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Abstract—The Image Foresting Transform framework (IFT)
was successfully used to implement several segmentation meth-
ods, including watersheds and fuzzy connectedness, however the
lack of regularization terms in its formulation leads to a potential
irregular (jagged) segmentation. An attempt to avoid this issue
is to employ shape constraints that favor more regular shapes.
We present a novel shape constraint, called the Geodesic Band
Constraint (GBC) and show how it can be efficiently incorporated
in the Image Foresting Transform framework, with its proof of
optimality in terms of an energy function, subject to the new
constraint. This constraint helps us to improve the segmentation
of regular objects. The GBC can be also used with a prior
shape template in order to drive the segmentation towards a
specific shape with a single parameter that controls the degrees
of freedom of the allowed deformations subject to the model. 1

I. INTRODUCTION

Image Segmentation consists of a partitioning of an image in
multiple regions, such as to extract objects from a background,
being useful in many domains such as medical and biological
image analysis, edition and composition of natural images,
optical character recognition, among others [1]. It is one of
the core and most challenging problems in image processing
and computer vision.

Given the discrete nature of digital images, the graph theory
came as an appropriate tool to represent, compute and analyze
images [2]. As a consequence, this area has attracted a lot of
interest lately, as we can see from the rising quantity of papers
published in the area [3], the congresses entirely dedicated on
this subject and books exclusively dedicated to the topic [2].

Image segmentation can be formulated in graphs as an
optimization problem of a graph-cut measure, such as the
ε∞-minimization [4], [5]. Apart from the achieved success in
many applications and the popularity of related approaches to
the problem of the ε∞-minimization, such as watershed from
markers [6]–[8], iterative relative fuzzy connectedness [9] and
the Image Foresting Transform [7], the lack of regularization
constraints make these methods not appropriate, for some
applications domains. For example, when the expected shape
of the object is simple or regular, the presence of defective
segments on its border could generate issues in the form

1This work relates to a M.Sc. dissertation available at:
http://www.teses.usp.br/teses/disponiveis/45/45134/tde-01062016-104354/

of false positives or negatives, resulting not only in wrong
segmentations but also with jagged borders (Figure 1a).

This work lies inside the problem of the ε∞-minimization of
the Generalized Graph Cuts (GGC) [4], [5] and it is motivated
by some recent breakthroughs such as the introduction of the
Geodesic Star Constraint (GSC) in [10] on the Image Foresting
Transform, resulting in the GSC-IFT [11]. In the context of
theε∞-minimization, this constraint removes undesired irregu-
lar shapes, improving the segmentation of more regular objects
(Figure 1b), while keeping the low computational cost of the
IFT. Based on this idea, we present a novel shape constraint,
called Geodesic Band Constraint (GBC) and devise a new
algorithm that efficiently implements the IFT subject to this
constraint, called GBC-IFT.

The new algorithm computes a global optimal solution for
the ε∞-minimization problem subject to the new constraint
(Figure 1d). This constraint can be combined with GSC
and border polarity constraints [12], [13], allowing a better
management of the problem. The method can be also used
with prior shape templates.

In Section II, we introduce some basic elements about
digital images and the Image Foresting Transform, followed by
our original contributions in Section III, where we introduce
the Geodesic Band Constraint (GBC), in its absolute and
relative variants. Finally, our conclusions are stated in Section
IV.

II. BACKGROUND

A. Image Foresting Transform

In the IFT framework, an image can be seen as a directed
graph G = (I,A) where the vertices are the image pixels
in its domain I ⊂ Zn and the arcs are the ordered pairs of
pixels (s, t) ∈ A defined by an adjacency relation A. Each
arc (s, t) ∈ A has a given weight ω(s, t) ≥ 0, that can be
given by a measure of dissimilarity between pixels s and t,
that usually depends on local features of image, such as color,
gradient and vertex position.

A path πt = 〈t1, t2, . . . , tn = t〉 on this graph is a sequence
of adjacent pixels ending at a pixel t. In this work, we consider
only simple paths, that is, no vertex appears more than once.
We use the notation πt = 〈t〉 to indicate a single vertex path,
namely the trivial path.



(a) IFT (b) GSC-IFT (c) GSC-OIFT (d) GBC-IFT

Fig. 1. Skull stripping examples, performed by different algorithms, for the same set of seeds.

In the IFT framework, we consider a predecessor map, a
function P that associates to each node an adjacent one or a
root marker. A spanning forest is cycle-free predecessor map
P , that is, starting from any vertex and going back through
the predecessors, we find a root marker in a finite number of
iterations. A cost function f associates a cost value f(πt) to
a path πt on the graph. Usually this function is based on the
arc weights along the path.

In the binary segmentation (two classes) via IFT with seed
competition, we consider two sets of seeds, namely So (object
seeds) and Sb (background seeds). Both sets compete trying
to “conquer” further image pixels, so that this results in a
partition of the image in two optimal-path forests, the former,
rooted in object seeds, defining the object, and the latter rooted
in background seeds, defining the background [7].

B. Geodesic Star Convexity

The importance of shape constraints in the IFT is due
to the fact that resulting segmentations could be irregular.
An avoidance measure to this issue is the employment of
constraints to the object shape, such as the Geodesic Star
Convexity (GSC), in order to filter undesired shapes. An object
satisfies the GSC in relation to a center point c if for every
object point p, every point in the line segment linking c to p
also belongs to the object.

We consider the star centers as the object seeds chosen by
the user and the line segments as paths leading each object
point to its nearest star center, thus forming an IFT minimal
geodesic path forest.

Note that any convex shape is also a star-convex shape,
however not every star-convex shape is a convex one, thus
making the GSC more versatile as shown in Figure 2.

(a) (b) (c)

Fig. 2. Examples where we check the convexity constraint. Note that in (a)
and (b) we show a shape that is star-convex but not convex.

C. Oriented Image Foresting Transform

The IFT can be also used when we model the image as a
directed graph, where ω(s, t) 6= ω(t, s), resulting in a method
in which is possible to segment images favoring borders that
have darker-to-brighter transitions or vice-versa.

In this situation is important to note that each segmentation
defines two distinct graph cuts, one of them formed by
arcs from background-to-foreground pixels and other from
foreground-to-background pixels, namely inner cut (Ci) and
outer cut (Co), respectively.

As a consequence, two distinct energies arise, Ei and Eo,
linked to Ci and Co respectively, thus providing different
resulting segmentations when optimized:

Ci(L) = {(s, t) ∈ A |L(s) = 0, L(t) = 1} (1)

Co(L) = {(s, t) ∈ A |L(s) = 1, L(t) = 0} (2)

Ei(L) = max
(s,t)∈Ci(L)

ω̄(s, t) (3)

Eo(L) = max
(s,t)∈Co(L)

ω̄(s, t) (4)

We can define specific cost functions in IFT, in order to
obtain segmentations that minimize such energies and conse-
quently favor transitions in the desired directions (brighter-to-
darker or darker-to-brighter), as shown in Figure 3.

III. CONTRIBUTIONS

A. Geodesic Band Constraint

In this section we present our novel shape constraint, named
Geodesic Band Constraint. The main idea consists in assigning
a maximum limit (band width) for the variation of the geodesic
cost between the points in the object border in order to avoid
irregularities in the final delineation. We control the band
width by means of a fixed parameter ∆, therefore it is possible
to adjust the constraint.

Let O be the set of object pixels and B(O) the set of pixels
in its border, we then have:

Definition: Geodesic Band Constraint - GBC
An object O satisfies the Geodesic Band Constraint with size
∆ if ∀t ∈ O we have C(t) ≤ min

s∈B(O)
C(s) + ∆.



(a) OIFT optimizing Eo (b) OIFT optimizing Ei

(c) OIFT optimizing Eo (d) OIFT optimizing Ei

Fig. 3. OIFT example where we can see the differences when we choose our
desired transition to favor. Note that we can change drastically the final result
choosing a different energy function to optimize while keeping the same seed
sets.

Our new method, that employs this shape constraint is called
Geodesic Band Constraint IFT (GBC-IFT), and in summary,
works as follows:

1) Generation of a Geodesic cost map C.
This first part consists in computing a optimal-path
forest such that its roots are the initially defined object
seeds. This is done by means of a IFT with an additive
(geodesic) cost function. This forest is stored in a
predecessor map P and the path values stored in a cost
map C.

2) Segmentations with the Geodesic Band Constraint.
In this part, the segmentation itself occurs. It is made by
a seed competition which checks if the GBC is being
violated and fixes the border if such a violation occurs.

The GBC restricts the object border pixels in order to make
sure that they are inside a fixed ∆ sized band, preventing
variations greater than this value thereby regularizing its shape.
During the process, the band changes its position, allowing an
adaptation to the image features (Figure 4). Note that only its
position changes while its width is kept fixed.

A natural question that arises is how to estimate the ade-
quate ∆ for a given image. If it is too small, we risk to restrict
the border too much, thus making the resulting segmentation
not representative to the image contents; on the other hand
a too large value will be innocuous since it will make the
restriction so small that the method will degenerate in a simple
IFT with no restriction whatsoever.

This choice problem can be tackled generating energy
curves of the mean and maximum ε∞ resulted from several
values of ∆. With these values we can analyze for each image
if there are segmentations that are robust to changes of ∆,
detected by simultaneous flat lines on the mean and maximum
energy curves. We name those the stable segmentations, and

a possible choice of ∆ for them would be the one that yields
more robustness to parameter changes.

We can also combine the GBC with other constraints,
including the ones presented in Section II, in a similar way as
done [13]. Joining the GBC with the GSC and border polarity,
yielded a new method, called GBC-GSC-OIFT, that gave us
more power to control some segmentation features, as shown
in Figure 5.

B. Relative Geodesic Band Constraint

An evolution of the GBC consists in using a relative
parameter p instead of the fixed parameter ∆ to control
the segmentation. In some cases, the fixed parameter ∆ of
the GBC-IFT prevents us from detecting variations that are
relatively small but are big in absolute numbers. These features
can help us to regularize some shapes, however can also
prevent us from finding others, as we can see in Figure 6.

The fact that ∆ is an absolute value, makes objects with
different scales be compared by the same metric, potentially
resulting in distinct segmentations, even from similar shapes
contained in the same image, making the constraint not robust
to the scale.

A way we found to prevent this issue is to specify a
parameter p instead of ∆, making it relative to the minimum
value found so far in the object border. This makes the band
width proportional to the scale found in the process at each
instant. With that, we can define the new constraint as:

Definition: Relative Geodesic Band Constraint - RGBC
An object O satisfies the Relative Geodesic Band Constraint
of proportion p if ∀t ∈ O we have C(t) ≤ min

s∈B(O)
C(s)·(1+p).

RGBC leads to an analog method of the GBC-IFT, called
RGBC-IFT, presented in Figure 7.

C. Relative Geodesic Band Constraint with Shape Templates

We can also utilize predefined cost maps, obtained exter-
nally. In this case, the ideas is to use some cost map C in the
place of the one created by the method.

Once these cost maps are obtained, they are centralized on
the “mass center” of the object seed set and then we execute
the method normally after that. This drives our segmentation
to the shape presented on the given cost map template (Figure
8), as exemplified in Figures 9 and 10.

IV. CONCLUSION

The geodesic band constraint was successfully incorporated
on the ε∞-minimization framework by means of the develop-
ment of a novel algorithm with its proof of correctness. In this
algorithm we have a single parameter to control the constraint
that can be defined as absolute (∆) or relative (p).

As contributions then, we have the development and deploy-
ment of two novel methods (GBC-IFT and RGBC-IFT) and a
paper published on the 2014 IEEE International Conference
on Image Processing [14].

A possible unfolding of this work consists in the study of a
sense of locality on the proposed constraints. Currently, when
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Fig. 4. (a-d) The fixed size band evolves starting from the seeds, adapting to the image contents. The delineated border (Figure 1d) is contained inside the
band, helping us to avoid false segmentations.
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Fig. 5. Accuracy comparison between several segmentation methods for a
CT image from a human liver, using the same set of seeds.

the constraint is violated, its correction is made globally in
all the extension of the border, however, we try to limit these
changes to a region closer to a given point of violation.

The proposed methods are extensible to 3D images and can
be included in a automatic segmentation framework, in the
cases where the seeds are available from an external source or
when it is possible to generate them automatically.

(a) (b)

Fig. 6. Example showing how, for every ∆ value, the GBC-IFT failed to
segment the black gear.

(a) (b)

Fig. 7. Example showing how the RGBC-IFT was able to segment the black
gear.

(a) Circular shape template (b) Square shape template

Fig. 8. Example of predefined shape templates that can be used as cost maps.



Seed markers in the image IFT

GSC-IFT RGBC-IFT (p = 0.05)

RGBC-IFT (p = 0.10) RGBC-IFT (p = 0.20)

Fig. 9. Segmentation example using the prior circle template.

Seed markers in the image IFT

GSC-IFT RGBC-IFT (p = 0.05)

RGBC-IFT (p = 0.10) RGBC-IFT (p = 0.20)

Fig. 10. Segmentation example using the prior square template.

With our predefined shape templates, it is possible to
analyze more complex shapes. We can also compare this
technique with others that propose similar ideas with shape
prior constraints [15] e [16]. In [15], for example, it uses a
Gaussian Pyramid for the scale treatment while our method
covers the scale automatically with the cost map with no
additional computational cost, but we are yet to compare the
accuracy of those methods for a given application.
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