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Abstract—Data clustering is one of the main challenges when
solving Data Science problems. Despite its progress over almost
one century of research, clustering algorithms still fail in identi-
fying groups naturally related to the semantics of the problem.
Moreover, the technological advances add crucial challenges with
a considerable data increase, which are not handled by most
techniques. We address these issues by proposing a divide-and-
conquer approach to a clustering technique, which is unique in
finding one group per dome of the probability density function of
the data — the Optimum-Path Forest (OPF) clustering algorithm.
Our approach can use all samples, or at least many samples, in
the unsupervised learning process without affecting the grouping
performance and, therefore, being less likely to lose relevant
grouping information. We show that it can obtain satisfactory
results when segmenting natural images into superpixels.

I. INTRODUCTION

Data Clustering is the problem of finding meaningful groups
of similar samples according to a distance function and a
mathematical representation. It is a well-known problem with
large numbers of contributions and applications [1]. The
samples are very often drawn from a set of possible categories
(classes) related to the problem. In this case, the clustering
algorithm should be able to learn a grouping model that can
minimize the number of samples from distinct classes in the
same cluster, while keeping the number of groups as small as
possible (since the trivial solution is to consider each sample
as a distinct group). Given that the design of such a grouping
model must be done with no category information about the
samples, the problem is referred to as unsupervised learning.
The model should also be able to propagate group labels to
new samples with a minimum mixture of classes per group.

The advances in software and hardware technology have
provided large data collections from a wide variety of scenar-
ios. A considerable number of clustering techniques have tried
to handle large datasets [2]. Some techniques assign cluster
labels based on the labels of the nearest neighbors in the fea-
ture space [3]. Approaches based on data summarization first
reduce a large dataset into a relatively smaller one and then
partition the reduced data [4], [5]. The samples of the original
dataset receive the cluster labels that their corresponding repre-
sentatives obtained in the partitioning phase. Techniques based
on distributed computing split a clustering algorithm into a
number of procedures that can be executed independently by a
set of machines [6], [7]. Google’s Map-Reduce framework [8]
provides an effective method to analyze large amounts of

data, especially when computing linear functions over the
samples of data streams. Other approaches, in contrast to
most clustering algorithms, only allow a single pass over the
data stream [9], [10]. Techniques like CURE [11] perform a
clustering over a reduced sample set of a large dataset and
the result is transferred to the original data. CLARA [12]
and CLARANS [13] are two classic large-scale clustering
algorithms based on k-Medoids that rely on a sampling process
to reduce the search space of the data.

Our focus here is on clustering algorithms based on the
Optimum-Path Forest (OPF) framework [14], [15]. This frame-
work interprets a training set as a graph, whose nodes are
the samples and arcs are defined by an adjacency relation
between samples. It exploits the “strength of connectedness”
between samples in the feature space, as defined by a path-
value function, for clustering and classification. In OPF, a
grouping model or a pattern classifier is an optimum-path
forest computed on the input graph. The group/class label
assignment to new samples is performed by finding the root
of the forest which would offer an optimum path to the new
sample, as though that sample were part of the training set,
and assigning the label of that root.

The OPF-clustering method [15] can be very effective
when using all data to construct the forest, but it becomes
prohibitive in memory requirement and processing time as
samples and features per sample increase in number. Given
that the datasets have grown large very rapidly, it is crucial to
maintaining the OPF-clustering method viable with minimum
loss in effectiveness. For large datasets, the authors in [15],
[16] suggest the use of a small training set with randomly
selected samples, which makes very efficient the construction
of a node-weighted graph used by the method and the label
propagation process to new samples. We name this technique
OPF-Large-Data. It has already succeeded with training sets of
about 400 voxels when classifying gray matter, white matter,
and cerebral spinal fluid in magnetic resonance images of the
brain with about 1.5 million voxels. However, the result of the
grouping may be compromised whenever relevant information
is lost in the construction of the training set by random
sampling.

As the main contribution of this paper, we propose a two-
level divide-and-conquer OPF-clustering approach suitable for
large datasets. The idea is to divide the dataset into parts, use
the OPF-clustering algorithm (or OPF-Large-Data) to group



samples in each part, and then combine the clustering results
from each part. For validation, we compare this approach with
OPF-Large-Data, k-Means, and other state-of-the-art methods
for superpixel segmentation. The remainder of this paper is
organized as follows. Section II describes the theoretical back-
ground on the OPF-clustering technique. Section III details
the proposed approach. Section IV presents the experiments
and discusses the obtained results. Finally, Section V states
conclusion and provides directions for future work.

II. OPTIMUM-PATH FOREST CLUSTERING

In OPF clustering [15], the training samples are the nodes
s ∈ N of a graph (N,Ak), whose arcs (s, t) ∈ Ak connect
each sample with its k-nearest neighbors in the feature space
(i.e., a k-nn graph). A probability density value is estimated
at each sample s by

ρ(s) =
1√

2πσ2|Ak(s)|

∑
∀t∈Ak(s)

exp

(
−d2(s, t)

2σ2

)
, (1)

where Ak(s) is the set of k-nearest neighbors of s, d(s, t)
is a distance between s and t in the feature space, and σ =
max∀(s,t)∈Ak

{d(s,t)
3 } guarantees that all samples in Ak(s) are

used for density computation. Let S be a set with one node
per maximum of the probability density function ρ. In order
to define one cluster per dome of ρ, a connectivity function f
must assign a value to each path in the graph

f(〈t〉) =

{
ρ(t) if t ∈ S,

ρ(t)− δ otherwise, (2)

where δ = min∀(s,t)∈Ak|ρ(t) 6=ρ(s){|ρ(t)− ρ(s)|}, when 〈t〉 is
a trivial path (one single node), and

f(〈πs· 〈s, t〉〉) = min {f(πs), ρ(t)} ,

(the minimum value along the path), when a path πs with
terminus s is extended by an arc (s, t) ∈ Ak. Given that,
the OPF-clustering algorithm maximizes a connectivity map
by V (t) = max∀πt∈Π{f(πt)}, where Π is the set of all
paths. This process obtains a partition of (N,Ak) into an
optimum-path forest P (predecessor map) rooted at S, a label
map L, and a root map R. The set S is found during the
algorithm. Each optimum-path tree in P is a cluster rooted at
one maximum of ρ, the root value R(t) ∈ S assigns the cluster
representative (prototype) to each node t ∈ N , and its cluster
label is assigned to L(t). Different choices of k ∈ [1, kmax]
lead to more (lower values) or less (higher values) clusters. The
best value of k is then computed by executing the algorithm
for each value in [1, kmax] and choosing the value of k that
minimizes a normalized graph cut measure

C(k) =

c∑
i=1

W ′i
Wi +W ′i

, (3)

Wi =
∑

∀(s,t)∈Ak|L(s)=L(t)=i

1

d(s, t)
,

W ′i =
∑

∀(s,t)∈Ak|L(s)=i,L(t)66=i

1

d(s, t)
,

for c clusters.

A. Extension to large datasets (OPF-Large-Data)

The competition procedure in the OPF-clustering technique
takes O(k|N |+ |N |log|N |) operations when a binary heap is
used. The estimation of the best k requires its computation sev-
eral times. This method becomes unfeasible for a large number
of samples as in a 2D/3D image with thousands/millions of
pixels/voxels. OPF-Large-Data [15] deals with this problem
by random sampling the set N into a considerably reduced
training set N ′ ⊂ N . This makes the training process feasible,
but the classification of new samples still requires the identifi-
cation of their k-nearest neighbors. In [16], the authors solve
this last problem by changing the training algorithm to output
a list O of the nodes s ∈ N ′ in their non-increasing order of
optimum path values and an adjacency radius w(s) (e.g., the
maximum distance between s and its k-nearest nodes in N ′)
to classify new samples. By giving higher priority to nodes
with higher path values (i.e., by following the order of nodes
in O), this variant classifies new samples t by identifying the
node s ∈ N ′, such that

s = argmax∀s′∈O,d(s′,t)≤w(s′){V (s′)}, (4)

and propagating to t the same cluster label L(s).

III. PROPOSED APPROACH

The following algorithm describes our technique. We call it
OPF-Blocks-2 in reference to the fact that it has two clustering
levels. At the first level, the large number of samples in
N is divided into b disjoint blocks (Line 1), so that each
segment of the data (block) consists of approximately N/b
samples. This number (N/b) must be reasonable and sufficient
to extract useful clustering information from N . This data
division can be random or based on some application-specific
strategy. Then, the OPF-clustering algorithm is used to group
the samples in each block (Line 4). This phase is easy to
parallelize because the blocks are clustered separately. Let us
assume that block i produces ci clusters, for i = 1, 2, . . . , b, or
what is the same, block i can be summarized by ci prototypes.
Subsequently, all the

∑b
i=1 ci prototypes are taken as samples

of a new dataset M (Line 5) to be grouped in the second level
also by the OPF-clustering algorithm (Line 7). It is expected
that this last result will reveal the natural number c of groups in
the original dataset. Our assumption is that the samples in M
summarize the original data, therefore, a clustering over these
samples will represent a good approximation of the underlying
partition of the dataset N . Finally, the group labels acquired
in M are transferred to the original dataset N as follows. Line
9 copies the group labels of the samples in M to the same
samples in N — i.e., the roots of optimum-path trees in the
first level — and then to the samples of their optimum-path
trees (Lines 13 and 14). This algorithm returns the label map
L, the root map R, and the predecessor map P (optimum-path
forest) defined in N .

This technique can be easily extended to a higher number
of levels than two, but we found two levels enough for the



Input: Large dataset N , adjacency relation Ak, probability
density function ρ, and number of blocks b.

Output: Label map L, predecessor map P , and root map R.
1: Divide N into b disjoint sets N1,...,Nb.
2: Create empty set M .
3: for i = 1 to b do
4: (Li, Pi, Ri) ← Execute the OPF-clustering algorithm

in (Ni, Ak, ρ).
5: Add the representative samples of Ni to M .
6: end for
7: (Lm, Pm, Rm) ← Execute the OPF-clustering algorithm

in (M,Ak, ρ).
8: for s ∈M do
9: Set L(s) ← Lm(s), R(s) ← Rm(s), and P (s) ←

Pm(s).
10: end for
11: for i = 1 to b do
12: for s ∈ Ni \M do
13: Set u← Ri(s).
14: Set L(s)← L(u), R(s)← R(u), P (s)← Pi(s).
15: end for
16: end for

datasets used in this work. When the number of samples in
a dataset is considered very large (for instance, the pixels of
an image, where |N | >> 200, 000), we prefer to partition the
data into a smaller number of blocks and use the variant OPF-
Large-Data to cluster each block rather than partition them
into a larger number of blocks. By that, our algorithm can use
the OPF-clustering technique with considerably larger training
sets without degrading its execution time.

A. Improving the estimation of the k-nn graph

The parameter k represents the observation scale of the data
in the feature space. The authors in [15] find the best value of
k by exhaustive search within [1, kmax]. As a drawback, for
each candidate k, the technique must compute ρ for all nodes,
execute the competition process, and evaluate the normalized
cut (see Equation 3) produced by the group labels on the
graph. Another problem with this technique is that it cannot
partition the data into a predetermined number of clusters
without playing with the parameter kmax. In [17], the authors
try to solve the issue by performing the clustering at different
levels of abstractions (scales) to get as close as possible to the
desired number of clusters. In our case, we are only interested
in reducing the computational time for the search of k within
[1, kmax]. Therefore, our idea is to start the search at k = kmax

and stop it whenever the first local minimum of the normalized
cut function is found. It turns out that this heuristic produces
good results with earlier search termination. Of course, the
higher is kmax the more likely is that the exhaustive and
heuristic searches will choose different values of k, being the
chosen value in the former lower than the value selected by the
latter. However, one can always reduce the upper limit kmax

in order to make them equivalent again.

B. Algorithm for image segmentation

When a dataset consists of image pixels, the expected
clustering result is a partition of the image into regions, called
superpixels, such that the image objects can be represented
by the union of their superpixels. We have addressed this
problem by divide-and-conquer OPF clustering as follows. We
first divide the image into a grid of blocks in order to take
advantage of their spatial information. One question is how
to choose the training samples when clustering each block
by OPF-Large-Data. The number of blocks and their corre-
sponding training set sizes are also important issues. Many
blocks or larger training sets seems to allow for better results
because of the usage of more training samples; however, these
decisions slow down the run-time of the technique and may
be unnecessary. Therefore, it is usually enough to work with
few blocks and reduced training sets per block, as obtained by
grid sampling in each block. Afterward, it is possible to merge
adjacent clusters from neighboring blocks by means of a post-
processing, a variant of the algorithm named OPF-Blocks-1,
or to continue the process by clustering the roots from each
block in a second level and then propagating the cluster labels
through them to all image pixels (OPF-Blocks-2). The merging
procedure in OPF-Blocks-1 consists of computing a color
histogram for the superpixels and join adjacent pairs whose
the Bhattacharyya coefficient [18] between them is close to
1. While OPF-Blocks-1 is limited to merge adjacent clusters
from neighboring blocks, OPF-Blocks-2 can merge clusters
from blocks in any part of the image. To produce the final
segmentation, we need to apply a relabelling on the clustering
result of both methods because the obtained clusters are not
restricted to be compacted while the superpixels are. In fact,
this is not the only post-processing that we recommend. We
also propose to apply a shape smoothing (diffusion filter) to
the resulting superpixels [19] and an area filter to remove noise
(small sets of pixels). Figure 1 depicts all the pipeline of OPF-
Blocks-2 for image segmentation.

IV. EXPERIMENTS AND RESULTS

We compare the two clustering techniques derived from
our proposal, OPF-Blocks-1 and OPF-Blocks-2, against two
state-of-the-art superpixel generation methods (SLIC [20]1

and Quick-Shift [21]2), one method based on the watershed
transform [22]3, and two generic clustering algorithms (OPF-
Large-Data3 and k-Means3. To evaluate the methods across
different application domains, we select databases involving
natural, biological, and medical images. The first database cor-
responds to 50 natural and colorful images from the GrabCut
database [23]. The second database is formed by 36 color
images of different parasites where some are connected to
impurities. The goal in these images is to isolate the pixels
that represent the parasites. However, impurities may overlap
the parasites and/or present similar sizes, shapes, colors, and

1http://ivrl.epfl.ch/supplementary\ material/RK\ SLICSuperpixels/
2http://www.vlfeat.org/download.html
3Our own implementation.
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Fig. 1. Pipeline of OPF-Blocks-2 for image segmentation. (a) Input image. (b) The image is divided into 9 blocks. (c) There is selected a training set (blue
points) by grid sampling in each block. (d) The PDF values of the samples are estimated separately in each block. Brighter values indicate samples with
higher values of the PDF. Afterward, each block is clustered with OPF-Large-Data and the prototypes of the groups are promoted to the second level where
they are clustered with the OPF algorithm. The roots of the final forest are indicated with red points. (e) The group labels obtained in the second level are
propagated to all samples of the image. Each color indicates a different group. (f) Resulting superpixels after relabelling and filtering operations.

textures. The third database contains 29 images obtained from
slices of 10 thoracic computed tomography (CT) studies. The
object of interest is the liver in each slice.

To choose the descriptor for the images in the tested
databases, we help ourselves with the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) data visualization tech-
nique [24]. We define the descriptor for the samples of colorful
images with both, the color and spatial information of the
pixel. For the gray-scale images, corresponding to the CT
slices, we determine a feature vector formed by the brightness
value and the spatial information of the pixel, in addition
to the brightness data of the pixels in the 8-neighborhood.
Both descriptors allow separating the object samples from the
background samples in the corresponding t-SNE projections.

We employ two widely used boundary adherence measures
for evaluating the quality of superpixels. The first one is
the boundary recall (BR) which measures the fraction of the
ground-truth boundaries overlapping the segmentation bound-
aries in an image within a certain tolerance distance d of
pixels. We use d = 2 for our experiments. The second used
metric is the under-segmentation error (UE) [25] which does
not penalize over-segmentation and indicates how well the
superpixels adhere to the object boundaries. In addition, we
also analyze the ability of the methods to retrieve the object
of interest with the resulting partition. Assuming that all the
samples from a cluster have the same label of their repre-
sentative4, we assign the correct label to each representative

4In OPF-based methods, the representatives are the roots of the optimum-
path trees; in k-Mean and SLIC, the representatives are the closer samples to
the centers of the clusters.

and propagate these labels to the remaining samples of the
corresponding groups. In this way, we compute the Dice
similarity coefficient (DSC or F1 score) after applying some
post-processing to the images resulted by the label propagation
operation. We apply morphological open and close operations
to reduce noise, and we only remain with the largest object
component because we know that the evaluated images have
a single object of interest. In the shown experiments, OPF-
Large-Data is always executed with 1500 training samples
when clustering each image or block in the case of the divide-
and-conquer extensions. We choose this number because it
usually allows getting a good result without compromising
the efficiency of the technique, but in fact, it could be used
any other number (e.g., 2000, 3000). The same happens when
deciding the number of blocks to divide the images in the
divide-and-conquer extensions. For this work, OPF-Blocks-1
and OPF-Blocks-2 divide the images into 4, 9, or 16 blocks
at the first level, so in turn, they are using a training set with
a size between 4 * 1500 and 16 * 1500 samples.

All experiments are executed on a server with a processor
Intel Core i7-3770K CPU @ 3.50GHz x 8 and a memory
RAM of 32GB. We randomly divide each database into two
sets: a training set and a test set. The images in the training
set are used to tune up the hyper-parameters of the compared
methods. The best hyper-parameters are found by grid search.
All the results shown below correspond to the execution of the
methods exclusively on the images of the test set. We average
the metrics obtained in these images to create the comparative
graphics. The databases are divided as follows.



• GrabCut database: 15 images for training and 35 im-
ages for testing.

• Parasites/Impurites database: 12 images for training
and 24 images for testing.

• Liver database: 11 images for training and 18 images
for testing.

Figures 2, 3, and 4 compare the segmentation results of
the methods in the images of the GrabCut database. It can
be seen that OPF-Blocks-2 outperforms the others techniques,
according to the boundary recall and the under-segmentation
error. OPF-Blocks-1 has the second best performance, only
surpassed by OPF-Large-Data up to 50 superpixels. OPF-
Large-Data overcomes SLIC, k-Means, Quick-Shift, and Wa-
tershed in boundary recall, but it is surpassed by these methods
according to the under-segmentation error from 150 super-
pixels on. Quick-shift has the worst performance up to 80
superpixels but from there, its result improves. According to
the Dice metric, after true label propagation by each cluster
representative, OPF-Large-Data has the best results up to 50
groups, while the divide-and-conquer extensions exceed all
others techniques from 60 groups on.
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Fig. 2. Comparison between the segmentation results of the methods,
according to the boundary recall, in the GrabCut database.

Considering the run-time efficiency, Watershed and SLIC
are superior to the others. The two methods never reach a
second, regardless of the number of superpixels generated.
OPF-Large-Data and the divide-and-conquer extensions have
a similar performance, taking approximately 1.5 seconds to
cluster each image into any number of superpixels. The per-
formance of k-Means deteriorates as the number of superpixels
increases, reaching almost 10 seconds to produce about 300
superpixels per image. Instead, the performance of Quick-Shift
improves as the number of superpixels augments. It takes 7
seconds to cluster an image into 300 superpixels. These results
are equivalent in the three databases evaluated.

Figures 5, 6, and 7 reveal comparisons between the segmen-
tation results of the tested methods in the Parasites/Impurities
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Fig. 3. Comparison between the segmentation results of the methods,
according to the under-segmentation error, in the GrabCut database.
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Fig. 4. Comparison between the segmentation results of the methods after
true label propagation from the cluster prototypes, according to the Dice
coefficient, in the GrabCut database.

database. It can be observed that OPF-Blocks-2 has the
best performance both in boundary recall and the under-
segmentation error. k-Means and OPF-Blocks-1 also obtain
very good results, being the first capable of overcoming OPF-
Blocks-2 in boundary recall from 180 superpixels on. OPF-
Large-Data and SLIC have similar behavior in both measures.
Watershed is the technique with the worst performance and
only beats Quick-Shift up to 60 superpixels. OPF-Large-Data
obtains the worst results in the Dice metric. OPF-Blocks-2 and
k-Means get the best results, however, the second exceeds the
first one up to 60 groups.

The graphics from Figures 8, 9, and 10 compare the
effectiveness of the methods when segmenting the images of
the Liver database. In these experiments, we discard all the
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Fig. 5. Comparison between the segmentation results of the methods,
according to the boundary recall, in the Parasites/Impurities database.
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Fig. 6. Comparison between the segmentation results of the methods,
according to the under-segmentation error, in the Parasites/Impurities database.

dark pixels because we know they are part of the background.
OPF-Blocks-1, OPF-Blocks-2, and Watershed exceed all other
techniques in under-segmentation error; while OPF-Large-
Data, SLIC, and k-Means get similar results according to this
metric. The results corresponding to the boundary recall metric
are different. Watershed has the second-worst performance
while the divide-and-conquer extensions surpass SLIC and
OPF, but are exceeded by k-Means from 100 superpixels on.
According to the Dice metric, OPF-Blocks-2 has the best
performance for any number of groups. The other methods
have a similar behavior from 75 groups on.

Some segmentation results are exhibited in Figures 11, 12,
and 13. The yellow arrows indicate leaking between object and
background. In addition, some true label propagation results
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Fig. 7. Comparison between the segmentation results of the methods after
true label propagation from the cluster prototypes, according to the Dice
coefficient, in the Parasites/Impurities database.
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Fig. 8. Comparison between the segmentation results of the methods,
according to the boundary recall, in the Liver database.

by cluster representatives are shown in Figures 14 and 15.

V. CONCLUSION

In order to address the large dataset problem, we presented
an extension of the OPF-clustering technique that exploits a
divide-and-conquer model with two levels. We also proposed
a local search to find the adjacency parameter k within the
interval [1, kmax] which does not affect effectiveness. Our
approach, OPF-Blocks-2, was evaluated in the image seg-
mentation scenario and outperformed the baselines in most
experiments. We also assessed OPF-Blocks-1, a method that
only makes use of the first level and merges the generated
superpixels between blocks. Despite its excellent results, it is
not competitive with OPF-Blocks-2.
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Fig. 9. Comparison between the segmentation results of the methods,
according to the under-segmentation error, in the Liver database.
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Fig. 10. Comparison of the segmentation results of the methods after true label
propagation from the cluster prototypes, according to the Dice coefficient, in
the Liver database.

As future work, the upper limit kmax per block, the block
sizes, and their spatial locations, should take into account the
data entropy inside the blocks of the first level, in order to
preserve all natural clusters when grouping samples in the
second level. Higher entropy may require lower values of kmax

and reduced block sizes. The technique can also be explored
in several contexts, such as active learning, saliency detection,
and brain tissue segmentation from magnetic resonance im-
ages [16]. Extensions to more than two levels might also be
relevant in some applications.
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Fig. 11. Segmentation results with approximately 100 superpixels using the compared methods in an image of the GrabCut database.
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Fig. 12. Segmentation results with approximately 50 superpixels using the compared methods in an image of the Parasites/Impurities database.
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Fig. 13. Segmentation results with approximately 30 superpixels using the compared methods in an image of the Liver database.
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Fig. 14. Resulting masks of the compared methods for about 100 groups, after true label propagation from the cluster prototypes, in an image of the GrabCut
database.
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Fig. 15. Resulting mask of the compared methods for about 50 groups, after true label propagation from the cluster prototypes, in an image of the Liver
database.


