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Abstract—The state-of-art methods of representation learning,
based on Deep Neural Networks, present serious drawbacks
regarding usage complexity and resources consumption, leaving
space for simpler alternatives. We proposed two approaches of
a Representation Learning method which aims to provide more
effective and compact image representations by optimizing the
colour quantization for the image domain. Our hypothesis is that
changes in the quantization affect the description quality of the
features enabling representation improvements. We evaluated the
method performing experiments for the task of Content-Based
Image Retrieval on eight known datasets. The results showed
that the first approach, focused on representation effectiveness,
produced representations that outperforms the baseline in all the
tested scenarios. And the second, focused on compactness, was
able to produce superior results maintaining or even reducing
the dimensionality and representations until 25% smaller that
presented statistically equivalent performance.
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I. INTRODUCTION

It is known that the way data is represented can highly
influence the performance of machine learning methods in
visual pattern recognition tasks, such as Content-Based Im-
age Retrieval [1], Object Detection [2], Remote Sensing [3]
and Image Classification [4]. That being said, Representation
Learning [5], which consists on the process of using pattern
recognition algorithms to find representations optimized for a
given data domain and/or task at focus, has become a tendency.

The current state-of-art methods for representation learning,
which are based on Deep Learning [6] techniques, in many
cases present a considerable gain in description effectiveness.
However, the use of these methods presents serious drawbacks,
such as the difficulties in properly exploring its range of
parameters and possible architectures, the superior compu-
tational time spent its training and the big amount of data
required to produce efficient learning models, leaving space
for alternatives.

The possible methodologies for representation learning can
be classified into two main approaches: those that learn
representations from a feature set provided by a hand-crafted
extractor and those that completely compose new ones without
any prior feature extraction. Following the later approach,
complex multi-layered learning processes as the ones executed
by deep neural networks are not always needed in order to
produce representative features. Depending on the scenario,

the improvement of existent representations is already enough
to fairly solve the task.

Few years ago, before the arising of Deep Neural Networks,
hand-crafted feature extractors were used in order to compose
image representations [7]–[9]. Among them, the BIC [10]
achieved prominent results, being in several cases more ef-
fective than all its competitors but the Deep Nets [11], [12]
and also faster at computing representations. This behaviour
states BIC features as promising candidates for undergoing a
feature leaning process and providing good results.

Examining the extraction procedure of this method, a fact
comes to observation: it uses a fixed RGB colour-space
uniformly quantized in 4 tonalities for each axis. According
to Stehling et. al [13], this configuration was chosen due the
achievement of good results in a majority of tested scenarios
and the compatibility with other feature extraction methods
which rely on the same colour scheme. However, it raises the
question whether a different quantization could provide better
representations.

The use of a different colour quantization, specially one
adapted to the current image domain instead of a predefined
one, could allow the enhancement of convenient image fea-
tures and the suppression of others. Since the representations
are based on colour histograms, the enhancement and detailing
of colours that favour the closeness of similar images and
the distinction of different ones, according to the task criteria,
would provide the composition of more representative features
and, consequently, improvements on the task performance.
Furthermore, a domain-oriented quantization allows the dis-
card of the less contributing tonalities resulting in a possible
reduction of the representation size.

This work proposes an approach of representation learning
in order to improve the description effectiveness of an existent
feature extractor by exploring a particular characteristic of the
current image context, its colour distribution. Our hypothesis
is that changing the colour quantization affects the description
quality of the features in the sense that a tonality configuration
optimized for a given domain could produce more effective
and compact image representations.

II. RELATED WORK

Representation Learning: In the last decade, several feature
learning techniques were developed for raw image data [14]–



[20]. Approaches regarding deep belief nets [14], denoising
autoencoders [15], deep Boltzmann machines [16], convo-
lutional deep belief networks [17], K-Means based feature
learning [18], hierarchical matching pursuit [19] and sparse
coding [20] address this purpose.
Border Interior Classification (BIC): BIC is a simple and
fast feature extractor which computes a image representation
composed by two colour histograms: one for border pixels and
other for interior pixels. This pixel-wise classification occurs
according to a 4-pixel neighbourhood criteria: when the four
immediate neighbours (right, left, top, bottom) present the
exact same colour as the pixel in analysis, it is labelled as
interior, otherwise, as border. At the end of the computation
process, the histograms undergo two normalizations: division
by the maximum value, for image dimension invariance, and
a transformation according to a discrete logarithmic function,
aiming to smooth major discrepancies. This algorithm obtained
good results in previous works for web image retrieval [7] and
for remote sensing image classification [8].
Colour Quantization: Some works developed quantization
leaning using evolutive heuristics for Image Segmenta-
tion [21]. Scheunders [22] treats the quantization problem
as global image segmentation and proposes an optimal mean
squared quantizer and a hybrid technique combining optimal
quantization with a Genetic Algorithm modelling [23]. Further,
the same author [22] presents a genetic c-means clustering
algorithm (GCMA), which is a hybrid technique combining the
c-means clustering algorithm (CMA) with Genetic Algorithm.
Lastly, Omran et al. [24] developed colour image quantization
algorithm based on a combination of Particle Swarm Opti-
mization (PSO) and K-means clustering.

Regarding the effects of colour quantization on image
representations, Ponti et al. [25] approached the colour quan-
tization as a pre-processing step of feature extraction. They
applied four different quantization models over three image
datasets and showed that distinct quantizations can produce
very different results in terms of accuracy and dimensionality.

III. METHODOLOGY

In order to learn a colour quantization optimized for the
given image domain we proposed the method described by
the process presented on Figure 1. The main phases of the
method are described as follows.
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Fig. 1. Proposed Method Process: First we use Genetic Algorithm to search a
optimized colour quantization, then the resultant configuration is incorporated
in the feature extractor to generate improved image descriptions.

A. Quantization Learning

In order to find a quantization that would provide a su-
perior power of description and compactness for the image
representations generated for a given image context, we opted
by perform a optimization process provided by the Genetic
Algorithm [23]. GA is a bio-inspired optimization heuristic
that mimics natural genetic evolution to search the optimal
in a solution space. It provides a fairly chance of reaching a
global optimum by starting with multiple random search points
and considering several candidate solutions simultaneously.
Consequently, it represents a fair alternative to an exhaustive
search strategy, which would be infeasible given the amount
of possible quantizations.

According to this optimization algorithm, an individual
corresponds to a representation of a potential solution to the
problem that is being analysed. In our case, each individual
represents a possible colour quantization. During the evolution
process, which is based on a survival-of-the-fittest fashion,
these individuals are gradually manipulated and selected, ac-
cording to the established optimization criteria, in a iterative
procedure until the stopping condition be satisfied. At this
point, the expected result is an evolved individual that encodes
a quantization by which the improved representations will be
generated.
Individual Modelling: In our GA modelling, each quantization
is represented in an individual by the following manner. The
individual takes reference from the widest possible quantiza-
tion, i. e., the one that has the maximum number of tonalities
in each colour axis (8 in our case), and aggregates its intervals
according to the configuration specified by the respective
individual as it is detailed in Figure 2.
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Fig. 2. Our modelling implements each individual as a binary array, being
one value for each colour tonality interval. If a interval has its respective bit
as set, it has its own position in the produced quantization, otherwise, it is
aggregated to the immediate previous interval.

B. Image Description

On the second phase, the learnt quantization is used with
the feature extractor algorithm in order to produce an image
representation consequent from this quantization. In order to
do that, it was necessary to implement a slightly modified
version of the feature extractor, that incorporates the capacity
of generating representations according to a specified colour
quantization. The equations 1, 2 and 3, where N is the
maximum colour axis size and Ind the quantization individual,



show how to calculate the new R, G and B values for each
pixel.
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IV. EXPERIMENTAL SETUP

In order to evaluate the proposed approaches for the method
we conducted experiments relying on the BIC descriptor
algorithm using eight different image datasets. The details
about the experiments are presented as follows.

• Task: The proposed method was trained optimizing quan-
tizations intending to solve the problem of Content-Based
Image Retrieval (CBIR). The adopted process intended
to solve this task basically consists on describing the
whole image set and computing one similarity ranking
by Manhattan distance (L1) for each one over all of
them and then measuring the rankings quality. For this
measurement, the image class is adopted as similarity
criteria, as many images of the same class of the image
in comparison remains in the top, better is the ranking.

• Datasets: The experiments were executed over a set
of eight image datasets: UCMerced Land-use [26] and
Brazilian Coffee Scenes [12], were initially created for
Remote Sensing purposes, and the remaining, Coil-
100 [27], Corel-1566 [28], Corel-3906 [28], ETH-80 [29],
MSRCORID [30] and FRUITS [31], are intended for
tasks of CBIR.

• Baseline: Since our goal is to propose a method capable
of producing improved representations from already de-
fined feature extraction, in order to measure the represen-
tations performances, the most suitable baseline is feature
extractor itself, BIC, committed to the same experimental
process although using its original colour quantization.

• Metrics: In order to evaluate the produced representations
in the task of CBIR, the metric P@10, which means
precision over the top 10 results, was used to measure
each ranking performance and its average over all the
images in the case of a whole dataset. The reason for
choosing this metric is based on the fact that, usually on
applications of the referred problem, the user gives prior
attention for a small group of the top results.

• Parameters: For the GA in the quantization learning
phase of the method on the Non-Limited approach were
used the parameters: 200 individuals for 200 generations,
60% probability as two-point cross-over, 40% probability
for one-point mutation, a tournament of 5 individuals
and 1% of elitism. For the Limited approach the same
parameters were used except that were used on 150
generations probably due the occurrence of an earlier
convergence consequent of the discarded individuals of
dimension out of the limit. As fitness function, we opted

for FFP4 [32], which penalizes the misplaced results
on the ranking by a quadratic factor and consequently
tends to prioritize individuals that produce better quality
rankings.

• Experimental Protocol: We carried out all experiments
following a 5-fold cross-validation protocol. As a conse-
quence, the datasets was almost equally divided into five
non-overlapping folds and the approaches were executed
5 times using 80% of the images as training set and
20% as test set. Specifically for the Limited approach of
the proposed method, were conducted five experiments
according to the same protocol with different dimension
limits, named sizes 128, 96, 64, 32 and 16, composing
reductions of respectively 0%, 25%, 50%, 75% and
12.5%.

• Execution Environment: All experiments were performed
on a 64 bits Intel Xeon E5-2673 v3 machine with 16
cores, 2.4 GHz of clock and 32GB of RAM memory.
Ubuntu 14.04 LTS was used as operating system.

V. RESULTS AND DISCUSSION

We propose two approaches for the described method. The
first, named Non-Limited Approach, is intended to provided a
quantization focused on generating representations that have
the better performance as possible. The second, named Limited
Approach, has the same goal, however it imposes a limitation
on the representations size by giving negative fitness for the
generated individuals that present dimensions over this limit.
As a consequence, this later approach tends to focus on
compactness. The following subsections present and discuss
the experimental results and comparison between these two
approaches of our method and its baseline.

A. Non-limited Approach

Figure 3a presents the performance comparison between
the Non-limited approach of our method and its baseline,
in terms of performance in the described task. Considering
only the mean values of avg. P@10, our method outperforms
the baseline. However, given the proximity of the results, we
used the Students Paired t-Test [33] to statistically verify this
conclusion. According to the null hypothesis criteria of this
test, which the measures are presented on Table I, it is possible
to say that our method results outperforms the ones of the
baseline in all datasets.

Observing the resultant feature vector dimensions in Figure
3b, the discrepancy between the two methods is easily notice-
able. The representations produced by our method approach
are, on average, around 300% bigger than the ones generated
by the baseline. The reason for this outcome relies on the fact
that the fitness function used for evaluate the genetic algorithm
individuals prioritizes the representations performance on the
task and does not consider any aspect related to its dimensions.
That being said, it is likely that occurred a detailing of the
colour tonalities generating a superior number of intervals and
resulting in higher dimensions.
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Fig. 3. Results comparison of the Non-limited approach of our method with
BIC algorithm.

B. Limited Approach

The charts of Figure 4 show a pattern among for all
datasets. The performance results of the Limited approach
of our method were superior than the baseline for limits 64,
96, and 128. However, statistical tests, presented on Table I,
according the Students Paired Method show an overlapping
between the results for the limits 96 and 64, consequently, it
is possible to declare that BIC method was outperformed only
in cases of limit 128. Furthermore, the ascending behaviour
of the performances suggests that as bigger the representation
as superior its feature detailing level, which leads to a better
representation quality.

The results of Figure 5 show that the generated quanti-
zations almost exhausted the feature detailing by producing
representations that reached or stayed very close to the di-
mension upper-bound. This is possibly a consequence of the
optimization strategy of the method which is guided by the
task performance. A fitness function that also considers the
feature vector dimension would likely favour the generation
of smaller representations under the same limit.

The presented results prove our hypothesis that it is possible
to find an quantization optimized for a given domain that
could provide an improved representation effectiveness and
compactness. According to Figure 5, the results of limit 128,
which present the same representation size as the ones of
the BIC extractor, outperformed the retrieval quality of the
baseline. Some results of limit 96 were even further presenting
better performance with a smaller feature vector leading to
conclude the possibility of improvements in performance and
compactness simultaneously on the same quantization. Other
results of limit 96 and 64 were statically tied with the baseline
demonstrating the possibility of a significant reduction of the
description size, until 50% in this case, but maintaining similar
performance. Lastly, results of limit 32 and 16, performed
badly for all datasets, showing the occurrence of loss in
representation quality at a linear decay.

VI. CONCLUSIONS

We proposed two approaches of a representation learning
method which intends to provide more effective and compact
image representations by optimizing the colour quantization
for the image domain. We performed experiments on eight
different image datasets comparing the results with a pre-
defined quantization approach in terms of performance on the
task of CBIR and representations dimensionality.

The first approach, produced representations that outperform
the performance of the baseline by a small percentage and
presented a two times higher dimensionality. The second
approach, which imposes a limitation on the representation
dimension, presented results that show improvements on per-
formance for the same dimensionality (128 bins), results that
performed better even reducing the dimensionality in 25%, and
also others that reduced the representation size until 50% but
maintained statistically equivalent performance. Finally, the
later approach also had results that imposed a reduction of
more than 75% but presented poor performance showing the
existence of a lower-bound for lossless compactness and that
representations quality declines linearly with the limit.

At the end, the results prove the hypothesis, for the tested
scenarios, that it was possible to produce more effective and
compact fitness by exploring a colour quantization optimized
for the image domain. Moreover, we remain at the end with a
method capable of improve already existent feature extraction
methods by providing descriptions more effective in terms
of representation quality and more compact according to a
parametric upper bound.

As future work we plan experimenting on approaches that
use fitness functions that consider both effectiveness and com-
pactness in the optimization process as the way of softening
the dimensionality increasing. Furthermore, we aim to analyse
how the presented approaches behave using different feature
extractors and performing over other pattern recognition tasks.
As long as the hypothesis were confirmed in these different
scenarios, we consider scaling a similar optimization processes
for use in GPUs aiming the possibility of providing an
alternative for Deep Learning approaches.
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TABLE I
P-VALUES OF STUDENTS PAIRED T-TEST BETWEEN OUR METHOD APPROACHES AND THE BASELINE.

Dataset Limit 16 Limit 32 Limit 64 Limit 96 Limit 128 NLA
Brazilian Coffee 0.000016 0.011904 0.422338 0.001282 0.000183 0.0001
COIL100 0.000004 0.000059 0.007223 0.026657 0.000867 0.0046
COREL1566 0.000025 0.000199 0.012336 0.334188 0.084463 0.0014
COREL3906 0.000007 0.000004 0.000308 0.779525 0.004303 0.0000
ETH80 0.000207 0.000260 0.082828 0.254271 0.006830 0.0027
Tropical Fruits 0.000027 0.000386 0.007135 0.241805 0.040865 0.0022
MSRCORID 0.000048 0.000343 0.098357 0.066615 0.000308 0.0004
UCMerced 0.000092 0.001865 0.000396 0.134587 0.023366 0.0052

Considering null hypothesis rejected when p-value < 0.1, the green values correspond to the cases in which the method outperformed the baseline, the red
ones in which it lost, and the blue ones in which the independence was not confirmed.
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(b) Coil-100
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(c) Corel-1566
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(d) Corel-3906
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(e) ETH-80
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(f) FRUITS
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(g) MSRCORID
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(h) UCMerced Land-use
Fig. 4. Results comparison of efficiency of the Limited approach of our method with BIC algorithm considering the dimension limits of 16, 32, 64, 96, 128.
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(a) Brazilian Coffee Scenes
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(b) Coil-100
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(c) Corel-1566
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(d) Corel-3906
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(e) ETH-80
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(g) MSRCORID
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(h) UCMerced Land-use
Fig. 5. Results comparison of compactness of the Limited approach of our method with BIC algorithm considering the dimension limits of 16, 32, 64, 96,
128.


