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Abstract—The automatic detection of geometric primitives (e.g.
planes, spheres, etc.) in depth images provides the basis for
solving many computer vision problems. The applications range
from robotics to augmented reality. For plane detection, the
quality of previous techniques is strongly related to the amount
of noise and discontinuities or, in the case of unorganized point
clouds, depends on complex structures to organize the points,
besides having high computational cost. In this paper, we present
a real-time deterministic algorithm for plane detection in depth
images. By using an implicit quadtree to cluster approximately
coplanar points in the 2.5-D space associated with an efficient
Hough Transform voting scheme and a hill climbing strategy
to find local maxima, we are able to reach real-time detection.
Experiments show that our approach works well even in presence
of noise, partial occlusion, and discontinuities.

I. INTRODUCTION

Mobile devices have become a cheap and universal tech-
nology. Depth sensors attached to these handheld computers,
like Structure Sensor [1] and Project Tango [2], allow ob-
taining spatial data from the environment around it in real-
time and motivates the development of real-time variants of
classic computer vision algorithms to handle these data. The
detection of planar structures has a lot of practical applications
like image-based scene reconstruction, camera calibration,
autonomous vehicle navigation and augmented reality, for
example. State-of-the-art plane detection techniques that use
unorganized point clouds are not appropriate for depth images
by requiring special data structures to handle points in 3-D
space or by using non-deterministic approaches to reduce the
amount of processing. Region growing-based techniques, that
segment planar patches, on the other hand, are designed to
the regular structure of depth data. Its quality, however, is
inversely proportional to the amount of noise and presence
of occlusions or missing depth information in order to avoid
multiple detections of the same plane.

The Hough Transform (HT) [3] is a classical algorithm for
detection of geometric primitives. In its classical version, it
consists in evaluations of all input points in a n-dimensional
space and in the identification of all instances of the geometric
primitive sought which could contain each evaluated input
point. Then, each found instance votes in a space expanded by
the parameters of the analytic representation of the geometric
primitive sought. At the end of this step, local maxima in

(a) Color image (b) Input depth image

(c) Detected planes

Fig. 1. Outcome of the presented technique (best viewed in color): (a) Color
image of the scene; (b) Input depth image with 640× 480 pixels and 16-bits
of depth; and (c) Detected planes. Each detected plane was assigned to a color.
Note that the approach works well, even on presence of non-planar surfaces,
represented by black pixels in (c).

this parameter space correspond to the most likely instances
in the original n-dimensional space. The classical form of
the HT, besides having high memory footprint, has a brute
force-based voting scheme, evaluating each input individually,
which makes of it a computationally expensive approach. The
Kernel-based Hough Transform (KHT) [4], by clustering the
input points and performing an efficient voting scheme, is able
to run in real-time and with low memory footprint.

In this work1, we present an efficient technique for plane de-
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Fig. 2. The D-KHT pipeline: (i) Considering a depth image as input, the first step is compute SATs to efficiently get the covariance matrix and the mean point
inside a cluster during the clustering step, which is done by using an implicit quadtree to identify rectangular image regions having approximately coplanar
points in 3-D. (ii) For each region identified in step (i), the Gaussian distribution which describes the uncertainty of the best-fitting plane for the cluster is
calculated and used to increment the spherical accumulators map. (iii) Then, we use a hill climbing scheme to find local maxima in the accumulators map,
whose coordinates correspond to the most likely planes in the image.

tection in depth images, based on the HT and implementing the
efficient kernel-based voting scheme of KHT [4]. The main
contribution of this work is an approach to plane detection
in depth images, the Depth Kernel-based Hough Transform
(D-KHT), which has asymptotic cost O (n), and is from
∼ 3 to ∼ 5 times faster than state-of-the-art techniques.
The deterministic solution allows the implementation of the
algorithm for real-time plane detection, with low memory
footprint. Besides that, the presented approach is robust to
the typical noise found in this type of image and to multiple
detections of the same plane, even with occlusions and missing
portions of depth information. Thus, the challenges of this
work include:

• By using the regular structure and the capture model of
depth images as restrictions, show that we are able to
reduce the processing time required for the clustering step
of Kernel-based Hough Transform;

• By using the observation that local maxima in the pa-
rameter space of Hough Transform are typically close
to parameters of mean plane of each cluster, show that
we are able to reduce processing time required for finding
local maxima on voting map (i.e., most likely planes); and

• Provide an algorithm for plane detection with qual-
ity and execution time that exceeds the state-of-the-art
approaches.

The presented algorithm is one of the products resulting
from the development of a major project for the real-time
approximation of the geometry of indoor environments by
planes by using depth sensors attached to mobile devices.
Details of this work are described in [5].

Fig. 1c shows the result obtained by the proposed algorithm
applied to the depth image in Fig. 1b. Each color in Fig. 1c
represents a plane detected by our algorithm in 15.34 ms in
a PC with a 3.4 GHz processor. Regions in black are non-
planar surfaces identified by the technique. The input image
(Fig. 1b) has 640× 480 pixels with 16 bits in depth. The image
corresponds to frame 294 of the Living Room [6] dataset.

Notice that, given the space restrictions, this paper does not
cover all the details or results of the approach presented in the
Master’s Thesis manuscript. For a better understanding, please

refer to the full work [5] and to the paper submitted to Pattern
Recognition Letters. Both are attached to this submission.

II. RELATED WORKS

The Hough Transform (HT) [3] is one of the most popular
techniques for primitives detection. It is commonly applied
in low dimensional spaces, considering that its complexity
increases with the space dimensionality. The HT for straight
line detection uses the parameters of the normal equation of
the line to expand a 2-D space, discretized as an accumulators
map. The discretization step adopted is strongly related to
detection quality and processing time. Given an image, for
each edge pixel, the set of lines that may pass through it is
evaluated and the bin of the accumulators map correspondent
to the parameters of each line is increased by one. At the end of
this process, local maxima generated in this accumulators map
address the parameters of the most-likely lines in the image.
Notice that the voting process is a brute force algorithm, i.e.
have high computational cost, considering that each edge pixel
vote individually in the accumulators map.

Fernandes and Oliveira [4] proposed an efficient HT voting
scheme to avoid voting by brute force. This method, the
Kernel-based Hough Transform (KHT), is based on clustering
approximately collinear edge pixels and vote for the entire
cluster considering the Gaussian uncertainty associated with
the straight line that best explains the cluster, i.e., each cluster
cast votes under a Gaussian distribution in the accumulators
map. Following the KHT efficient voting scheme, Limberger
and Oliveira [7] proposed the 3-D KHT for plane detection
in unorganized point clouds in 3-D spaces. This technique
requires a spatial structure to organize the point cloud before
starting the voting step. For this purpose, in the clustering step,
they used an octree where each leaf node has only approxi-
mately coplanar points or outliers. Latter will be ignored in
the voting step.

Surface Growing (SG) [8, 9] is a region-growing-based tech-
nique more appropriate for plane detection in depth images.
It detects planar patches by expanding the area around a seed
pixel while the normal vector of the surface keeps smooth. SG
works well in the presence of a small amount of noise but,
on the other hand, has high computational cost and requires



connectivity between pixels to avoid multiple detections of the
same plane. Depth images with missing depth information,
occlusion or high noise rate may lead to planes misdetection.

III. DEPTH KERNEL-BASED HOUGH TRANSFORM

An overview of the presented technique may be seen in
Fig. 2, which illustrates the main idea in each step of the
technique: (i) considering a depth image as input, our ap-
proach uses Summed-Area Tables (SATs) [10] and an implicit
quadtree [11] to efficiently clusterize neighbour pixels as nodes
having approximately coplanar points, in 3-D; (ii) for each
cluster, we use first-order error propagation [12] to estimate
the mean plane and its associated Gaussian uncertainty; then,
we compute a trivariate-Gaussian kernel, which guides the
voting process by defining the increment of the accumulator
bins around the parameters of the mean plane; and (iii) after
a smoothing step to consolidate adjacent peaks of votes, the
location of local maxima correspond to the parameters of the
most likely planes in the depth image.

A. Clustering

The proposed technique is based on clustering the pixels
from input depth image (Fig 2, step i). Thus, instead of
considering each pixel as an individual input, it’s possible
to reduce the computational cost of the voting process by
considering clusters of pixels with similar features. Fernandes
and Oliveira [4] considered line segments as clusters. Lim-
berger and Oliveira [7] considered as clusters the nodes of
an octree, which is a structure to subdivide the 3-D space.
Considering the presented approach, it’s known that the input
image depth does not have overlapping points along the z-axis.
Thus, we used an implicit quadtree defined over the image
and recursively subdivide its nodes whenever the approximate
coplanarity is not observed in the points belonging to this
node. To consider a node as having approximately coplanar
points, one must obtain

µ(x,y,z) =

µxµy
µz

 and Σ(x,y,z) =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 , (1)

where µ(x,y,z) corresponds to the node mean point and Σ(x,y,z)

corresponds to the covariance matrix of the points, and check
if 2
√
λ1 < st, where λ1 is the least eigenvalue of Σ(x,y,z) and

st is a threshold for the accepted thickness of a node.
The covariance between two random variables a and b is

given by

σab =
1

m− 1

(
m∑
k=1

ak bk − µb
m∑
k=1

ak

−µa
m∑
k=1

bk +mµa µb

)
,

(2)

where

µa =
1

m

m∑
k=1

ak, µb =
1

m

m∑
k=1

bk, (3)

(a) Input depth image (b) Clustered input

Fig. 3. The Cube dataset is comprised of a cube over a flat surface (a).
The depth image was acquired using a Structure Sensor. Black pixels in (a)
corresponds to missing depth information. Image (b) shows the leaf nodes
of the quadtree built over the input image. Nodes identified by the same
color corresponds to clusters of point that voted to the same detected plane.
Black nodes in (b) corresponds to outliers and are not considered for voting
procedure.

and m is the number of samples. For the computation of
Σ(x,y,z), m is the amount of points inside a node and {ak}mk=1

and {bk}mk=1 are the x, y and z coordinates of each point. One
shall notice that these coordinates are in the unit of measure-
ment used by the device and the pixel coordinates must be
converted to it before computing µ(x,y,z) and Σ(x,y,z) [5].

By taking advantage of the regular structure of the discrete
depth image, it is possible to apply SATs in covariance matrix
and mean point calculation in order to reduce execution time.
In practice, each summation in Eq. 2 and Eq. 3 become four
access to a SAT previously calculated, leading to a constant
time in covariance matrix and mean point calculation. In
total, nine SATs are needed. The concept of SATs and its
applications in the estimation of approximate coplanarity are
better described, respectively, in Chapters 3 and 4 of [5].

B. Voting

The parameter space used in the presented approach is
expanded by the parameters θ, φ and ρ of the normal equation
of the plane, given by:

ρ = x sinφ cos θ + y sinφ sin θ + z cosφ, (4)

where x, y and z are the coordinates of a point that belongs to
the plane. In the presented approach, the type of accumulators
map used the voting process (Fig. 2, step ii) is the one intro-
duced by Borrmann et al. [13], i.e., an spherical accumulators
map, whose main property is the fact that its cells are about the
same size, so that the same weight is given to all accumulators,
regardless of their distances from the poles. The model of
capture of depth images assumes the camera center as the
origin of the 3-D space and its principal axis aligned to z-axis
of space. Thus, all the depth values in the image has positive
z values. The parameters space is restricted to θ ∈ [−π,+π),
corresponding to the elevation angle of the accumulators map;
φ ∈ [0, π), as the azimuth; and ρ ∈ [0, ρhigh], where ρhigh is
the camera distance to the farthest point in the image. The
discretization step is guided by the parameters Nθ and Nρ,
which concerns to the a number of bins along the directions θ



and ρ, respectively. The number of bins along the φ direction
is given as a function of the elevation angle.

In the clustering step (Section III-A), we obtained the
covariance matrix, Σ(x,y,z), and the mean point, µ(x,y,z), for
each node having approximately coplanar points. Let −→v1 be
the eigenvector associated to the least eigenvalue of Σ(x,y,z),
λ1. Notice that −→v1 is the normal vector −→n = (nx, ny, nz)

T of
the plane that better explains the points in a cluster. Thus, we
are able to retrieve the mean plane parameters as

µ(ρ,φ,θ) =

µρµφ
µθ

 =

nx µx + ny µy + nz µz
cos−1 (nz)

tan−1
(
ny

nx

)
 . (5)

Our trivariate-Gaussian distribution will be centered at the
parameters of µ(ρ,φ,θ). The covariance in parameters space
is obtained by first-order error propagation as

Σ(ρ,φ,θ) =

σρρ σρφ σρθ
σρφ σφφ σφθ
σρθ σφθ σθθ

 = J Σ(x,y,z) J
T , (6)

where J is the Jacobian of Eq. 5 and Σ(x,y,z) is defined in
Eq. 1. The probability density function (PDF) for each voting
cluster is given by

f (q) =
1√

(2π)3
∣∣Σ(ρ,φ,θ)

∣∣ exp

(
−1

2
δT Σ−1

(ρ,φ,θ) δ

)
, (7)

where δ = q − µ(ρ,φ,θ). Here, |�| and �−1 are the determinant
and the inverse of a matrix, respectively. When evaluated for
each accumulators map cell, Eq. 7 guides the proportion of
votes that each bin must receive. The voting step is performed
in a flood fill style, starting from the bin associated to µ(x,y,z)

and using as stopping criteria two standard deviations from
the mean plane parameters, i.e., the Gaussian distribution is
truncated in two standard deviations.

C. Peak Detection

Once the voting process is done, the local maxima address
in the accumulators map correspond to the parameters of the
detected planes (Fig. 2, step iii). By considering that we have
a discretized parameter space, there might be votes for the
same plane distributed in adjacent cells. Thus, in order to
consolidate adjacent peaks and avoid detections of spurious
planes, it is necessary to apply a low-pass filter [4] to smooth
the accumulators map.

Our peak detection approach is based on the idea that there
is consistency between the parameters associated with the
peaks of votes and the parameters associated with each cluster
that voted to compose that peak. Thus, the µ(ρ,φ,θ) points are
likely to be close to the peak of votes in parameter space. Thus,
they may provide a good first guess to apply a hill climbing
strategy, searching for the local maxima. Our peak detection
procedure consists of selecting the parameters of cluster mean
planes and check whether is a local maximum. If not, we
move to the location of the neighbor having the higher value
and repeat the process until finding a peak of votes.

D. Time Complexity Analysis

For the time complexity analysis of the proposed approach,
we are going to assume as input a depth image with d× d
pixels and n = d2 points, with d ≥ 2 being power of two.

The first step of the presented approach is to clusterize the
input points. At first, the SATs are precomputed and the im-
plicit quadtree is built for storing the clusters of approximately
coplanar points. The cost of building each SAT is O (n) [10].
In the worst case, the quadtree would subdivide completely
and the tree leafs would have size 2× 2. Thus, the height of
the tree would be log4 n, leading to

∑log4n
l=1 4l−1 = (n− 1) /3

nodes. Per node, a 3× 3 covariance matrix, Σ(x,y,z), its eigen
decomposition and the mean point µ(x,y,z) are computed. The
SATs allow the computation of the covariance matrix and
the mean point in O (1) time, as well as the decomposition
of Σ(x,y,z). Considering all the nodes, the clustering step is
performed in O (n).

In the voting step, we must compute the cost for the first-
order error propagation, which is O (1) per cluster. Also,
the cost for updating the accumulators map is O (1), per
cluster. Notice that the number of accumulator cells updated
depends on the distribution of points in the cluster, and on the
discretization step adopted for the accumulator. It is possible
to assume that it is much smaller than n, which may be
considered a constant value, leading to time O (1) per cluster.
In worst case we have n/4 clusters, thus the asymptotic time
for the voting step is O (n).

Finally, the filtering step of an accumulator cell takes O (1)
time and has a total cost of O (n). Notice that it is only
necessary to filter the bin that received votes, i.e., there is no
need to iterate over the entire accumulators map. By using
mean planes of each cluster as first guesses, hill climbing
makes a few accesses to accumulator bins per climbing (much
smaller than n). Thus, the time complexity of the peak
detection step is O (n). The total time complexity of the
D-KHT is O (n+ n+ n) = O (n).

E. Discussion

Our approach is, just like 3-D KHT [7], a specialization
of KHT [4] for a specific dimensionality and type of input.
Despite using the same model of accumulators map [13] and
share the same KHT pipeline, the D-KHT and 3-D KHT
have fundamental differences. By making use of an octree to
organize the point cloud and not counting with input regularity,
the 3-D KHT has asymptotic cost O (n log8 n). The computa-
tional cost for the voting step is the same for both techniques.
To find local maxima, however, the 3-D KHT sorts the accu-
mulator bins by the number of votes in descending order and
iterate over accumulator detecting cells that are not adjacent to
the already inspected ones, leading to O (n log n) cost. Thus,
the overall complexity of 3-D KHT is O (n log n). The D-
KHT, on the other hand, is not able to handle unorganized
point clouds, since it assumes regular 2.5-D data as input.



(a) Color image (b) Input depth image (c) D-KHT (d) 3-D KHT (e) SG

Fig. 4. Frame 4161 from the Copy Room dataset. It compares the detection capability of the techniques in a noisy scenario (best viewed in color). From left
to right: (a) color image; (b) input depth image; and (c)-(e) planes detected in (b) by D-KHT, 3-D KHT, and SG, respectively. Notice that all the techniques
are able of retrieving the main planes of the scene although the D-KHT is ∼4 times faster than the 3-D KHT and SG in this example. Notice also that the the
presence of a non-planar object (the schoolbag in the scene) leads to spurious detections in SG and that the plane detection performed by D-KHT retrieves
planes fits better to the points.

IV. EXPERIMENTS AND RESULTS

The experiments, better described in Chapter 5 of [5], were
planned to verify two aspects of the D-KHT, when compared
to state-of-the-art techniques designed for unorganized point
clouds (3-D KHT) and for depth images (SG).

The 3-D KHT implementation was provided by Limberger
and Oliveira and the SG implementation was obtained from
OpenCV library, which is based in Poppinga et al [8] and
Xiao et al. [9] approach. All the techniques were implemented
in C++ and compiled with Visual Studio 2013. The experi-
ments were performed on an Intel Core i7-4770 64-bits CPU
with 3.4 GHz and 16 Gb of RAM. It is important to note that
the implementations of D-KHT and SG are totally sequential,
while 3-D KHT uses OpenMP to parallelize the clustering
step. Both D-KHT and 3-D KHT used dlib for handling
eigendecompositions.

We used five datasets in order to evaluate the execution time,
including three synthetics and two real. The Living Room,
whose frame 294 is presented in Fig. 1 and the Office, are
synthetic datasets provided by [6]. The third synthetic dataset,
the Occlusion Room, is a controlled environment designed in
this work to evaluate the quality of the detections. Notice that
synthetic datasets, differently from real datasets, do not include
systematic errors introduced by the capture device. Therefore,
we also have used two real datasets: the Copy Room, captured
by [14] with an Asus Xtion PRO LIVE camera, whose
frame 4161 is presented in Fig. 4, and the Cube, whose single
frame is presented in Fig. 3, was captured by us using a
Structure Sensor. All the used datasets have depth images
with 640× 480 pixels. For performance evaluation of the
3-D KHT, we have converted depth images into point clouds.

The experiments show that the our approach was able to
achieve ∼119.4 fps for simpler depth images captured from
real scenes (e.g., Cube dataset, frame 1), and from ∼94.2
to ∼142.6 fps for more complex real inputs (e.g., Copy Room
dataset, frames 1063 and 4161). The 3-D KHT, in contrast,
was not able to perform real-time detection in most of the
datasets, except for frame 1063 of the Copy Room dataset. For
other depth images of real scenes, the detection was performed
in a range from ∼9.5 to ∼26.9 fps. SG could not achieve real-
time performance, unless the depth map and the normal map
were given as input.

The D-KHT clustering step, considering the SATs applica-
tion, runs from ∼3 to ∼9 times faster than the clustering strat-
egy adopted in the 3-D KHT. For synthetic scenes like Living
Room and Office, considering that the input depth images has
no missing information, the voting procedure dominates the
time of both techniques. For real datasets, where the points
are not perfectly aligned over the planes and there are areas
with missing depth information, the clustering step dominates
the time of the D-KHT (except for the Cube dataset), while
the local maxima detection is the slower step of the 3-D KHT
(which does not happens for frame 1063 of the Copy Room
dataset). Finally, the hill climbing strategy has produced a
noticeable difference in local maxima detection performance
in relation to 3-D KHT. The hill climbing strategy leads to a
peak detection ∼22 times faster than the 3-D KHT in this step
(e.g., Copy Room dataset, frame 1791). For SG, the normal
map computing had the longest execution time for all the
datasets but since devices like Structure Sensor and Project
Tango provide the normal map with the depth images, we can
consider, in this cases, only the detection time. The detection
performance achieved was from ∼39.5 fps to ∼51.2 fps for
synthetic scenes and ∼34 fps to ∼47.8 fps for real scenes.
The experiments has demonstrated, however, that the D-KHT
is faster than the detection step of the SG.

For the quality measurement of the detection, we have
created and used the Occlusion Room dataset, which consists
of spread geometric shapes with a known location, size, and
orientation. For each plane, the parameters φ, θ and ρ are
known. The experiment is based on checking how close the
planes detected by D-KHT, 3-D KHT, and SG are to the
previously known plane parameters. In order to evaluate the
quality of the detection, we have used two metrics: (i) the
cosine similarity between the unitary normal vectors of the
planes, where values close to one indicate similar parameters;
and (ii) the absolute difference of the Euclidean distances
between the detected planes and their reference planes to
the origin of the space, where values close to zero indicate
better fit. The means and standard deviations are summarized
in Table I. Notice that the plane parameters retrieved by the
D-KHT are closer to the ground truth parameters than other
techniques. The differences are negligible but SG has a lack
of resilience to noise.



TABLE I
QUALITY OF DETECTIONS IN DATASET Occlusion Room.

Cosine Similarity Euclidean Distance

Mean Standard Deviation Mean Standard Deviation

D-KHT 0,99736 0,00343 13,63 12,58
3-D KHT 0,99151 0,01903 14,53 13,14
SG 0,99700 0,00479 13,99 11,81

TABLE II
AMOUNT OF DETECTED PLANES IN DATASET Occlusion Room.

D-KHT 3-D KHT SG

Single detection of existing planes 14 10 10
Multiple detection of existing planes 0 0 8
Missing planes 3 7 4
Detection of spurious planes 0 2 3

Table II summarizes the amount of planes detected by each
technique in the Occlusion Room dataset. By observing this
table, one is able to notice the multiple detections of the same
plane, a common issue in SG, avoided by HT-like approaches.
The main cause of this problem is occlusion and discontinuity.

V. PUBLICATIONS

As a product of this work, we have submitted a paper to
the Pattern Recognition Letters journal, and have received a
positive feedback, considering that the paper has passed the
first round of revisions. The draft of the paper is attached
to this submission. The deadline for submitting the revised
version of the manuscript is August 17th.

VI. CONCLUSION

In this work, we presented a real-time approach to plane
detection in depth images. To ensure the low computational
cost of the technique, we took advantage of a few restrictions
from the capture model and from the regular structure of the
depth images.

The effectiveness of the method was demonstrated with
its comparison to state-of-the-art techniques when applied to
datasets comprised of both synthetic and real images. Besides
that, the analyzed datasets also had non-planar surfaces to
evaluate algorithms resilience to detecting spurious planes, a
common issue in this kind of technique. The D-KHT proved
to be effective for depth images, being executed from 3 to 5
times faster than state-of-the-art.

It is important to highlight that this work comes from the
need of a real-time solution for plane detection in scenes.
Such need comes from a larger project developed in Visgraf
and Prograf research groups, which aims to approximate the
geometry of indoor environments by planes by using mobile
devices, as discussed in [5]. Thus, it is possible to notice that
this work already has practical applications, and can even be
implemented in mobile devices, given its performance.
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