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Abstract—Currently, a number of improvements related to
computational networks and data storage technologies have
allowed a considerable amount of digital content to be provided
on the Internet, mainly through social networks. In order to
exploit this context, video processing and pattern recognition
approaches have received a considerable attention in the last
years. The main goal of this work is to employ the Optimum-
Path Forest classifier in both video summarization and video
genre classification processes as well as to conduct a viability
study of such classifier in the aforementioned contexts. The results
have shown this classifier can achieve promising performances,
being very close in terms of summary quality and consistent
recognition rates to some state-of-the-art video summarization
and video genre classification approaches, respectively.

I. INTRODUCTION

Techniques for video summarization are commonly classi-
fied in static or dynamic ones. The main goal of the former
methodologies is to obtain keyframes of the original video
in order to compose the compressed representation, whereas
the dynamic techniques aim at finding out a collection of
segments (set of frames nearby the keyframes) to provide more
reasonable summaries, which can also include sound effects.

A considerable number of works that deal with video
summarization can be referred in the literature, being most
of them machine learning-oriented. The reason is that video
summarization aims at extracting features from frames, for
further clustering them in order to group frames with similar
content. After that, the most representative sample from each
cluster is then elected as the keyframe, i.e., the one that shall
compose the final video summary. Almeida et al. [1], for
instance, proposed the VISON, which works on compressed
videos to allow a fast and effective design of video summaries.
Avila et al. [2] presented VSUMM, a video summarization ap-
proach based on color information and k-means, which works
well in several public datasets, and Papadopoulos et al. [3]
applied a Self-Organized Neural Gas network to produce video
summaries, which is able to compute dynamically the number
of clusters, each one containing a possible keyframe candidate.

Another common situation involving digital videos is the
need for classification methods capable of allowing a faster
retrieval response when searching for specific content in video
databases. One way to perform this task is through video
genre classification, which aims at finding or predicting a

corresponding genre for a given video sequence. Huang and
Wang [4], for instance, employed the well-known Support Vec-
tor Machines (SVMs) together with a Self-Adaptive Harmony
Search optimization algorithm to classify movie genres, and
Karpathy et al. [5] employed a Convolutional Neural Network
for the same purpose.

Some years ago, Papa et al. [6], [7] proposed the Optimum-
Path Forest (OPF) classifier, which models the pattern recog-
nition task as a graph partition problem. Basically, the dataset
samples (feature vectors) are represented by graph nodes,
which are connected to each other through an adjacency
relation. After that, some key nodes (prototypes) rule a com-
petition process among themselves in order to conquer the
remaining samples offering to them optimum-path costs. When
a sample is conquered, it receives the very same label of its
conqueror, as well as the cost it has been offered.

An interesting unsupervised OPF variation was proposed by
Rocha et al. [8] to resolve problems that demand a clustering
resolution. Basically, it is a graph-based approach with the
same basic rules defined in the supervised OPF version,
except it considers a k-nearest neighbors (k-nn) graph as
main adjacency relation. It also includes a pdf computation
to find density values for each sample and to determine
their corresponding prototypes, and minimization cost function
to set the optimum-path trees, consequently partitioning the
dataset into clusters rooted at prototype nodes.

Therefore, the main goal of this work1 is to introduce OPF
for video classification and static summarization tasks using
image and video properties obtained from different descriptors,
as well as to compare OPF against with some state-of-the-art
pattern recognition techniques for each aforementioned task.

II. OPTIMUM-PATH FOREST

In this section, we present the theoretical background about
Optimum-Path Forest. First, we describe the OPF classifier
proposed by Papa et al. [6], [7] for video genre classification
(Section II-A), and further its unsupervised variant [8] to
resolve clustering problems during static video summarization
(Section II-B).

1This work relates to a M.Sc. dissertation.



A. Supervised learning

Let D = D1∪D2 be a labeled dataset, such that D1 and D2

stands for the training and test sets, respectively. Let S ⊂ D1

be a set of prototypes of all classes (i.e., key samples that best
represent the classes). Let (D1, A) be a complete graph whose
nodes are the samples in D1, and any pair of samples defines
an arc in A = D1 × D1

2. Additionally, let πs be a path in
(D1, A) with terminus at sample s ∈ D1.

The OPF algorithm employs the path-cost function fmax
due to its theoretical properties for estimating prototypes
(Section II-A1 gives further details about this procedure):

fmax(〈s〉) =

{
0 if s ∈ S
+∞ otherwise,

fmax(πs · 〈s, t〉) = max{fmax(πs), d(s, t)}, (1)

where d(s, t) stands for a distance between nodes s and t, such
that s, t ∈ D1. Therefore, fmax(πs) computes the maximum
distance between adjacent samples in πs, when πs is not a
trivial path. In short, the OPF algorithm tries to minimize
fmax(πt), ∀t ∈ D1.

1) Training: We say that S∗ is an optimum set of proto-
types when OPF algorithm minimizes the classification errors
for every s ∈ D1. We have that S∗ can be found by exploiting
the theoretical relation between the minimum-spanning tree
and the optimum-path tree for fmax. The training essentially
consists of finding S∗ and an OPF classifier rooted at S∗. By
computing a Minimum Spanning Tree (MST) in the complete
graph (D1, A), one obtain a connected acyclic graph whose
nodes are all samples of D1 and the arcs are undirected and
weighted by the distances d between adjacent samples. In the
MST, every pair of samples is connected by a single path,
which is optimum according to fmax. Hence, the minimum-
spanning tree contains one optimum-path tree for any selected
root node.

The optimum prototypes are the closest elements of the
MST with different labels in D1 (i.e., elements that fall in
the frontier of the classes). By removing the arcs between
different classes, their adjacent samples become prototypes in
S∗, and the OPF algorithm can define an optimum-path forest
with minimum classification errors in D1.

2) Classification: For any sample t ∈ D2, we consider all
arcs connecting t with samples s ∈ D1, as though t were part
of the training graph. Considering all possible paths from S∗ to
t, we find the optimum path P ∗(t) from S∗ and label t with the
class λ(R(t)) of its most strongly connected prototype R(t) ∈
S∗. This path can be identified incrementally, by evaluating the
optimum cost C(t) as follows:

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ D1. (2)

Let the node s∗ ∈ D1 be the one that satisfies Equation 2
(i.e., the predecessor P (t) in the optimum path P ∗(t)). Given
that L(s∗) = λ(R(t)), the classification simply assigns L(s∗)
as the class of t, where L(·) is a function that assigns the true
label to a given sample. An error occurs when L(s∗) 6= λ(t).

2The arcs are weighted by the distance between their corresponding nodes.

B. Unsupervised learning

Let D be an unlabeled dataset such that for every sample
s ∈ D there is a feature vector ~v(s). The fundamental problem
in data clustering is to identify natural groups in D. A graph
(D,A) is defined such that the arcs (s, t) ∈ A connect k-
nearest neighbors in the feature space. The arcs are weighted
by d(s, t) and the nodes s ∈ D are weighted by a density
value ρ(s), given by:

ρ(s) =
1√

2πσ2|A(s)|

∑
∀t∈A(s)

exp

(
−d2(s, t)

2σ2

)
, (3)

where |A(s)| = k, σ =
df
3 , and df is the maximum arc

weight in (D,A). This parameter choice considers all nodes
for density computation, since a Gaussian function covers most
samples within d(s, t) ∈ [0, 3σ]. By taking into account the
k-nearest neighbors, unsupervised OPF handles different con-
centrations and reduces the scale problem to the one of finding
the best value of k within [1, kmax], for 1 ≤ kmax ≤ |D|. The
solution provided by Rocha et al. [8] considers the minimum
graph cut provided by the clustering results for k ∈ [1, kmax],
according to a measure suggested by Shi and Malik based on
graph cuts [9].

Among all possible paths πt with roots on the maxima of the
pdf, unsupervised OPF finds a path whose the lowest density
value along it is maximum. Each maximum should then define
an influence zone (cluster) by selecting the samples that are
more strongly connected to it, according to this definition, than
to any other maximum. More formally, we wish to maximize
f(πt) for all t ∈ N where

f(〈t〉) =

{
ρ(t) if t ∈ R
ρ(t)− δ otherwise

f(〈πs · 〈s, t〉〉) = min{f(πs), ρ(t)} (4)

for δ = min∀(s,t)∈A|ρ(t)6=ρ(s) |ρ(t) − ρ(s)| and R being a
root set with one element for each maximum of the pdf.
Higher values of delta reduce the number of maxima. We are
setting δ = 1.0 and scaling real numbers ρ(t) ∈ [1, 1000] in
this work. The OPF algorithm maximizes f(πt) such that the
optimum paths form an optimum-path forest — a predecessor
map P with no cycles that assigns to each sample t /∈ R its
predecessor P (t) in the optimum path from R or a marker
nil when t ∈ R. In essence, each maximum of the pdf,
i.e., prototype, will be the root of an optimum-path tree -
OPT (cluster), and the collection of all OPTs originates the
optimum-path forest.

III. PROPOSED APPROACHES

A. OPF clustering for static video summarization

The proposed approach based on OPF to obtain static video
summaries, was structured into six steps: (i) video sampling,
(ii) feature extraction, (iii) removal of meaningless frames, (iv)
clustering, (v) removal of redundant keyframes, and (vi) video
summary generation.

The first step uses a pre-sampling approach for extracting
frames from the videos to be summarized. The video sampling



was performed by the well-known ffmpeg tool3 in a sampling
rate of one frame per second in two public datasets described
in Section IV-A1.

The second step performs the feature extraction from each
frame extracted in the previous step. To do this task, we
considered the following descriptors: Auto Color Correlogram
(ACC), Color Coherent Vector (CCV), Border/Interior pixel
Classification (BIC), and Global Color Histogram (GCH) for
encoding color information; Generic Fourier Descriptor (GFD)
and Haar-Wavelet Descriptor (HWD) for analyzing spectral
properties. In addition, we built a Bag-of-Features (BoF)
representation using SIFT (Scale-Invariant Feature Transform)
features. For that, we constructed a visual dictionary using
k-Means with k = 4000 visual words, where k value was
empirically chosen. They were selected based on the compar-
ative study upon algorithms to better describe digital images
conducted by Penatti et al. [10].

Further, we performed the removal of meaningless frames
from the feature-based dataset aiming at avoiding unnecessary
frames during the clustering process. Note that a meaningless
frame is the one whose image is composed of a single color
(i.e., full black or white frames) due to a fade-in or fade-
out effects. Therefore, such frame is then removed from the
feature-based dataset only if the color variance of its quantized
image is equal to zero [1].

In the third step, OPF computes the clusters from the
feature-based dataset aiming at finding the most representative
frames on each cluster (keyframes). Since OPF finds the
prototypes in the regions with highest density, they tend to
be located at the clusters center, thus being good candidates
to become keyframes. In order to improve the clusters com-
putation, we considered the contributions presented in [11],
i.e., the partitioning of the feature-based dataset into small
subsets, and the adhibition of a modified Euclidean distance
function able to consider more temporal information during
the computation of the “distance” among frames.

Even after the clustering be performed on each subset,
one can also have small clusters, which means they may
not contribute with relevant information to the final video
summary. In order to remove such non-relevant clusters, we
compute the average cluster size for each subset, and then we
keep the clusters whose size (number of samples that belong
to it) is greater than the half of the average cluster size [2].
Soon after, we then extract one keyframe from each remaining
cluster (keycluster), being such keyframe the prototype of that
cluster. The collection of all keyframes composes the final
frame set.

The fourth step is responsible for removing redundant
keyframes from the frame set obtained in the previous phase.
This process is described as follows: each keyframe is com-
pared against all other keyframes using the Euclidean distance.
If the resulting distance is smaller than 0.15, this keyframe is
considered irrelevant, thus being removed from the summary.

3http://www.ffmpeg.org/

The threshold used for comparison purposes was selected
empirically.

In the final step, the keyframes are chronologically ordered
to generate the video summary. Therefore, the final static
summary can now be used for comparison purposes against
others.

B. Supervised OPF for video genre classification

The strategy adopted for supervised video classification was
built in two main steps: (i) video features extraction and (ii)
OPF supervised classification.

We employed three main approaches to extract video visual
properties: “Bag-of-Visual-Words” [12], “Bag-of-Scenes” [13]
and “Histogram of Motion Patterns” [14]. The former two
approaches are based on video frames and disregard transitions
between them, whereas the latter one is based on motion
information, and it considers the transitions between video
frames aiming to better preserve it. Basically, they were chosen
due to be new description image approaches which aim to
enhance generic video representation.

Concerning about the classification step, we considered the
supervised version of OPF using complete graph adjacent re-
lation to classify videos into their respective genres (classes).

IV. EXPERIMENTS

For both proposed approaches, the experiments were con-
ducted following the same sequence structure. First, we per-
formed OPF on videos belonging to public databases using dif-
ferent configurations. Then, we compared OPF results against
other video summarization and genre classification techniques
through some proper evaluation methodology.

A. Static video summarization

1) Datasets: The video summarization experiments were
performed using two public video datasets4: Open Video and
Youtube. The former contains 50 videos randomly selected
from the Open Video Project 5, which are distributed among
three different genres (i.e., documentary, educational, and
lecture) and their duration varies from 1 to 4 minutes. The
latter is composed of 40 videos collected from the Youtube 6,
which are distributed among five genres (i.e., sports, news,
tv-shows, commercials, and home videos) and their duration
varies from 1 to 10 minutes.

2) Evaluation and experimental results: In this work, we
adopted a subjective evaluation method to assess the quality
of video summaries, known as Comparison of User Sum-
maries (CUS) [2]: initially, the subjects are asked to watch the
whole video, and further they are oriented to freely select a
subset of frames able to summarize the video content. Finally,
their summaries are compared to the automatic summaries pro-
vided by the algorithms through pixel-wise matching method
proposed by Almeida et al. [15], which led us to the number of
frames gathered. The standard measures precision and recall

4http://sites.google.com/site/vsummsite/
5http://www.open-video.org/
6http://www.youtube.com/

http://sites.google.com/site/vsummsite/


can then be used to evaluate the automatic summary, being
precision the ratio of the number of matching frames to the
total number of frames in the automatic summary. Recall is
the ratio of the number of matching frames to the total number
of frames in the user summary.

In this paper, we chose F -measure as the metric to evaluate
performance since it presents an interesting trade-off between
precision and recall. The increase of one value decreases the
second, and vice-versa, which makes F -measure a suitable
choice to evaluate the approaches considered in this work.

Before comparing OPF against other video summarization
techniques using F -measure, it was necessary to understand
OPF parameters behavior in order to select the best set-
up to improve OPF performance. Concerning about that, we
established two OPF versions:

1) OPF: original form of OPF clustering, which considers
Euclidean distance on the clusters computation using no
partitioned dataset;

2) OPF∗: On clusters computation it considers the Tempo-
ral distance described in Section III-A and uses dataset
partition.

For both versions, OPF needs to be correctly setup. As
aforementioned, OPF computes clusters on-the-fly based on
optimum paths and a variable kmax (Section II-B), which
defines the maximum number of nearest neighbors to be
considered during the cluster computation. Although the reader
may argue that the algorithm does not compute clusters fully
automatically, it is important to highlight changing the kmax
value causes less impact on the final result than varying the
value of k for k-means, for instance.

In a first moment, for each feature-based dataset on both
OPF versions, we evaluated kmax value within the range
[5, 50] with steps of 5. Specially to OPF∗, we incremented
this evaluation considering different subset size percentages
(15%, 20%, 25%, 30%, 35%, 40%, 50% and 60%). Finally,
we select the set of parameters that maximizes F -measure on
Open Video and Youtube video datasets. The set-ups chosen
for OPF and OPF∗ are shown in Table I.

TABLE I
BEST SETUP CHOSEN FOR OPF AND OPF∗ .

Dataset kmax Descriptor Subset size

OPF Open Video 5 GCH -
Youtube 10 CCV -

OPF∗ Open Video 5 GCH 25%
Youtube 5 CCV 25%

The second moment was responsible for comparing OPF
against the results reported by five known static video sum-
marization techniques. In the Open Video dataset, we com-
pared both OPF variations against DT [16], STIMO [17],
VSUMM [2], VISON [1] and Open Video (OV)7. On the
other hand, in the YouTube dataset, OPF and OPF∗ were

7Storyboards generated using the algorithm of DeMenthon et al. [18] and
refined using some manual intervention to obtains better results.
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Fig. 1. Mean F -measure achieved by different approaches on each video
category for (a) Open Video and (b) Youtube datasets. Extracted from [11].

compared only against VSUMM and VISON due to the lack
of techniques performed on the aforementioned video dataset.

Figure 1 shows the F -measure values for all techniques
and datasets considered in this paper. Clearly, OPF∗ obtained
more accurate results than OPF for both datasets, as well as
it has been the second best technique considering Open Video
dataset (Figure 1a). Additionally, it has been placed as the third
more accurate technique in the YouTube dataset (Figure 1b).
However, the best technique in YouTube dataset uses k-means
for clustering purposes, thus requiring the number of clusters
beforehand. Note that information is not a main concern
regarding OPF-based techniques. It is worth noting to stress
OPF requires less user interaction than VISON technique as
well, since it has some user parameters.

We observed OPF∗ seems to work better with smaller sub-
sets, since larger ones do not favor the temporal information. In
our experiments, we observed that small values for α 8 did not
contribute a lot for the final results. In regard to Open Video
dataset, OPF∗ achieved better results than OPF concerning
the “Documentary” and “Educational” videos. The rationale
behind that concerns with the fact that “Educational” videos
contain similar frames but at different temporal positions in
the video. Imagine some lecturer teaching a specific subject,
and further we may have some pictorial explanation about that,
and once again the teacher gets focused again in the video.

8Relaxation term that weights the amount of temporal information.



Although we have quite spatial-similar frames, they are placed
at different temporal positions within the video.

With respect to Youtube dataset, the best improvement
regarding OPF∗ concerns with “Sports” videos, which are
also expected to cover similar situations that have near-spatial
frames, such as the best moments from a soccer game, for
instance. Since we used color descriptors, it is very likely from
this point of view that different soccer games seem similar to
each other. Once again, the temporal information played an
important role in this situation.

B. Supervised video genre classification

1) Dataset: In this work, we employed a benchmarking
dataset provided by the MediaEval 2012 organizers for the
Genre Tagging Task [19]. The dataset is composed of 14,838
videos divided into a development set (5,288 videos) and a
test set (9,550 videos), comprising a total of 3,288 hours
of video data. All the video sequences were collected from
the blip.tv9, and they are distributed among 26 video genre
categories assigned by the media platform of the referred web
site.

2) Evaluation and experimental results: To assess the ro-
bustness of OPF classifier, it was compared against four well-
known classifiers: Artificial Neural Network with Multilayer
Perceptron (ANN-MLP), k-Nearest Neighbors (k-NN) and
two variations of Support Vector Machines (SVM): the first
using a polynomial (SVM-POLY) kernel and the second using
a Radial Basis Function (SVM-RBF) kernel. It is notewor-
thy SVM parameters have been optimized through cross-
validation.

For each classifier, we performed 12 different experiments10

considering the visual features encoded with BoVW, BoS,
and HMP. In order to evaluate the results, we considered
two performance measures: (i) the Mean Average Precision
(MAP) and (ii) a recognition rate proposed by Papa et al. [7],
which considers unbalanced data, as well as we compute the
computational load for both training and classification steps.
Figures 2(a) and 2(b) depict the results considering MAP and
accuracy measures, respectively.

In regard to both measures, the experiment number #12,
i.e., HMP video descriptor using 6075 motion patterns, has
showed the best results for all classifiers (except for ANN),
which might be due to the robustness of HMP to several trans-
formations, besides being suitable for very large collections of
video data [14], which is in accordance with the MediaEval
2012 dataset used in our experiments. In terms of MAP, OPF
has been placed in second or third in most cases, while for the
accuracy measure OPF obtained the first or second position in
most part of the experiments.

If we consider the computational load displayed in Fig-
ures 3(a) and 3(b) for the training and test steps, respectively,
we shall observe OPF has been the fastest classifier for
training in almost all experiments, as well as the second fastest
classifier considering the classification time.

9http://blip.tv (as of May, 2015).
10Consult [20] for details about all experimental setup.
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Fig. 2. Recognition results in terms of (a) MAP and (b) accuracy measures.
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In light of those results, we may conclude OPF is a suitable

http://blip.tv


technique for the automatic classification of videos based on
visual information, since it has obtained good recognition
rates in a smaller amount of time when compared to the
other techniques (except for ANN-MLP). Such skill might be
very interesting in online classification and recommendation
systems, in which a high trade-off between effectiveness and
efficiency is extremely desired.

V. CONCLUSIONS

In this work, we introduced the Optimum-path Forest clas-
sifier in the context of video processing. While OPF clustering
was used for static video summarization, the supervised ver-
sion of the aforementioned classifier was employed to classify
videos based on their genres.

The proposed approach for video summarization achieved
promising results, mainly due to the changes we did parti-
tioning the dataset into smaller subsets and using a different
distance function aiming to consider both spatial and temporal
information from videos. Consequently, we obtained results
very competitive to some state-of-the-art techniques for static
video summarization in two public datasets.

With respect to video genre classification, we considered
supervised OPF classifier against four classification techniques
using three approaches for video description setup with dif-
ferent test configurations. In our analysis, OPF obtained good
recognition rates (considering both MAP and accuracy) in all
problems, as well as it required a low computational load for
both training and classification steps when compared to the
other classification techniques.
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