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Abstract—Much work has been done on the assessment of
texture descriptors for image retrieval in many domains. In this
work, we evaluate the accuracy and performance of three well-
known texture descriptors – Gabor Filters, GLCM, and LBP
– for seismic image retrieval. These subsurface images pose
challenges yet not thoroughly investigated in previous works,
which are addressed and evaluated in our experiments. We asked
for domain experts to annotate two seismic cubes, Penobscot
3D and Netherlands F3, and used them to evaluate texture
descriptors, corresponding parameters, and similarity metrics
with the potential to retrieve visually similar regions of the
considered datasets. While GLCM is used in the vast majority
of works in this area, our findings indicate that LBP has the
potential to produce satisfying results with lower computational
cost.

I. INTRODUCTION

Image information became more and more prevalent in
the last two decades raising the demand for techniques to
retrieve image data in the same manner one would search
for text documents. A retrieval performed on image metadata
is dependent on annotation quality; alternatively, in Content-
Based Image Retrieval (CBIR), images in a database are
queried based on their characteristics, using Computer Vision-
based tools. CBIR is present in several domains, such as
seismic interpretation, which consists of the analysis of seismic
data to generate reasonable models and predictions about the
properties and structures of the subsurface [1]. After data
acquisition and post-processing, seismic structures – or facies1

– may be visually differentiated by their textural features.
In seismic analysis, texture descriptors are used to compute

additional attributes of the seismic image, thus providing new
visualizations of the data for interpreters [3], [4] or assisting
semi-/automatic classification and clustering techniques [5]–
[8]. However, texture features are often considered simply
second-order seismic attributes, and, to the best of our knowl-
edge, despite sharing potentially valuable results, very few
papers explored the segmentation, classification, or retrieval of
seismic images focusing purely on Computer Vision (CV) [9],
[10]. One factor that may have influenced on the limited
participation of CV researchers in the seismic-related literature
is the lack of public, high-quality, annotated data. Although
synthetic seismic data may be useful in various applications,

1Seismic facies are mappable, three-dimensional units composed of groups
of reflections whose parameters differ from those of adjacent facies units [2].

it usually does not represent the visual complexities of a real
survey. To address this problem, two 3D cubes available at the
Open Seismic Repository [11] – namely, Netherlands Offshore
F3 Block and Penobscot 3D Survey – were manually annotated
by geoscientists for this work.

Another aspect identified in the seismic literature is that the
choice of image descriptors and corresponding parameters are
often based on suggestions of other papers or the interpreter’s
experience. This statement may be verified in the next section,
as the vast majority of works explore GLCM (Grey Level Co-
occurrence Matrix) for texture-based seismic analysis, with-
out a proper justification or explanation on the parameters’
choice. Therefore, our goal is to conduct a deeper analysis
by exploring additional texture features that are prominent in
other domains, but have not received attention in the seismic
domain yet. Namely, we investigate the ability of Gabor Filters
and LBP (Local Binary Patterns) – this last, widely used for
face recognition [12] – to retrieve similar regions of a seismic
cube.

This paper is structured as follows. In section II, we list
previous works addressing the automatic analysis of seismic
images. In section III, we provide a brief explanation of the
considered texture descriptors and characteristics of the used
database. In section IV, we describe the methodology applied
in our experiments and the results are presented and discussed
in section V. The paper is concluded in section VI.

II. RELATED WORK

The potential of CV methods to aid seismic interpretation is
undisputed and has been increasing the amount of research in
the field. Dumay and Fournier [5] explored multivariate statis-
tical analysis of attributes such as power spectrum information,
analytical signal modulus, and autocorrelation for recognition
of seismic facies. Their work was one of the first to show the
viability of automatic seismic facies recognition; however, they
also indicate that the system’s reasons for choosing variables
are not clear for a human interpreter.

West et al. [6] proposed the use of Probabilistic Neural
Networks for supervised classification of seismic facies in 2D
images, using GLCM texture attributes (homogeneity, entropy,
energy, and inertia) as input for the classifier. Their work was
one of the first to successfully apply GLCM attributes to a
machine learning-based analysis framework while pointing to



the necessity of high-quality data and an interpreter’s under-
standing of the technology to guarantee a correct analysis.

Chopra and Alexeev [4] also used GLCM attributes (specifi-
cally, homogeneity, entropy, energy, and contrast) for assisting
expert interpretation of seismic images. Corradi et al. [8] clas-
sified a seismic volume using dip-steered GLCM-generated
textural attributes as input for a statistical neural network.
However, they did not specify the used GLCM attributes.

Gao [3] proposed the use of a Voxel Co-occurrence Matrix
(VCM) as a 3D extension of GLCM that can carry more
relevant information (at a higher computational cost), utilizing
homogeneity, contrast, and randomness attributes for segmen-
tation and classification of seismic regions.

Wallet and Pepper [13] applied mathematical morpholog-
ical operations to the GLCM energy attribute for assisting
visualization and analysis of salt bodies. Wilhelm and Li [14]
extended existing layer-tracking algorithms by integrating tex-
ture information for performance improvement. The authors
advocated that GLCM contrast and the angular second moment
are capable of distinguishing salt regions by texture.

Zhao et al. [7] conducted a comparative review of many un-
supervised and supervised methods for seismic facies recogni-
tion, such as k-Means, SOMs (Self-Organizing Maps), GTMs
(Generative Topographic Mapping), ANNs (Artificial Neural
Networks), and SVMs (Support Vector Machines). The texture
attributes used were GLCM homogeneity and entropy. k-
Means clustering provided a computationally inexpensive but
rough segmentation results while SOMs and GTMs provided
better results while requiring higher input quality.

Amin et al. [15] presented a mixture of texture attributes
for detection of salt domes, combining GLCM entropy, energy,
and variance and Gradient of Texture (GoT) attributes with a
dictionary-based learning approach. The proposed approach
presented good accuracy, outperforming many existing tech-
niques.

Following an alternative method, Hegazy and Regib [16]
proposed the thresholding of the combination of three simple
texture attributes (directionality, smoothness, and edge con-
tent) for detection and differentiation of salt bodies in seismic
volumes. While results are not as robust as other techniques,
their findings are encouraging and, most importantly, the
computational cost of the chosen attributes is very low.

Long et al. [9] compared the capabilities of different texture
attributes for characterization of seismic image retrieval. The
studied attributes were Steerable Pyramid, Curvelet Transform,
Local Binary Pattern, and Local Radius Index. The study
strengthens the hypothesis that texture attributes are capable
of seismic characterization and, to the best of our knowledge,
is the first to explore LBP for seismic retrieval. Similarly,
Ferreira et al. [10] evaluated several descriptors – more
precisely, GLCM, Gabor Filters, Histogram features, Gradient
features, Hessian features, and Structure Tensor – for detecting
salt domes based on multi-scale clustering.

III. FUNDAMENTAL CONCEPTS

In this section, we present the texture descriptors used in
this work and describe how the retrieval database was built.

A. Texture Descriptors

Many techniques exist for codifying the neighborhood infor-
mation of a pixel, creating a vector of descriptive values. Such
vector (Texture Descriptor) is key for seismic image retrieval,
as they are represented by only one channel of grey-scale
values.

1) Local Binary Patterns: Since first proposed in 1996 [17],
LBP has become a popular texture descriptor, mainly because
of its simplicity and efficiency, being used in a wide range of
biometric applications.

LBP is a technique that encodes the neighborhood informa-
tion of a pixel to a binary number. Given a distance d ≥ 1
and a number of neighbours n, we define a neighborhood for
a pixel p as N = {p1, . . . , pn} where all pi are d distant of p.
The code of pixel p based on its neighborhood N is defined
as a binary number with n digits, where the ith digit is 0 if
pi ≤ p and 1 otherwise. See Figure 1 for an example. The
feature vector will be the histogram of the binary codes of a
given window. Notice that there are 2n possible codes, then
the vector can have up to 2n dimensions.

Fig. 1. LBP scheme. The white discs represent the encoded pixel while the
dark discs represent the first pixel to be considered (p1). The left one has
d = 1 and the right one has d = 2, both with n = 8. Their binary codes are
00101000 and 0000101, respectively.

2) Grey Level Co-occurrence Matrix: GLCM was proposed
by Haralick [18] and is a traditional image processing tech-
nique used to describe textures that has been widely applied in
seismic interpretation (as seen in section II). For each window,
GLCM creates a set of matrices k×k, where k is the number
of gray levels of the image. These matrices encode the co-
occurrence of patterns in the window and are used to calculate
specific features. Each matrix is defined by two parameters,
the angle φ and the distance d, creating a mask to assemble
the co-occurrence matrix. In Table I, we can observe the four
GLCMs associated with the examples in Figure 2. Notice that
the GLCM matrix is symmetric by construction.

After calculating the GLCMs, we use the features proposed
by Haralick to obtain the descriptors based on each matrix,
i.e. for each chosen pair of φ and d, we have a distinct set
of features, which are calculated using the entries Ai,j of the
GLCM A. Several features exist, and here we list some of
them:

• contrast =
∑
ij

(i− j)2Aij



Fig. 2. An example of a three-gray-level image and four GLCM masks.

TABLE I
GLCM OF MASKS SHOWED IN FIGURE 2.

φ = 0, d = 1(
0 0 12
0 6 2
12 2 0

)φ = 45, d = 1(
0 7 1
7 0 7
1 7 1

) φ = 90, d = 2(
0 0 10
0 4 1
10 1 0

)φ = 135, d = 2(
0 0 6
0 2 1
6 1 0

)

• dissimilarity =
∑
ij

|i− j|Aij

• homogeneity =
∑
ij

(Aij)
2

• energy =
∑
ij

Aij , etc.

3) Gabor Filters: The CV community uses Gabor filter
banks for many applications, such as edge detection and
texture analysis [19]. The idea is to convolve the image using
the Gabor filter with different parameters and use the statistics
of the result (usually mean and variance) as texture descriptors.
The discrete Gabor filters (sin and cos) are defined as:

Gc(i, j) = B exp

(
− i

2 + j2

2σ2

)
cos (2πf (i cos θ + j sin θ)) ,

Gs(i, j) = C exp

(
− i

2 + j2

2σ2

)
sin (2πf (i cos θ + j sin θ)) .

The B and C parameters, respectively, are:

B =
∑
ij

exp

(
− i

2 + j2

2σ2

)
cos (2πf (i cos θ + j sin θ)) ,

C =
∑
ij

exp

(
− i

2 + j2

2σ2

)
sin (2πf (i cos θ + j sin θ)) .

The other factors are radial frequency f and the orientation of
the filter θ. In Figure 3, we can observe 12 Gabor filters.

Fig. 3. An exemple of a Gabor filter set, θ ∈ {0, 45, 90, 135} and f ∈
{0.05, 0.2, 0.4}

B. Seismic Data

In this section, we will better define seismic data and how it
is processed for image retrieval. Seismic images are acquired
in a process in which a source generates vibrations (or an
impulse) that travel into the Earth, pass through strata with
different physical properties, and return to the surface being
recorded as seismic data. This data is processed and then
analyzed by interpreters who study the subsurface’s properties
and structures.

The seismic data used in this work can be seen as a 3D
volume composed of a horizontal stack of 2D seismic images
that we call slices. These vertical slices can be considered
along the inline- and crossline-axes (lateral axes), while the
vertical axis may represent depth or time, depending on how
the data was processed. The experiments used as input three
inlines from the Netherlands F3 dataset, with 951×462 pixels
and three crosslines with 651×462 pixels. Also, we considered
three inlines from the Penobscot dataset, with 481×1501
pixels and three crosslines with 601×1501 pixels. For each
experiment, the central slice was selected as the query, and
the two remaining slices were assigned to the database.

Experts previously interpreted each slice, thus assigning
each pixel to one of 8 categories (Netherlands) or 7 categories
(Penobscot). We remark that the labeling and the discussions
of this study focus on image analysis aspects rather than
geophysical or geological ones. Some samples of the used
data may be seen in Figure 4.

The retrieval database was built by dividing each seismic
slice into patches; we describe this step in more detail in
section IV. Since a single seismic data volume can span
dozens of gigabytes, the trade-off between online and offline
retrieval must be evaluated according to the requirements of
each application. In this work, we consider the offline case, i.e.,
for each patch in the database, a texture descriptor is computed
and stored for posterior comparison. As data storage and
processing time may become issues depending on the adopted
strategy (online or offline retrieval), the selection of the texture
descriptor and its parameters must also take these aspects into
consideration. Below, we list the size of the feature vector for
each texture descriptor as a function of its parameters.

a) LBP: Despite the several variations of LBP, we have
considered the original operator and the rotation-invariant
version, both yielding 256 values for each patch.

b) GLCM: The size of the feature vector can be com-
puted as #(features)×#(distances)×#(angles).

c) Gabor Filters: The size of the feature vector can be
computed as #(features)×#(frequencies)×#(angles).

IV. METHODOLOGY

The general image retrieval process consists of the following
steps: (i) receiving a query image from the user; (ii) searching
in a database of multiple images; and (iii) retrieving the images
from the database which are most visually similar to the
query image. The visual similarity is computed by extracting
texture features on both query and database and comparing
the extracted feature vector according to a similarity metric,



(a) Inline (left) and crossline (right) from the Netherlands dataset. (b) Inline (left) and crossline (right)
from the Penobscot dataset.

Fig. 4. Examples of slices used in the experiments (re-scaled). The original grayscale images used as input are displayed above with an overlay of colors
highlighting the regions resultant from the image annotation.

i.e., no training process is needed. This work aims to assist
the interpreter in the task of manually selecting a region-of-
interest (ROI) in a given slice – representing the query image
– and searching in the remaining of the cube – representing
the database – for the regions which are most similar to the
query. In this paper, we address homogenous retrieval, i.e., we
assume that the ROI belongs to a single seismic category (as
well as the candidates from the database).

As described in section III, each slice is subject to a process
of division in patches, to which we refer as tiles. Each tile
receives a unique label among the categories annotated by the
experts. Then, given a query tile T , our goal is to return N
tiles of the same seismic category of T .

Thus, the goal of our experiments is twofold: (i) to de-
termine the best combination of parameters (per descriptor)
for the retrieval of homogeneous regions; and (ii) to compare
the descriptors’ accuracy and performance when using the
optimal parameters. To this end, we implemented a Python-
based framework for running empirical analysis on images.
The next section describes the experimental setup in detail.

A. Global Experimental setup

Before serving as input for the experiments described next,
each grayscale image (in .tiff format) underwent a pre-
processing step in which its intensity values were rescaled to
64 gray levels (i.e., every pixel received values in the range
[0,63]), followed by a histogram equalization.

1) Tiling: We partitioned each slice in tiles of varying sizes,
and each tile received a label according to its annotation. More
precisely, if at least 75% of the tile’s pixels belonged to a class
C, the tile received label C and if a tile contained more that
25% of noise, it was discarded. We used different tile sizes
to estimate the robustness of the descriptors when working
with images at different scales. The considered tile sizes in
our experiments depend on the image resolution and are listed
below. A few samples are displayed in Figure 5.

• Netherlands: 40×40 px; 50×50 px; and 60×60 px.

• Penobscot: 40×40 px; 60×60 px; and 80×80 px.

(a) 40px (C1) (b) 50px (C1) (c) 60px (C1)

(d) 40px (C2) (e) 50px (C2) (f) 60px (C2)

Fig. 5. Samples of tiles with varying sizes from two different categories –
C1 and C2. All samples were extracted from Netherlands’ crosslines.

We evaluated two different strategies for dividing the slices
into tiles: first, the tiles were assigned right next to each
other (i.e., no overlap); second, we considered 50% of overlap
during division. Table II displays the number of generated tiles
when considering different sizes and division modes.

TABLE II
TILE SIZE × NUMBER OF TILES GENERATED FOR QUERY AND DATASET,

WHEN CONSIDERING THE TWO OVERLAPPING MODES.

No overlap 50% overlap
Size Query Dataset Query Dataset

Netherlands – inlines
40 px 177 341 711 1421
50 px 120 241 393 781
60 px 53 112 225 454

Netherlands – crosslines
40 px 114 220 461 950
50 px 82 155 271 514
60 px 40 72 144 295

Penobscot – inlines
40 px 506 1033 1563 3126
60 px 213 417 643 1290
80 px 101 206 330 659

Penobscot – crosslines
40 px 411 820 1955 3921
60 px 172 350 807 1618
80 px 86 171 412 829



2) Distance metrics: Given two feature vectors p and q with
n elements, we selected and evaluated two similarity metrics:
Euclidean distance and Manhattan distance.

3) Number of retrieved samples: We compare each query
tile to all tiles from the database evaluating the visual similarity
between them. Next, we return the top N most similar candi-
dates from the database. In our experiments, we tested different
values of N , namely, 5, 10 and 15. Nevertheless, we observed
that the behavior of descriptors and corresponding parameters
were consistent regardless the value of N . Therefore, for the
sake of brevity, the results described in section V will only
contemplate the values for N = 5.

4) Evaluation: We performed the descriptors’ analysis by
considering both the ability to retrieve similar regions and
the time required to compute the feature vectors. Since each
tile is associated with a single category, we could verify the
number of candidates on the top N retrieved samples which
indeed belonged to the same category as the query image.
Thus, we compute the accuracy by taking the ratio between
the retrieved samples of the query’s category and the total of
samples retrieved. We carried out the performance analysis by
storing the elapsed time for each retrieval task.

5) Per-category accuracy: Finally, we not only consol-
idated the retrieval accuracy and performance for all the
query tiles but also computed individually for the tiles of
each category. The goal of the second analysis was to as-
sess whether a combination of descriptors and corresponding
parameters would work better for regions with specific visual
characteristics. Moreover, because the data from Penobscot is
highly unbalanced (see Figure 4b), we wanted to conduct a
more detailed analysis.

B. Evaluating Descriptors’ Parameters

Each descriptor was evaluated according to the experimental
setup previously described. We also tested, for each descriptor,
how different parameters values affected the retrieval quality.

We conducted several pre-experiments with parameters
varying in different ranges, took the initial optimal values, and,
finally, performed the experiments with parameters varying
from ranges close to the initial optimal values. For the sake
of brevity, the range values considered in the pre-experiments
are omitted from this paper. The evaluated parameters and
corresponding selected values are listed below.

• LBP
– Radiuses: 1, 2, 3, 4, 5, and 6
– Methods: Default and ROR (rotation-invariant)
– Neighbors: 8 (fixed)
∗ The computation for larger values is too slow and

requires a lot of memory.
• GLCM

– Features: ASM, autocorr, contrast,
correlation, cshade, cprominence,
diffentropy, diffvar, dissimilarity,
energy, entropy, homogeneity, invdiff,

maxprob, mean, sumavg, sumentropy, sumvar,
and variance

– Distances: 1, 2, and [1, 2] (combined)
– Angles: [0◦, 45◦, 90◦, 135◦] (combined – fixed)

• Gabor
– Frequencies: 0.25, 0.5, 0.75, and 1
– Feature: variance (fixed)
– Angles: [0◦, 45◦, 90◦, 135◦] (combined – fixed)

V. RESULTS

We performed several experiments and computed the de-
scriptors’ accuracy for the top five most similar retrieved can-
didates, as described in section IV. The results for Netherlands
cube are consolidated in Tables III and IV, and the results for
Penobscot cube are shown in Tables V and VI. These tables
were built similarly and each column displays, for each tile
size, tile-overlapping mode, distance metric, and descriptor,
the following values: (i) the parameter which yielded the high-
est accuracy; (ii) the highest accuracy obtained; and (iii) the
time – in seconds – for each corresponding-retrieval task.

As seen in the tables, the optimal parameters of each
descriptor may be affected by the tile size but, in general,
the following rules apply:

• For the Netherlands dataset, the optimal radius value for
LBP was 1 (see Tables III and IV - rows 1,2,7,8,13,14).
More precisely, it was able to achieve the optimal ac-
curacy for 70% of the tests performed with inlines, and
91% for crosslines.

• For the Penobscot dataset, the optimal radius value for
LBP was around 1-2 for inlines (see Table V - rows
1,2,7,8,13,14) and 3-4 for crosslines (see Table VI -
same rows). More precisely, for inlines, the radius 1 was
the best parameter for 52% of the tests and radius 2
performed better at 47% of the tests; for crosslines, the
radius 2 was selected at 63% of the tests and radius 3 at
36% of the tests.

• For both datasets, the default LBP operator tends to work
better than the rotation-invariant version (LBP ROR),
except for some of the larger tiles (compare rows 1 and
2, 7 and 8, 13 and 14, of Tables III-VI).

• For both datasets, the GLCM descriptor parametrized
with distance [1,2] (combined) tends to outperform
GLCM with distances 1 and 2 alone, however, the elapsed
time is substantially superior (see rows 3-5, 9-11, 15-17,
of Tables III-VI).

• For both datasets, the best features of GLCM were
dissimilarity and diffentropy, followed by
contrast (see rows 3-5, 9-11, 15-17, of Tables III-VI).
More precisely, for the Netherlands dataset, the feature
dissimilarity was the best parameter in 45% of the
tests (inlines) and 31% of the tests (crosslines); while
diffentropy was selected in 27% of the tests (inlines)
and 39% of the tests (crosslines). For the Penobscot,
dissimilarity was the best parameter in 29% of the
tests (inlines) and 39% of the tests (crosslines); while



TABLE III
GLOBAL RESULTS FOR NETHERLANDS INLINES: BEST PARAMETER VALUE, ACCURACY OF BEST PARAMETER, AND ELAPSED TIME.

Overlap No overlap 50% overlap
Metric Euclidean Manhattan Euclidean Manhattan

Tile size 40px
1 LBP Default 1 77.7% 1.33s 1 78.1% 2.03s 1 78.2% 10.73s 1 78.7% 10.71s
2 LBP ROR 1 70.8% 2.47s 1 72.6% 1.93s 2 70.2% 11.06s 1 70.6% 11.43s
3 GLCM 1 dissim. 71.4% 4.63s diffent. 71.1% 21.68s dissim. 72.2% 24.33s diffent. 72.0% 85.91s
4 GLCM 2 dissim. 70.7% 4.72s dissim. 70.1% 4.21s dissim. 71.0% 22.85s dissim. 70.1% 21.48s
5 GLCM [1,2] dissim. 73.5% 6.20s diffent. 71.6% 40.51s diffent. 76.8% 172.16s diffent. 75.6% 171.06s
6 Gabor Var. 0.5 65.8% 3.98s 0.5 67.6% 4.25s 0.5 70.6% 19.23s 0.5 70.7% 19.67s

Tile size 50px
7 LBP Default 1 75.8% 1.42s 1 78.8% 1.67s 1 82.8% 5.13s 1 85.2% 4.58s
8 LBP ROR 2 70.6% 1.46s 1 72.6% 1.66s 1 76.5% 4.53s 1 77.9% 4.15s
9 GLCM 1 diffent. 75.0% 13.09s diffent. 75.0% 15.39s dissim. 77.3% 12.90s dissim. 76.9% 10.20s

10 GLCM 2 cprom. 75.8% 10.48s cprom. 75.1% 10.63s dissim. 76.7% 10.74s dissim. 76.0% 8.65s
11 GLCM [1,2] diffent. 78.6% 25.56s diffent. 76.8% 28.46s diffent. 80.5% 58.81s dissim. 79.0% 15.89s
12 Gabor Var. 0.5 73.0% 3.21s 0.5 76.3% 3.29s 0.5 75.2% 8.86s 0.5 76.2% 7.34s

Tile size 60px
13 LBP Default 1 82.6% 0.89s 2 84.9% 0.94s 1 82.2% 2.76s 1 84.0% 2.73s
14 LBP ROR 2 77.7% 0.72s 2 78.8% 0.61s 2 79.6% 2.73s 2 80.9% 2.59s
15 GLCM 1 dissim. 78.4% 1.52s contrast 78.8% 1.35s dissim. 77.0% 5.64s dissim. 76.6% 4.65s
16 GLCM 2 sumvar 79.2% 7.92s diffent. 78.1% 6.75s dissim. 79.2% 6.83s dissim. 77.2% 5.72s
17 GLCM [1,2] dissim. 80.3% 2.24s cprom. 81.1% 8.47s diffent. 80.0% 48.53s diffent. 78.8% 43.76s
18 Gabor Var. 0.5 77.3% 1.67s 0.5 78.4% 1.71s 0.5 77.2% 6.03s 0.5 77.9% 5.50s

TABLE IV
GLOBAL RESULTS FOR NETHERLANDS CROSSLINES: BEST PARAMETER VALUE, ACCURACY OF BEST PARAMETER, AND ELAPSED TIME.

Overlap No overlap 50% overlap
Metric Euclidean Manhattan Euclidean Manhattan

Tile size 40px
1 LBP Default 1 69.3% 0.87s 1 70.0% 1.33s 1 67.9% 6.52s 1 68.3% 8.08s
2 LBP ROR 1 65.9% 1.34s 1 67.0% 1.24s 1 59.7% 6.00s 1 59.6% 6.44s
3 GLCM 1 dissim. 65.9% 2.81s dissim. 66.1% 2.90s dissim. 64.5% 15.91s cprom. 64.5% 42.49s
4 GLCM 2 dissim. 67.1% 2.85s contrast 65.9% 2.84s contrast 66.0% 15.89s contrast. 64.5% 13.68s
5 GLCM [1,2] contrast 67.8% 3.83s contrast 67.0% 4.01s contrast 69.8% 18.13s diffent. 67.9% 101.18s
6 Gabor Var. 0.5 69.4% 2.27s 0.5 70.0% 2.52s 0.5 65.9% 11.11s 0.5 66.5% 11.70s

Tile size 50px
7 LBP Default 1 70.4% 0.89s 1 69.2% 0.93s 1 76.3% 3.46s 1 76.5% 3.55s
8 LBP ROR 2 68.0% 1.00s 2 68.0% 0.91s 1 68.7% 3.29s 1 69.5% 3.58s
9 GLCM 1 diffent. 71.9% 9.69s diffent. 69.7% 8.94s diffent. 72.9% 32.97s diffent. 72.9% 32.12s
10 GLCM 2 diffent. 68.5% 10.45s diffent. 70.0% 9.07s diffent. 74.6% 31.18s diffent. 73.5% 32.47s
11 GLCM [1,2] diffent. 74.3% 19.26s diffent. 71.2% 19.21s diffent. 79.6% 62.63s diffent. 78.1% 63.76s
12 Gabor Var. 0.5 71.7% 1.91s 0.5 71.9% 1.99s 0.5 71.8% 7.52s 0.5 73.5% 6.89s

Tile size 60px
13 LBP Default 1 77.5% 0.47s 1 77.5% 0.49s 1 80.0% 1.92s 1 81.3% 2.07s
14 LBP ROR 1 77.0% 0.49s 1 78.5% 0.46s 1 75.0% 1.84s 1 77.0% 2.07s
15 GLCM 1 correl. 79.0% 1.97s sumvar 77.0% 5.89s diffent. 77.5% 19.20s diffent. 77.3% 18.51s
16 GLCM 2 dissim. 72.0% 1.10s diffent. 71.0% 4.76s contrast 76.3% 4.10s sument. 74.0% 25.46s
17 GLCM [1,2] dissim. 76.0% 1.48s dissim. 77.0% 1.47s diffent. 79.7% 36.28s diffent. 78.3% 34.29s
18 Gabor Var. 0.5 74.5% 1.08s 0.5 77.0% 1.07s 0.5 80.6% 4.52s 0.5 82.78% 4.30s

diffentropy was selected in 45% of the tests (inlines)
and 12% of the tests (crosslines).

• For the Netherlands dataset, the optimal frequency of
Gabor Filters was 0.5 in all the tests (see Tables III and
IV - rows 6,12,18).

• For Penobscot, the optimal frequency value for Gabor was
around 0.5-1.0 for inlines (see Table V - rows 6,12,18)
and 1.0 for crosslines (see Table VI - same rows).

A. Experiments per-category

In addition to the global results previously reported, we
also ran tests per-category, i.e., for the query tiles of each
category, the retrieval was performed for the entire dataset,

and we computed the individual accuracy for each category.
Tables VII and VIII consolidate the results for Netherlands
and Penobscot datasets, respectively. Each line of the table
displays the mean accuracy (i.e., the average between values
for different tile sizes, overlapping modes, and distance met-
rics) for each category when using the optimal parameters
for each descriptor. Because the fourth layer (top-down) of
Netherlands cube generates a set of tiles with insufficient size
for our analysis, the results are omitted.

B. Discussion

Regardless of the tile size and overlapping mode, our ex-
periments indicate that LBP, Gabor, and GLCM, when applied



TABLE V
GLOBAL RESULTS FOR PENOBSCOT INLINES: BEST PARAMETER VALUE, ACCURACY OF BEST PARAMETER, AND ELAPSED TIME.

Overlap No overlap 50% overlap
Metric Euclidean Manhattan Euclidean Manhattan

Tile size 40px
1 LBP Default 1 85.6% 5.61s 1 87.4% 5.80s 1 88.4% 21.05s 1 89.05% 22.27s
2 LBP ROR 2 82.2% 5.38s 2 83.0% 4.93s 2 84.5% 20.33s 2 84.8% 20.35s
3 GLCM 1 diffent. 82.0% 52.18s diffent. 82.3% 51.34s diffent. 84.5% 113.74s diffent. 84.4% 114.61s
4 GLCM 2 contrast 82.2% 11.33s contrast 81.4% 11.97s contrast 84.5% 35.69s contrast 84.4% 36.84s
5 GLCM [1,2] diffent. 85.7% 87.64s diffent. 84.4% 99.27s diffent. 88.5% 216.22s diffent. 87.5% 211.13s
6 Gabor Var. 0.5 80.9% 10.73s 0.75 81.1% 8.57s 0.5 83.2% 31.61s 0.5 83.4% 31.08s

Tile size 60px
7 LBP Default 1 91.7% 2.48s 2 93.6% 3.04s 1 92.5% 10.86s 1 93.5% 8.74s
8 LBP ROR 2 90.4% 3.08s 2 91.5% 2.37s 2 92.0% 8.59s 2 92.2% 7.60s
9 GLCM 1 dissim. 95.7% 4.87s dissim. 95.8% 5.57s diffent. 92.1% 83.64s diffent. 92.0% 64.32s
10 GLCM 2 dissim. 95.1% 5.11s dissim. 94.8% 5.42s dissim. 92.9% 17.38s dissim. 92.6% 15.05s
11 GLCM [1,2] dissim. 96.2% 6.87s dissim. 96.2% 8.37s diffent. 93.9% 127.75s diffent. 93.9% 126.74s
12 Gabor Var. 1 91.6% 3.30s 0.75 91.2% 3.37s 1 89.4% 12.28s 1 89.7% 9.64s

Tile size 80px
13 LBP Default 4 92.5% 1.55s 3 93.7% 1.44s 1 94.3% 5.71s 1 95.8% 6.20s
14 LBP ROR 3 94.6% 1.93s 3 93.9% 1.58s 3 94.3% 6.55s 2 94.8% 5.84s
15 GLCM 1 diffent. 93.0% 10.16s diffent. 93.2% 10.57s diffent. 94.3% 46.28s diffent. 94.5% 43.09s
16 GLCM 2 dissim. 95.3% 2.63s diffent. 95.1% 11.10s contrast 94.5% 11.18s correl. 94.2% 19.91s
17 GLCM [1,2] correl. 94.6% 7.51s diffent. 94.4% 22.26s diffent. 95.1% 84.85s diffent. 95.1% 84.08s
18 Gabor Var. 1 95.1% 1.72s 0.75 95.1% 1.92s 1 93.3% 7.78s 1 92.9% 7.56s

TABLE VI
GLOBAL RESULTS FOR PENOBSCOT CROSSLINES: BEST PARAMETER VALUE, ACCURACY OF BEST PARAMETER, AND ELAPSED TIME.

Overlap No overlap 50% overlap
Metric Euclidean Manhattan Euclidean Manhattan

Tile size 40px
1 LBP Default 2 71.7% 7.74s 2 72.8% 7.13s 2 72.6% 29.75s 2 75.1% 28.69s
2 LBP ROR 2 68.3% 6.98s 2 69.8% 7.55s 3 69.6% 29.13s 2 71.1% 27.60s
3 GLCM 1 diffent. 69.4% 65.66s diffent. 69.2% 63.51s diffent. 70.0% 163.59s diffent. 70.0% 151.14s
4 GLCM 2 sumvar 68.9% 82.07s contrast 68.2% 14.60s contrast 70.0% 46.07s contrast 70.0% 44.44s
5 GLCM [1,2] diffent. 69.8% 111.43s diffent. 69.3% 130.47s diffent. 72.7% 274.55s diffent. 72.0% 254.91s
6 Gabor Var. 0.75 66.4% 9.59s 1 67.7% 8.68s 1 68.3% 34.38s 1 68.5% 66.28s

Tile size 60px
7 LBP Default 3 77.1% 3.00s 2 77.5% 2.84s 2 78.5% 13.19s 2 80.7% 9.04s
8 LBP ROR 4 74.8% 3.46s 3 76.0% 2.99s 3 77.7% 8.83s 2 78.7% 9.22s
9 GLCM 1 dissim. 74.6% 5.78s dissim. 74.0% 6.22s diffent. 75.0% 84.43s dissim. 74.9% 16.95s

10 GLCM 2 diffent. 74.4% 27.17s diffent. 74.4% 27.39s correl. 75.5% 41.39s contrast 75.3% 16.95s
11 GLCM [1,2] diffent. 74.7% 56.42s sument. 74.9% 68.59s diffent. 77.3% 177.22s diffent. 76.5% 107.85s
12 Gabor Var. 1 70.7% 3.81s 1 71.1% 3.69s 1 73.4% 12.46s 1 73.8% 11.63s

Tile size 80px
13 LBP Default 4 80.7% 2.11s 2 82.5% 1.87s 2 82.2% 7.77s 2 85.3% 6.42s
14 LBP ROR 3 81.5% 1.93s 3 83.7% 2.03s 3 81.3% 7.61s 3 83.8% 6.85s
15 GLCM 1 diffvar 80.5% 13.47s diffent. 80.0% 12.05s diffvar 80.1% 52.93s contrast 80.1% 13.70s
16 GLCM 2 diffvar 81.5% 13.14s diffvar 82.1% 12.03s diffvar 81.8% 55.99s diffvar 81.3% 33.17s
17 GLCM [1,2] diffvar 81.9% 24.10s diffvar 81.7% 22.22s diffvar 81.7% 90.01s correl. 81.1% 33.91s
18 Gabor Var. 1 80.5% 2.27s 1 78.8% 2.20s 1 79.8% 9.97s 1 80.3% 8.80s

with their optimal parameters, can produce similar results
(compare Tables III-VI - rows 1,5,6; 7,11,12; and 13,17,18).
The per-layer analysis of Penobscot, however, suggests that,
while Gabor produces similar results for the bottom layer –
which corresponds to ∼63% of the cube – the other descriptors
tend to work better for the upper layers.

The advantage of LBP over Gabor and GLCM, on the one
hand, is performance: LPB has demonstrated to be substan-
tially faster than the others – in average, 2.2 times faster
than Gabor and seven times faster than GLCM [1,2]. On the
other hand, because the feature vector of LBP is rather large
(256 positions), it requires a much greater amount of memory.
This memory demand may represent a bottleneck in case one

desires to pre-compute features of several seismic cubes. Even
still, it has demonstrated to be a robust descriptor, despite not
being explored in the seismic classification literature.

Our experiments also demonstrated that using Euclidean
Distance or Manhattan Distance is not significant, as both met-
rics can achieve similar results, with Manhattan being slightly
better in some cases. The decision of using overlapping can
slightly increase the accuracy in some scenarios. However,
the processing time is much slower, as the number of tiles
generated is inversely proportional to (1− overlap)2.

Regarding Gabor’s optimal parameters, our results indicate
that the best frequency value may depend on the image size;
the same happens to LBP’s radius parameter, as the larger the



TABLE VII
PER-LAYER RESULTS: NETHERLANDS INLINES (LEFT) AND CROSSLINES.

# LBP GLCM Gabor
1 99.9% 100.0% 98.3%
2 81.4% 77.2% 69.6%
3 76.8% 68.4% 48.5%
4 - - -
5 59.0% 50.9% 42.2%
6 71.4% 64.4% 70.9%
7 71.9% 59.5% 61.4%
8 72.7% 76.3% 71.6%

# LBP GLCM Gabor
1 97.6% 96.3% 91.9%
2 72.8% 68.1% 48.0%
3 14.2% 18.8% 20.0%
4 - - -
5 50.1% 43.8% 33.1%
6 78.9% 72.3% 77.0%
7 69.7% 66.7% 72.4%
8 53.1% 65.7% 72.7%

TABLE VIII
PER-LAYER RESULTS: PENOBSCOT INLINES (LEFT) AND CROSSLINES.

# LBP GLCM Gabor
1 92.0% 92.0% 53.2%
2 58.5% 60.5% 48.0%
3 81.0% 87.4% 83.5%
4 52.2% 28.6% 26.2%
5 94.9% 87.6% 86.8%
6 59.8% 52.2% 69.3%
7 98.7% 98.8% 98.6%

# LBP GLCM Gabor
1 82.3% 81.1% 52.0%
2 42.2% 31.8% 22.2%
3 60.5% 60.7% 55.5%
4 40.4% 27.9% 26.8%
5 69.2% 60.7% 57.1%
6 41.5% 38.0% 33.2%
7 92.4% 90.2% 90.2%

image dimension (e.g., Penobscot crosslines), the higher the
optimal value. The rotation invariance discussion of LBP also
depends on the data, and our analysis per-category indicate that
the default version is better for stratified data (e.g., Figure 5 –
top row), while the rotation-invariant version works better on
chaotic data (e.g., Figure 5 – bottom row).

In fact, the per-layer analysis is able to provide us an extra
insight: we noticed that some categories are easier to produce
good retrieval results than others, and this behavior tends to
be consistent among the three descriptors.

VI. CONCLUSION

This paper reports several experiments on seismic image
retrieval with the goal of assessing texture descriptors yet not
addressed in the geological community – namely, LBP and
Gabor Filters – in comparison with a more detailed analysis
on GLCM – the most popular descriptor in this domain. Our
findings indicate that LBP and Gabor Filters also have the
potential to bring satisfying results, while LBP descriptor has
the additional advantage of being computationally efficient.

Our experiments demonstrate that the parametrization of
the descriptors is complex and may depend on the seis-
mic data considered. However, our results indicate that,
while contrast is a commonly used feature for GLCM-
based analysis of seismic data, dissimilarity and
diffentropy should also be investigated in detail. To the
best of our knowledge, a similar investigation focusing on
the best parameters values for seismic image retrieval have
not been addressed before and such findings have not been
previously reported.

In future work, we wish to polish the annotation of the
seismic cubes used in this research, with the goal of providing
it publicly, so other researchers from the Computer Vision
community may be encouraged to intensify their studies on
seismic image retrieval, segmentation, and classification.
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