2, 20, 1, 5, 3, 10)
Block (1.0, 1.0, 0.1, 30, 3, 5, 2, 10)
Fandisk (1.0, 1.0, 0.2, 10, 3, 5, 2, 10)
Joint (1.0, 2.0, 0.3, 30, 3, 6, 2, 10)
Balljoint (1.0, 1.0, 0.1, 5, 2, 3, 2, 10)
Gargoyle (1.0, 1.0, 0.2, 10, 2, 5, 1, 10)
Keyboard (1.0, 1.0, 0.2, 20, 2, 3, 1, 10)

Fig. 1. From left to right and top to bottom: original, noisy mesh, result of our
proposal without using bilateral normal filtering, and result of our proposal
using it.

our algorithm with and without the optional bilateral normal
filtering step. Figure 1 shows the corresponding results.

Table II shows the error between the original mesh, not
corrupted by noise, and the resulting from our algorithm with
and without the optional step. As we can see, our algorithm
successfully removes the noise while preserving details. The
optional bilateral normal filtering step generates a smoother
mesh but yields higher errors. These errors, however, are not
significant and, depending on the application, we may choose
to use the optional step.

TABLE II
ALGORITHM RESULTS FOR SHARPSPHERE MESH

L2VBE L2NBE DCE VE
With Bilateral 0.003932 0.036556 0.085570 0.001526
Without Bilateral 0.001673 0.012719 0.076498 0.000364

In [18] the authors proposed the computation of consistent
patches to obtain a guidance normal field that in principle is
similar to our weighted average normals. To compare both
approaches, we use our algorithm and the implementation
provided by [18] over the same corrupted mesh. Both normal
fields are compared them using the L2 Normal Based metric

Fig. 2. Results after 20 iterations of vertex updating using estimated normals.
Left: Guided normals using [18]. Right: Average normals weighted by patch
membership function.

where the guidance normal field error results in 0.01603 and
our weighted average normal filed in 0.00816. To show these
results visually, we performed 20 iterations of vertex updating
step using both normal fields. Figure 2 shows the resulting
meshes. Our estimated normal field have a lower error than the
guidance normal field of [18], i.e., our estimated normal field
is closer to the ground truth. Moreover, our approach generates
less flat regions when the triangulation is very irregular.

Table III presents the efficiency of each step of the proposed
algorithm based on the Dragon mesh of The Stanford 3D
Scanning Repository. The low-resolution meshes are obtained
by decimation and for comparison we use the same parameters
for all the meshes. We fixed nvar = 20 for this case.

TABLE III
EXECUTION TIME

Mesh Step 1 Step 2 Step 3 Step 4 Total
10K 0.724s 6.884s 0.070s 0.012s 7.690s
25K 1.744s 16.862s 0.161s 0.019s 18.786s
50K 3.298s 33.685s 0.283s 0.039s 37.305s
75K 4.703s 51.401s 0.434s 0.060s 56.598s
100K 9.287s 67.837s 0.573s 0.087s 77.784s

The computation of the adaptive patches is the step that
consumes more time in our algorithm. Also, the function that
describes the execution time of this step with respect to the
number of triangles, has a linear growth.

B. Comparison with other algorithms

The meshes used here are “Block”, “Fandisk” and “Joint”
whose vertex positions are corrupted with artificial Gaussian
noise. In order to simulate an arbitrary noise source, the
displacement direction is defined by the vertex normal or by
a random direction. Block: noise intensity using σ = 0.1l and
following vertex normal directions. Fandisk: noise intensity
using σ = 0.3l and following random directions. Joint:
noise intensity using σ = 0.35l and following vertex normal
directions. In all cases l is equal to the average edge length.

Our algorithm is focused on denoising of meshes with a
reasonable amount of noise. If, however, the noise is too
high, the normal field which is the base of our computation
can vary substantially and the optimization procedure may
yield bad results. Therefore, for data with a small signal to



noise ratio, we preprocess the mesh using a few iterations of
bilateral normal filtering [16]. In the case of artificial noise,
we recommend using this pre-filtering step when the noise
intensity is based on σ > 0.2l. We used three iterations of
the bilateral normal filtering to initialize the Fandisk and Joint
meshes.

Figure 3 and Table IV show the results for Block. Figure 4
and Table V show the results for Fandisk. Finally, Figure 5
and Table VI show the results for Joint.

The algorithms proposed by [15] and [16] generate smooth
meshes while preserving sharp features. They do not preserve
small flat regions when the data has round areas. The method
presented by [9] tries to preserve these small flat regions,
but it introduces larger ones, as undesired artifacts. The
paper [18] introduces wrong normals in the presence of mesh
irregularities in the regions of sharp features. The algorithms
proposed by [20] and [21] blur the edges with a low dihedral
angle. Our method preserves the details while removing noise,
resulting in low errors.

TABLE IV
RESULTS FOR BLOCK MESH

L2VBE L2NBE DCE VE
[15] 0.011088 0.004683 0.029590 0.000300
[16] 0.010192 0.004298 0.029038 0.000210
[9] 0.020213 0.024389 0.109556 0.024038
[18] 0.004180 0.002676 0.028262 0.000849

Ours 0.001280 0.002001 0.029958 0.000433

TABLE V
RESULTS FOR FANDISK MESH

L2VBE L2NBE DCE VE
[15] 0.000364 0.014546 0.138360 0.000733
[16] 0.000213 0.008664 0.131381 0.001007
[9] 0.000630 0.028042 0.197488 0.017092
[18] 0.000117 0.007719 0.113402 0.000049
[20] 0.000191 0.009118 0.122689 0.001656
[21] 0.000185 0.006311 0.097299 0.000840

Ours 0.000156 0.005791 0.116578 0.000813

TABLE VI
RESULTS FOR JOINT MESH

L2VBE L2NBE DCE VE
[15] 2.43e-6 0.002508 0.227227 0.000115
[16] 1.11e-6 0.001493 0.201129 0.000152
[9] 1.34e-5 0.005773 0.218453 0.002809
[18] 1.48e-6 0.001645 0.154981 0.000215
[20] 1.29e-6 0.000756 0.113735 0.000223
[21] 1.06e-6 0.000882 0.160960 0.000583

Ours 1.04e-6 0.000601 0.180188 0.000066

C. Denoising of real objets

This section studies the denoising of the “Gargoyle”,
“BallJoint” and “Keyboard” meshes. Figures 6, 7 and 8 show
the corresponding results. In general, [9] removes the noise but
also removes small details and generates undesired flat regions.
[15], [16] and [18] smooth too much the shape removing some

sharp features, yielding blurred results. [20] does not preserve
the continuity of sharp features and introduces round edges.
Our results better preserve these details and generate thinner
regions with high curvature yielding in a well-defined mesh.

D. Denoising meshes generated from ultrasound exams

Here we present the result of our denoising algorithm over
two meshes generated from medical ultrasound data. The
meshes were obtained from fetal ultrasound exams using a
two-step methodology. The first step uses an active contour-
based segmentation to capture the shape of the fetus. The
second reconstructs the mesh using the Marching Cubes al-
gorithm [30]. Both meshes present the staircase artifact which
is a common mesh distortion when reconstructing isosurfaces
of slice-based volumes.

We perform the denoising of these meshes in two steps. First
we remove the staircase artifact using our algorithm with the
following parameters: (α = 1.0, β = 1.0, γ = 0.2, δ = 0,
ne = 1, np = 2, nb = 0, nv = 10). Then we remove the noise
using our algorithm with the following parameters: (α = 1.0,
β = 1.0, γ = 0.2, δ = 15, ne = 2, np = 3, nb = 5, nv = 10).
Figure 9 shows our results. Staircase artifacts and noise are
removed while most of the details that can be distinguished
in the noisy meshes are preserved.

VI. CONCLUSION AND FUTURE WORK

The numerical results presented here indicate that the pro-
posed algorithm removes the noise while preserving the details
better than the algorithms we analyze in this work. When the
ground truth is available, the error of our algorithm is the
lowest one in most cases. Our results with real data, also
present a better definition of the details while removing the
noise.

The result of our method is dependent on the choice of the
optimization parameters, this presents some complexity but
also allows for great flexibility. The denoising algorithm can
have multiple behaviors when tuning them. For example, if
we want to denoise a smooth object like a human shape, we
can increase the value of the parameter γ to obtain smoother
patches that result in a near anisotropic Gaussian filter, which
is a good choice for this kind of objects. In the case an object
has large flat regions, we can decrease the value of γ and
increase the values of α and β to obtain more compact patches
with low normal variation.

The proportion between a parameter of a quadratic term
and a parameter of a linear term strongly depends on the
scale of the mesh. The normalization step, however, solves
this problem.

The computational time of our algorithm has a near-linear
cost but with high constant time for the number of triangles
in the local neighborhood. The limitation of the number of
variables allows us to define our algorithm in this way. The
quadratic optimization problems are the heaviest operations in
the pipeline, but we were able to solve common problems in
a reasonable time.



Fig. 3. Results obtained for Block mesh. From left to right: original, noisy, [15], [16], [9], [18] and our method.

Fig. 4. Results obtained for Fandisk mesh. From left to right: original, noisy, [15], [16], [9], [18], [20], [21] and our method.

Fig. 5. Results obtained for Joint mesh. From left to right: original, noisy, [15], [16], [9], [18], [20], [21] and our method.

Fig. 6. Results obtained for Gargoyle model. From left to right: noisy, [15], [16], [9], [18], [20] and our method.

Fig. 7. Results obtained for Ball Joint model. From left to right: noisy, [15], [16], [9], [18], [20] and our method.

Fig. 8. Results obtained for Keyboard model. From left to right: noisy, [10], [15], [16], [9], [18], and our method.

Our approach was focused on denoising of triangular
meshes, using face centroids as sampled points of the rep-
resented 2-manifold. As future work, we can use the vertex
position as sampled points and perform the optimization
problems on this domain instead of the face based domain. The
vertex based domain was better studied in the literature and has
more accurate approximations (e.g., gradient norm operator).
If we work on this domain, we can extend our proposal to 3D
point clouds.

We found that our adaptive patches based on normal fields
can be used in other applications like mesh segmentation,
remeshing or feature detection. Also, instead of using normal
fields to describe the data, we can use other descriptors like
curvature, saliency or heat kernels. We hope to address other
applications in later work.



Fig. 9. Denoising of fetus meshes with staircase artifact using our method.
First column: noisy mesh. Second column: resulting mesh after staircase
removal. Third column: denoised mesh.
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