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Abstract—The emergence of low-cost personal mobiles devices
and wearable cameras and, the increasing storage capacity of
video-sharing websites have pushed forward a growing interest
towards first-person videos. Wearable cameras can operate for
hours without the need for continuous handling. These videos
are generally long-running streams with unedited content, which
makes them boring and visually unpalatable since the natural
body movements cause the videos to be jerky and even nause-
ating. Hyperlapse algorithms aim to create a shorter watchable
version with no abrupt transitions between the frames. However,
an important aspect of such videos is the relevance of the frames,
usually ignored in hyperlapse videos. In this work, we propose
a novel methodology capable of summarizing and stabilizing
egocentric videos by extracting and analyzing the semantic infor-
mation in the frames. This work also describes a dataset collection
with several labeled videos and introduces a new smoothness
evaluation metric for egocentric videos. Several experiments are
conducted to show the superiority of our approach over the state-
of-the-art hyperlapse algorithms as far as semantic information
is concerned. According to the results, our method is on average
10.67 percentage points higher than the second best in relation
to the maximum amount of semantics that can be obtained, given
the required speed-up 1. More information can be found in our
supplementary video: https://youtu.be/ TU8KPaA8aU.

I. INTRODUCTION

Thanks to advances in technology which constantly leads
to the decreasing operational cost and the increasing storage
capacity of mobile cameras, egocentric videos have shown to
be an attractive way for people to document their lives. Due
to this fact, the popularity of these videos has considerably
increased in social media such as video-sharing services
like YouTube, and personal repositories, since they provide
extensive space for storage.

Wearable devices such as GoPro HEROTM, Looxcie, and
Google GlassTM cameras can be operated with no intervention,
thus the camera operator is free to carry out his/her activities. It
opens up unprecedented ways to record many continuous hours
of regular activities like walking, driving, and cooking, athletic
activities (e.g. running and bicycling), and even working tasks
like event recordings (e.g. weddings, proms, birthdays, etc.)
and monitoring (e.g. police patrol and lifeguarding).

Problem Definition. Egocentric videos are hardly watched
in their entirety because they are usually long and monotonous.
Moreover, they contain shaky scene transitions due to natural
body movements, causing visual discomfort [1] and difficulty
on extracting information [2]. The use of simple fast-forward
methods such as frame sub-sampling at a fixed rate is a

1This work relates to an M.Sc. dissertation.

naı̈ve approach to reduce the video length since they do not
require any understanding of the video content. In contrast to
the creation of fast-forward videos with carefully controlled
cameras, where it is easy to track the movement, in first-person
videos the significant camera shake leads the fast-forward
videos to be jerky since the shakiness is increased.

Several works have been proposed to tackle the instability
of egocentric videos aiming to create a pleasant experience
when watching the reduced version, usually called hyperlapse
[3]–[6]. One challenge involving the hyperlapse approaches
is that some portions of the video may be more significant
to the users than others. For instance, a camera installed on
a police car could be recording all day long but with only
a few events of interest such as the officer interacting with
someone or engaging in police activity. Most of the hyperlapse
algorithms do not select frames according to their relevance
to the viewer but instead treat all frames as equally relevant.
Also, due to their nature of skipping stationary frames, the
relevant frames may be missing in the final version.

In this work, we propose a novel methodology capable
of transforming raw egocentric videos into watchable fast-
forward videos by considering both the pleasantness and
relevance of frames to the viewer. Our approach analyzes the
semantic information extracted from the frames and segment
the video by selecting the set of pictures which maximizes the
semantics, the required speed-up as well as the smoothness of
the transition between the frames. We name our method as
SHEV (Semantic Hyperlapse for Egocentric Videos).

Contributions. We can summarize our contributions as:
i) a new adaptive fast-forwarding approach. Our method

segments the input video into relevant and non-relevant
parts and, it builds graphs mapping the transition costs
between pairs of frames to select those with the least
cost adaptively through the shortest path algorithm;

ii) an egocentric video stabilizer. Our algorithm stabilizes the
segments by using homography transformations to match
and align frames within a patch;

iii) a new dataset with several semantically labeled videos
to fill the gap in the literature related to well-controlled
datasets concerning the semantic information;

iv) a new evaluation metric, which is able to measure the
egocentric videos smoothness.

II. RELATED WORK

Egocentric Video Summarization. Regular summarization
strategies are hard to be applied to the egocentric video

https://youtu.be/_TU8KPaA8aU


summarization task, once egocentric videos include diverse
scene types, activities, and environments. Also, it is difficult
to find important keyframes in such videos because of the
severe camera motion, the varied illumination conditions, and
the cluttered background [7]. Probably, the works most related
to ours in this category are the work of Okamoto and Yanai [8],
and the work of Yao et al. [9].

The Okamoto and Yanai’s methodology generates walking
route guidance videos by summarizing egocentric videos. They
utilize ego-motion and pedestrian crosswalk to estimate the
importance of each video section. Unlike most summarization
methods, they do not generate a summarized video. Their
output, instead, is a playing scenario that determines the
playing speed for each section based on their importance.
Meaningful sections receive a smaller speed-up factor com-
pared to the other sections. Although we share some of their
ideas, our main goal is to provide to the user a nice and smooth
experience when watching the fast-forward version.

Yao et al. propose a pairwise deep ranking model for
detecting highlights in egocentric videos. The model learns
the relationship between paired highlights and non-highlights
segments to produce a score for each segment. The output is
twofold: a composition of skims or a video timelapse. The
skims are selected according to the highlight score until the
desired length is achieved. For the video timelapse, they find
a proper rate in order to play the highlight segments in slow
motion, while the other segments are played in fast-forward
to achieve a required final length. In comparison to their
approach, we propose a lighter and modular one since we
use the confidence assigned by a classifier and a threshold to
identify the importance and the segments boundaries. Also,
we propose an adaptive frame selection approach, focusing on
selecting frames that lead to a more stable video.
Hyperlapse. Recent efforts to create smooth fast-forward
egocentric videos can be divided into two main categories:
reconstruction of a 3D model of the scene along with the
creation of a smooth path with a virtual camera and; adaptive
selection of a frame set that generates a smoother final video.

A representative method in the 3D model reconstruction
category is the work of Kopf et al. [3]. The authors present a
technique that uses structure-from-motion (SfM) and a dense
map interpolation to build a 3D model of the world. Using
the camera positions and the geometric model of the scene
they generate new virtual camera locations and orientations to
make a new smooth path. Image-based rendering techniques
are used to generate the final video. Their results are stunning,
however, the method creates many artifacts due to a large
number of interpolated areas in the virtual path. The technique
also requires camera motion and parallax to compute the 3D
model of the scene. It is noteworthy the high computational
cost required by their method, which makes it unpractical.
Moreover, the dynamics of the scene causes the SfM to fail.

Adaptive frame selection adjusts the density of the frame
selection according to the cognitive load. For instance, a denser
selection could be done when the scene motion is too high and,
in turn, a sparser selection could be done when the camera

wearer is stopped. The works of Joshi et al. [5] and Poleg et
al. [4] are recent examples of this category.

Joshi et al. present a real-time method to create a hyperlapse
video. Their approach does not require any special sensor data,
thus it can be used for general cameras. They use feature
tracking to recover the camera motion and develop a Dynamic-
Time-Warping (DTW) based algorithm to select frames subject
to speed-up and smoothness restrictions in order to find an
optimal smooth path. Then, the optimal set of frames is subject
to 2D video stabilization where the images are warped to
render the resulting hyperlapse.

Poleg et al. propose an energy minimization model to sam-
ple the frames adaptively. Their approach focuses on skipping
frames that do not represent the best viewing direction to
compose the final video. They create a graph from the original
video where the frames are taken as nodes and edges are taken
as the relation between frames. They compute the shortest path
to find the best frames to compose the hyperlapse. Halperin
et al. [6] extended this work by expanding the field of view
of the output video. They use a mosaicking approach on the
input frames with single or multiple egocentric videos.

While the 3D category can generate highly smooth videos
since virtual images are created based on the estimated 3D
model to decrease the discontinuity between frames, the 2D
category is faster and can provide similar smoothness if a
judicious selection of frames is defined. Although the solutions
mentioned above succeed in speeding up long videos and
producing a result that is pleasant to watch, they do not take
into account the fact that some frames are more important than
others, which is related to the semantic in regions of the scene.
Therefore, they are removed from resulting video.

III. METHODOLOGY

We divide our methodology into two major steps: semantic
fast-forwarding and semantic egocentric stabilization. In the
first step, the algorithm seeks the input video frames that
maximize the semantic content, the smoothness and the prox-
imity to the required speed-up. In the second step, homography
transformations are used to align the frames transitions. Then,
an iterative stitching process is responsible for filling the
frames that were excessively distorted by the transformations.

A. Semantic Egocentric Fast-Forwarding
In this section, we present the first step of our methodology,

which is composed of four sub-steps detailed as follows.
1) Semantic Extraction: In the first step of our sampling

approach, we extract the semantic information present in each
frame of the video according to the semantic selected by
the user (e.g. pedestrian, face, car plate, etc.). The semantic
information is encoded by the score function S : R→ R, given
by Sx =

∑
k∈fx ck · ak · Gσ(k), where ck is the normalized

confidence of the extractor for the region of interest (ROI)
k and ak is the normalized area of the k-th ROI in pixels.
Gσ(k) is the value of the central point of the k-th ROI in
the Gaussian function with standard deviation σ and centered
at the frame fx. This function returns higher values to more
centralized objects. Examples are illustrated in the Figure 1-A.
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Fig. 1. Overall steps of our semantic adaptive frame sampling process. From the input video, we extract ROIs containing the semantic information (A) in
each frame and compute the semantic scores to define the semantic profile (B). We use the Otsu thresholding method to find a meaningful semantic threshold
(B.1) in order to identify the semantic segments and to calculate the speed-up rates based on the length of each segment. Then, we create a graph for each
segment mapping the frames and their relations to the nodes and edges, respectively (C). Finally, we compute the shortest path and compose the final video
with the selected nodes (D).

2) Temporal Segmentation: The semantic score along the
frames defines the semantic profile of the video as illustrated
in Figure 1-B. We create a histogram of the semantic scores
and apply the Otsu thresholding method to find the threshold
that better define the disparity between the semantic and non-
semantic frames. The value returned by Otsu (green line in
Fig. 1-B.1) is used as the semantic threshold. Thus, every
frame above this value is labeled as relevant.

3) Speedup Rate Estimation: We calculate different speed-
up rates for each type of segment defined in the previous step
such that a lower speed-up rate, Fs, is applied to semantic
segments. Consequently, in order to manage the whole video in
the desired speed-up, Fd, the non-semantic segments receive a
higher speed-up rate, Fns. Estimating these speed-ups is not a
trivial task, once the total length of the semantic segments may
vary. Therefore, given the total number of frames in semantic
segments, Ls, and in the non-semantic segments, Lns, the
speed-up rates are computed by the minimization of the
following equation: D(Fns, Fs) =

∣∣∣Ls+Lns

Fd
−
(
Ls

Fs
+ Lns

Fns

)∣∣∣.
Note that, for every Fs there is a correspondent Fns that leads
the result to 0. We solve it by restricting their values so that
the Fs is minimized as well as the difference between both.

We also add some space restrictions: (i) Fs 6 Fd, once
we want more emphasis in the semantic parts; (ii) Fns > Fd,
once we want to achieve desired speed-up in the fast-forward
video and; (iii) Fs > psFd, where ps = Ls/(Ls + Lns),
once Fs < psFd leads to an excessive number of frames.
Given these restrictions and, because Fns, Fs, and Fd ∈ N,
the problem becomes easier to be solved, since the search
space is finite and discrete. Thus, the optimization problem is

represented by the Equation 1:

arg min
Fs, Fns

D (Fns, Fs) + λ1|Fns − Fs|+ λ2|Fs|, (1)

where λ1 and λ2 are the regularization terms that give more
importance either to keep the speed-up rates close or take the
smaller Fs.

4) Graph Building: We model each video segment using
a weighted graph similar to Poleg et al. [4] and Halperin et
al. [6]. Each node of this graph represents a frame of the
input video, and an edge connecting two nodes represents the
existence of a temporal relation between the pair of frames. We
connect the τb border frames of each graph with one source
and one sink node. The edges connecting the regular nodes are
created up to a temporal distance τmax to reduce the graph
complexity. The cost of the transitions from frames fi to fj
are taken as the edges weight Wi,j . These costs are composed
of a linear combination of four terms related to the shakiness
(Ii,j), speed of motion (Vi,j), appearance change (Ai,j) and
semantic gain/loss (Si,j) caused by the transition.

The first three terms were previously proposed by Poleg
et al. and Halperin et al. in their graph construction. The
semantic cost is given by: Si,j = 1/(Si + Sj + ε), where
Sx is the semantic score of the frame fx. The value ε avoids
dividing by zero when there is no semantic information in both
frames. The final weight Wi,j of the edge Ei,j is given by:

Wi,j = (λI ·Ii,j +λV ·Vi,j +λA ·Ai,j +λS ·Si,j) ·
⌈

(j − i)
F

⌉
,

(2)
where the values of λ coefficients are the regularization factors
for each one of the costs terms. We add a proportional factor to
enhance transitions between frames with lower distance, where



F ∈ {Fs, Fns} is the speed-up rate applied to the graph which
the edge Ei,j belongs.

The best frame selection in our modeling is obtained by
running the Dijkstra’s shortest path algorithm in each graph
separately. The frames related to the selected nodes compose
the final fast-forward video.

B. Egocentric Video Stabilization

The frames selected in the previous major step are subject
to a stabilization process which consists of three sub-steps.

1) Master frames definition: The first step of the stabi-
lization methodology consists of segmenting the video into
temporal patches of length α and selecting one master frame
Mk for each patch. We select as the master of the k-th patch,
the frame Mk in this patch that maximizes the Equation 3:

arg max
Mk∈pk

∑
fi∈pk

R(fi,Mk), (3)

where pk is the k-th patch and the fi is the i-th frame of
the fast-forward video. The function R(x, y) calculates the
number of inliers in the RANSAC method when computing
the homography transformation from the image x to y.

2) Transition smoothing: The second step is to smooth
the transitions between the selected master frames. For each
frame fi, we calculate two homography matrices, Hfi,Mpre

and Hfi,Mpos
. Mpre = fb stands for the previous master

frame, which is the one temporally closer to fi, s.t. b < i.
Analogously, Mpos = fa stands for the posterior master frame,
s.t. a > i. Both homography transformations are applied
with weights set according to the temporal distance to the
masters. The i-th frame of the stabilized video (f̂i) is given
by f̂i = H1−w

fi,Mpre
·Hw

fi,Mpos
·fi. The term Hp

x,y represents the
p-th power of the homography transformation matrix from the
image x to the image y. w = (δ(2α)/∆) is the weight that
composes the p-th power, where δ is the temporal distance
from the frame fi to Mpre, and ∆ is the distance between
Mpre and Mpos.

3) Frames reconstruction: As expected, after applying the
homography transformations, black areas are generated be-
cause the camera movements are abrupt and the elapsed time
between consecutive frames in fast-forward videos are large.
Thus, the last step is to reconstruct corrupted these regions.

To reconstruct these frames, we first define two static image
areas centered in the frame: i) the drop area (da) equals to dp%
size of the frame, which is the area where the viewer focuses
on the majority of the time and; ii) the crop area (ca) equals
to cp% size of the frame, which defines the boundary for the
peripheral vision. The area da has a smaller size compared
to da, therefore cp > dp. Regions outside the ca area are
removed in the final video.

The reconstruction procedure is an iterative process. Firstly,
we check if the warped frame f̂i covers ca. If it does, the
frame is ready to compose the final video. We drop the warped
frames that do not cover da. We apply stitching in the frames
that cover da but do not cover ca. The stitching process is
performed as follows. We use the SURF detector to select

feature points in the frame f̂i and in the j-th frame dropped
from the original video, dj . To calculate the homography
transformation matrix we match feature points between the
images by describing all feature points of dj and f̂i with SURF
and applying the brute force matching strategy. Given the
matched points, we calculate the homography matrix Hdj ,f̂i

using RANSAC. The d̂j = Hdj ,f̂i
· dj is now aligned and

stitched with f̂i to compose the reconstructed image. The
process ends when the reconstructed frame covers ca or the
number of frames used for reconstruction is too large.

Whenever we drop a frame in the reconstruction process, we
select a new frame dj that belongs to the interval [fi−1, fi+1]
in the original video and maximizes the Equation 4:

arg max
dj

(Gσ(p)(R(dj , f̂i−1) +R(dj , f̂i+1))(η + S(dj))),

(4)
where, Gσ(x) is the value of the Gaussian function with
zero mean and standard deviation σ in the position x; p is
the percentage of area covered by dj ; S(dj) calculates the
semantic score in the frame dj and; η is a value used to prevent
multiplication by zero. The final stabilized video is composed
of all frames that cover the area ca.

IV. EXPERIMENTS

Datasets. We used two datasets to conduct our experiments.
The first is the Pub-Seq Dataset, which is a collection of
publicly available videos that were previously used by other
authors to evaluate their hyperlapse methods: Bike 1, Bike 2,
Bike 3, Walking 1 and Walking 2 [3]; Running, Driving and
Walking 3 [4] and; Walking 4 [10]. We propose a new labeled
dataset to run the experiments and validate our methodology
since no semantically controlled egocentric datasets were
found in the literature, the Semantic Dataset.

The Semantic Dataset is composed of 11 videos divided
into 3 categories of different activities: Biking, Driving and
Walking. The videos under each one of these categories are
classified according to their amount of semantic information,
where the number in the pattern <number>p indicates the
percentage of semantic information in the videos. The videos
are: Biking 0p, Driving 0p and Walking 0p (0%); Biking 25p,
Driving 25p and Walking 25p (25%); Biking 50p, Biking 50p2,
Driving 50p and Walking 50p (50%) and; Walking 75p (75%).
The complete dataset, including videos and the semantic
labels, are publicly available to the research community 2.
Evaluation Metrics. We quantified the performance of the
evaluated methodologies according to the following metrics:
(i) Semantic Content, which is the sum of the semantic
scores over the frames of the output video; (ii) Output Speed-
up, which is the rate of acceleration achieved in the output
video and; (iii) Instability Index, which is a metric that we
devised based on a user study and inspired by the qualitative
comparison made by Joshi et al. [5]. We used it to quantify

2http://www.verlab.dcc.ufmg.br/fast-forward-video-based-on-semantic-
extraction/dataset

http://www.verlab.dcc.ufmg.br/fast-forward-video-based-on-semantic-extraction/dataset
http://www.verlab.dcc.ufmg.br/fast-forward-video-based-on-semantic-extraction/dataset


0%

10%

20%

30%

40%

Bike 1

Bike 2

Bike 3

Running

Walking 1

Walking 2

Walking 3

Walking 4

Semantic Content (Pub-Seq Dataset)

Naive EgoSampling Microsoft Hyperlapse SHEV

Fig. 2. Semantic Content for the videos in Pub-Seq Dataset. Results for the
‘Driving’ video were removed, once this video has no semantic information.
Our method (SHEV) is on average 11.88 percentage points better than the
Naı̈ve approach, which has the higher average semantic content.

the shakiness in the output video. The shakiness estimation is
computed as in the Equation 5:

I = M

(
1

N
·
N∑
i=1

∑
j∈Bi

(fj − f̄i)2

(NB − 1)

)
, (5)

where N is the number of frames of the video, Bi is the i-
th buffer composed by NB temporal neighbor frames, fj is
the j-th frame of the video, and f̄i is the average frame of
the buffer Bi. M(·) is a function that returns the mean value
for the pixels of a given image and I indicates the instability
index of the video. A smoother video yields a smaller I value.

Parameters Setup. Most parameters were defined em-
pirically. In our semantic fast-forwarding methodology, we
used as the semantic extractors the Liao et al.’s NPD Face
Detector [11], which is the current state of the art, in videos
where the wearer is walking and, the Piotr Dollár’s pedestrian
detector [12] in videos where the motion speed is higher.
We considered any ck < 60 as false face detections and
ck < 100 as false pedestrian detections. For the construction
of the graph, we set the values of the border frames τb and the
maximum allowed skip τmax to be 1 and 100, respectively. To
achieve better visual results, we optimized our λ parameters (in
Eqs. 1 and 2) by using Particle Swarm Optimization (PSO).
Finally, for all experiments, we set the desired speed-up to
Fd = 10.

In our egocentric video stabilization methodology, the size
of the patches for selection of the master frames was defined
as α = 4. We set the area of da as dp = 50% of the frame and
the area of ca as cp = 90%. The parameter σ of the Gaussian
function in the Equation 4 and the value of η in the same
equation were defined as σ = 10 and η = 0.5.

Results and Discussions. We compared the results of our
complete methodology against three different techniques: (i)
Naı̈ve (N), which simply creates a video by taking every n-th
frame of the input video; (ii) EgoSampling (ES) [4], which
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Fig. 3. Semantic Content for the videos in Semantic Dataset. Our method
(SHEV) is on average 9.46 percentage points better than the Naı̈ve approach,
which has the higher average semantic content.

creates a video by using the Poleg et al.’s technique with
parameters defined according to the best values of their work
and; (iii) Microsoft Hyperlapse (MH) [5], where we used the
released desktop version of their algorithm to create the videos.

Figures 2 and 3 depict the semantic content value normal-
ized by the number of frames of the output video for the videos
of both tested datasets. We present the results with relation
to the maximum semantic content that could be achieved
given the desired speed-up. Our method outperforms all other
methodologies as far as the semantic information is concerned.
Hyperlapse algorithms tend to make larger skips when the
motion is low, for example, when the recorder is stopped.
This might have led the techniques to exclude frames with
more semantic information. Our technique stands out in this
aspect, once in addition to the reduction of the speed-up factor
in semantic segments, the semantic term balances the selection
in non-semantic segments.

We measured the output speed-up for videos in both datasets
with a desired speed-up Fd = 10. We omitted the results for
Naı̈ve technique since it always achieves the required speed-
up. In the Pub-Seq Dataset, the respective mean and standard
deviation values reported were: 25.617 and 17.823 for the ES
algorithm; 10.212 and 1.241 for MH and; 11.762 and 4.602
for ours (SHEV). The MH algorithm is the most accurate since
it presents the smallest standard deviation and the mean value
which is the closest to Fd. A failure case that led our algorithm
to a higher mean is the ‘Driving’ output video. This is a
challenging video where the driver often alternates between
looking ahead and looking in the left rear-view mirror. This
leads to larger frame skips aiming to eliminate the outlier
frames.

In the Semantic Dataset, the values reported were: 20.974
and 6.979 for the ES algorithm; 9.264 and 1.319 for MH and;
10.347 and 0.754 for ours (SHEV). In this case, our technique
produces the hyperlapse videos with the speed-up closest to
the desired one. The usage of the PSO algorithm to optimize



TABLE I
INSTABILITY INDEX IN THE PUB-SEQ DATASET (BEST IN BOLD)

Video Naive EgoSampling Microsoft Hyperlapse SHEV

Bike 1 38,24 39,02 30,95 36,58
Bike 2 39,15 39,62 31,79 35,68
Bike 3 37,95 38,58 33,81 36,12
Driving 39,13 34,25 29,25 39,00
Running 40,48 40,12 35,18 38,28

Walking 1 29,58 37,45 22,92 27,18
Walking 2 37,76 39,87 33,26 35,73
Walking 3 38,00 39,92 32,57 35,56
Walking 4 36,39 40,09 33,49 34,67

the λ’s is the main factor for such results, once the λ’s control
the selected speed-ups and the weights for the graph terms.

Tables I and II present the Instability Index of the output
videos produced by the methodologies. As expected, the MH
algorithm presents the best results, once its optimization tech-
nique is entirely focused on the smoothness of the final video.
Our approach presents the second best values for smoothness
in all cases, except in the ‘Driving’ video where ES presents
a smoother video. In this specific video, the ES algorithm did
not allow for a speed-up rate closer from the ideal to avoid
introducing shakiness into the final video.

Limitations. We use in our methodology a user-defined
semantics to extract semantic and define the segments. Al-
though this method works well for certain applications, the
ideal scenario for the general users would be the automatic
definition of the semantics where it could be defined according
to the video content. In addition, in the stabilization step, when
using homography matrix to describe the transition from one
frame to another, we are based on the assumption that the
detected keypoints are in the same plane on the scene, which
is not always true. This leads the stitching process to present
visual discontinuities, once some planes do not match.

V. CONCLUSIONS

In this work, we presented a new approach for producing
hyperlapse videos focusing on the semantic content. In the first
step of our methodology, we split the video into semantic and
non-semantic segments and calculate different speed-up rates
such that the semantic segments were emphasized by a lower
speed-up. In the second step, we stabilize the video by apply-
ing homography transformations estimated from consecutive
fast-forward frames to generate the final hyperlapse video.

VI. AWARDS & PUBLICATIONS

Part of this work was published on the 2016 IEEE Interna-
tional Conference on Image Processing (ICIP) [13] and on
the First International Workshop on Egocentric Perception,
Interaction and Computing at European Conference on Com-
puter Vision (EPIC@ECCV) 2016 [14]. A journal extension of
this is under review in the Journal of Visual Communication
and Image Representation (JVCI). This work has also been
awarded as the best master’s work presented in the Week of
Graduate Seminars held by the computer science department
(DCC-UFMG).

TABLE II
INSTABILITY INDEX IN THE SEMANTIC DATASET (BEST IN BOLD)

Video Naive EgoSampling Microsoft Hyperlapse SHEV

Biking 0p 29,26 31,52 22,39 26,81
Biking 25p 54,61 55,36 47,60 50,28
Biking 50p 37,09 38,00 30,59 32,91

Biking 50p2 32,00 31,25 26,39 29,20
Driving 0p 49,30 50,24 41,38 48,09

Driving 25p 44,36 44,24 37,03 43,39
Driving 50p 43,74 45,98 35,72 42,24
Walking 0p 37,05 36,34 32,66 35,43

Walking 25p 38,81 38,31 34,23 37,38
Walking 50p 39,93 40,60 31,67 38,24
Walking 75p 40,40 44,01 34,82 35,95
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