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Abstract—Visualization tools play an important part in as-
sisting analysts in the understanding of networks and under-
lying phenomena. However these tasks can be hindered by
visual clutter. Simplification/decimation schemes have been a
main alternative in this context. Nevertheless, network simpli-
fication methods have not been properly evaluated w.r.t. their
effectiveness in reducing complexity while preserving relevant
structures and content. Moreover, most simplification techniques
only consider information extracted from the topology of the
network, altogether disregarding additional content.

In this work we propose a novel methodology to network
simplification that leverages topological information and addi-
tional content associated with network elements. The proposed
methodology relies on non-negative matrix factorization (NMF)
and graph matching, combined to generate a hierarchical repre-
sentation of the network, grouping the most similar elements in
each level of the hierarchy. Moreover, the matrix factorization
is only performed at the beginning of the process, reducing
the computational cost without compromising the quality of the
simplification. The effectiveness of the proposed methodology is
assessed through a comprehensive set of quantitative evaluations
and comparisons, which shows that our approach outperforms
existing simplification methods.

I. INTRODUCTION

Networks are important structures for modeling systems
whose elements bear a pairwise relationship. Typical examples
are social networks, where people interact according to their
friendship relation; and scientific networks, where researchers
are connected according to their level of collaboration. In
this context, visualization tools are crucial, revealing gist
information w.r.t. group formation and patterns as well as
directing the analysts’ attention to specific parts of a network.

However, visualization tasks can be impaired on massive
networks due to visual clutter. Simplification/decimation has
been a main alternative to make large networks manageable in
terms of visualization. Indeed, 43 of the 81 methods analyzed
for network group structure visualization by Vehlow et al. [1]
rely on hierarchical groups to assist visualization tasks.

Despite its importance, network simplification methods have
not been properly evaluated for their effectiveness in reducing
network complexity while preserving relevant structures and
content. Most techniques consider only the topology, disre-
garding information associated with the elements. Neglecting
this information can lead to configurations where groups, and
their content, barely reflect the original ones.

We propose a novel methodology for network simplification
based on topological information and content associated with
network elements, relying on non-negative matrix factorization
(NMF) [2] and graph matching [3]. It can be recurrently
applied to generate a hierarchical representation of the net-
work, grouping the most similar elements in each level of
the hierarchy. The matrix factorization is only performed at
the start of the process, reducing computational cost without
compromising the quality of the result.

The effectiveness of our methodology is assessed through
a set of quantitative measures, where we adapt community
formation metrics to gauge the quality of the network sim-
plification, compared against well known techniques, showing
that the proposed method outperforms those methods.

In summary, the main contributions of this work are:
• A network simplification mechanism that combines Non-

Negative Matrix Factorization and graph matching.
• A hierarchical representation where each level is a meta

graph whose similarity between meta nodes is derived
directly from the original network, avoiding computation-
ally costly processing at each level of the hierarchy.

• A comprehensive set of comparisons showing the effec-
tiveness of our approach when compared against existing
network simplification techniques.

II. RELATED WORK

In order to better contextualize our contribution, we group
existing network simplification techniques into two main cat-
egories, edge/node removal and edge/node collapse.
Edge/Node removal. These methods remove elements while
preserving some information of interest. Betweenness central-
ity was used by Girvan and Newman [4], [5] to set edge
weights and to perform the simplification considering the
resulting minimum spanning tree. Conversely, Jia et al. [6]
remove edges with smaller centrality values in order to pre-
serve paths between groups. Sensitivity can be defined as the
derivative of the centrality, mostly used to indicate variations
such as the addition or removal of elements [7], or to create
the minimum spanning tree for simplification [8].

Edges/nodes removal methods are not appropriate for cer-
tain applications, mainly when the node connectivity is rele-
vant for the analysis. Moreover, they consider only the topol-



ogy, disregarding additional content associated with network
edges and nodes, constraining their usefulness.
Edge/Node collapse. These methods group nodes based on
a similarity or optimality, where simplified representations
have meta nodes connected by edges. Phrase Nets [9] groups
nodes with identical neighborhood structures, keeping an edge
between groups whose nodes are connected in the original
network. Dinkla et al. [10] proposed a similar approach, in
the context of gene network analysis, grouping nodes with
identical neighbor set. As most edge/node removal techniques,
these methods rely only on the topological structure of the
network, neglecting possible attributes associated with nodes
and edges. Power graph analysis [11], [12], [13] also perform
graph simplification based on the nodes neighborhood.

However, there are methods that collapse elements based
on optimality criteria or on the content of the elements in
the network. The method proposed by Newman [14] is a
typical example, where edges are collapsed to minimize a
modularity function. Spectral clustering [15] is widely used
to partition a network while preserving a balance between the
cost of cutting edges and the size of the partitions. The K-
SNAP technique [16] partitions a network to maximize an
inter-cluster cost function, which takes into account attributes
associated with the nodes. Based on the K-SNAP technique,
Zhang et al. [17] proposed a scheme to sort nodes according to
their attributes, performing the partition based on the resulting
order. Minimal Description Length was used by Navlakha et
al. [18] to generate a simplified representation from which the
original network can be recovered with minimal cost.

Graph matching was also used, providing a natural hierarchy
by its recurrent application, as exploited by Karpis and Ku-
mar [19] to build a hierarchy from binary partitions. It has been
an important mechanism to create hierarchical representations,
including graph drawing [20], [21]. However, most matching-
based methods rely only on the topology of the network.

Matrix factorization has been used to consider attributes
when performing the simplification. Wang et al [22] use NMF
to define similarity between nodes. Vegas [23] uses SymNMF
[24] to summarize citation networks. Multivis [25] uses e-
mail information as attributes to generate a tensor, that is
decomposed to simplify the network. While NMF is effective
to define groups of similar entities, it was not properly ex-
plored to generate hierarchical representations where similarity
among elements is enforced in each level of a hierarchy.
Edge/node removal and collapsing for visualization.
Although visual resources are alternatives, such as edge
bundling [26], edge/node removal and collapse approaches
remain essential to visualization tasks, as shown by Auber
et al. [27], enabling the visual exploration of a hierarchical
network, constructed by removing the weakest edges. Edge
strength is obtained from the topology and the hierarchy is set
by thresholding the edge strength at different levels. Topologi-
cal information was also used in Ask-Graph View [28], relying
on clustering to build a hierarchy. Topological Fisheye [29]
combines topological and geometrical information, the latter
obtained by embedding the network into a Cartesian visual

space, to hierarchically simplify a network through edge
collapses computed from a graph matching mechanism.

General mechanisms to assist network visualization have
been proposed by OnionGraph [30] and Pivot Graph [31],
considering the topology and node attributes to define sim-
ilarities among nodes, allowing semantic aggregation dur-
ing simplification. Node attributes are also considered by
Elmqvist et al. [32], which build hierarchies composed of meta
nodes representing similar nodes. Nevertheless, none of those
attribute-aware techniques consider NMF methods to guide the
construction of the hierarchy. Most hierarchical visualization
techniques assume the hierarchy is given, performing only the
visualization [33], [34]. Further, graph matching techniques
perform the collapses based only on topological information.

Our approach is a step towards filling this gap between
topology and content, by combining NMF and graph matching
to produce hierarchical representations where similarities are
preserved. It differs from the existing techniques, as it builds
the hierarchy from a combination of NMF and graph matching.
This combination leverages the solid mechanism to use the
attribute information to define similarities between nodes in
each level of the hierarchy from the NMF, with optimal col-
lapses/grouping from the graph matching, enabling a reliable
representation for visualization purposes.

III. MATRIX FACTORIZATION AND GRAPH HIERARCHIES

Let G = (V,E,X) be a network, where V is the set of
nodes, E is the set of edges, and X is a matrix where each
column corresponds to attributes associated with a node. A
hierarchical representation of G is built, where meta nodes
at each level represent (meta)nodes from the previous level.
The hierarchy is built by collapsing edges connecting similar
(meta)nodes. Each collapse leads to a new meta node repre-
senting a pair of collapsed (meta)nodes. Three main issues are
addressed when building each level of the hierarchy:

1) How to measure the similarity between adjacent nodes?
We use the NMF to define this similarity, considering
the additional information provided by the matrix X .

2) How to decide which edges must be collapsed?
We use Graph Matching to find a set of edges to be col-
lapsed, allowing for multiple collapses simultaneously.

3) How to merge the content of the collapsed (meta)nodes?
The content of the resulting meta node is derived from
the NMF, rather than from the original data.

As illustrated in Figure 1, the three main steps of our
methodology are recurrently employed to define a hierarchical
representation for the network.
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Fig. 1. Overview of our method.



A. Matrix Factorization

NMF. [2] Assuming that all entries of a matrix X are greater
or equal to zero, a non-negative factorization of X is a
decomposition of the form X ∼ W · H , where the product
W · H approximates X . All entries of both W and H are
also positive scalars or zero. The factorization is computed by
an alternating constrained optimization scheme that finds the
minimum of the expression:

min
W,H
‖X −WH‖2F (1)

subject to the non-negativity constraint for W and H . If X
has dimensions m×n, W and H will have dimensions m×k
and k×n, where k is a user defined parameter often set k <<
min(m,n) (as we want to reduce the size of the dimension),
and ‖·‖F is the Frobenius norm.

Since the NMF only uses additive operations, the columns
of W are prone to be formed by pieces of information that
approximate X when combined by H . The pieces in W lead
to an easier interpretation of X [2]. A typical example is
topic modeling, where each entry xij in X corresponds to
the number of times a word i appears in the document j.
Since the decomposition X ∼ W ·H expresses the columns
of X in the basis given by the columns of W , each column
ws can be interpreted as a topic associated with the documents
represented in the columns of X . The larger the value wis the
more important the word i is for the topic.

From the matrix H one can identify the important basis
vectors (topics) to represent the content of each node. Since
the j-th column of H corresponds to the j-th column of X
(the j-th node in the network G) and that the s-th entry hsj
multiplies the s-th column of W ; the larger the value of hsj
the more relevant ws is to representing the content of node
j. In terms of topic analysis, hsj indicates the relevant topics
for each document. Therefore, similar nodes can be found by
identifying similar columns in H .

Dividing each column of H by the sum of its entries
makes possible to interpret hsj as the probability of the node
j be represented by column ws, that is, the probability of
xj belongs to topic ws. We call hj the probability vector,
resorting to this notion of probabilities to define the similarity
between nodes (see section III-B).
GNMF. Although effective in several contexts, the classical
NMF formulation as described in Equation 1 has several pit-
falls. For instance, it does not take into account neighborhood
relations, so distinct basis vectors can represent the content of
neighbor nodes, what is not expected, since neighbor nodes
should share similar properties. Neighborhood relation can
be incorporated in the decomposition through regularization
terms. The Graph Regularized Non-negative Matrix Factor-
ization (GNMF) [35] proposes the following cost function:

min
W,H

(
‖X −WH‖2 − λ Tr(WLW t)

)
(2)

subject to the non-negativity of W and H . In the regularization
term on the right, Tr is the trace of a matrix and L is the
Laplacian matrix of G. The Laplacian matrix is given by

L = D − A, where A is the (weighted) adjacency matrix
of G and D is a diagonal matrix with entries dii equal to
the sum of the elements in the i-th row of A. The parameter
λ ≥ 0 (smoothness parameter) controls the importance of the
regularization in the optimization process.
SymNMF. It can be more convenient to deal with a weighted
n× n adjacency matrix A than the data matrix X . Entries in
the adjacency matrix A correspond to the similarity between
nodes; each non-zero entry aij in A corresponds to the simi-
larity between nodes i and j from G. Therefore, the weighted
adjacency matrix A can be defined based on application
dependent similarity measures, what enables great flexibility
to the analysis. A popular construction is A = X> ·X , which
corresponds to measuring similarity based on the dot product
between the attribute vectors of each node.

The Symmetric Non-negative Matrix Factorization (Sym-
NMF) [24] has as cost function the following expression:

min
H

∥∥A−HtH
∥∥2

F
(3)

SymNMF can be more easily interpreted in the context of
clustering, where the largest entry hij of column hj indicates
that node j belongs to cluster i.

B. Node Similarity

Each column hj of the matrix H is a k dimensional
vector, since H is k × n, with entries hij corresponding to
the probability of the attribute vector associated with node
j being well represented by the basis vector wi. Given two
nodes j and s, and their corresponding vectors hj and hs
in H , we say those two nodes are similar if their joint
probability p(hj , hs) =

∑k
i=1 hijhis is close to 1. Since the

joint probability can be written as
k∑

i=1

hijhis = < hj , hs > = ‖hj‖‖hs‖ cos(hj , hs) (4)

the similarity between two nodes is given by the cosine of the
angle between the corresponding columns in H , multiplied
by their norms. Therefore, we assign the cosine of the angle
between probability vectors hj and hs as weight to the edge
connecting the nodes j and s. Collapsing edges with large
weights corresponds to merging highly similar nodes.

Edges could be collapsed one at a time, simplifying the
network gently in each step. However, this procedure does
not correspond to what is usually expected of a hierarchical
mechanism, which should significantly simplify or expand
the representation between adjacent levels. To this end, we
collapse edges based on a graph matching scheme.

C. Matching and grouping

There are advantages in edge collapsing based on graph
matching. Matching typically finds a large number of edges
to be collapsed simultaneously, enabling a true decimation
procedure. Moreover, the collapse of an edge does not conflict
with the others, so the procedure is computationally simpler.

A subset of edges M ⊂ E is a matching in G if no two
edges in M are adjacent, that is, edges in M do not share



a common node. This property guarantees that edges in M
can be collapsed without conflicts. A matching M is called
maximal if there is no other matching M ′ such that M ⊂M ′.
Given a weighted set of edges E, where w(e) is the weight
associated with the edge e ∈ E, let C(M) =

∑
e∈M w(e) be

the total cost of a matching M , andM be the collection of all
matchings on G. A matching M ∈M is a maximum weighted
matching (MWM) if C(M ′) ≤ C(M) for every M ′ ∈M.

Ideally, the collapses should be based on a maximum
weighted matching (MWM). However, MWM is costly, only
suitable for small networks. For larger networks, we propose
a greedy approximation to the MWM, the sorted maximal
matching (SMM), computed by sorting the edges in E in
descending order of weights; then a matching set M is built
by adding edges to M in the sorted order. If an edge to be
added is incident to an edge already in M then it is discarded
and the next edge in the sorted list is considered. The process
follows until all edges are considered.

The SMM is not guaranteed to be maximal nor of maximum
weight. However, it always includes the edge with the largest
weight in the matching list, thus ensuring that the two most
similar nodes will always be collapsed in each step of the
hierarchy construction.
Filtering out low weight edges. Ideally the matching set
M would have the largest number of edges. However, there
are cases where non-conflicting edges could be added to
M , but their small weight indicates low similarity between
(meta)nodes. To avoid that issue, we filter out edges according
to a threshold δ before creating the matching set.

D. Hierarchy

We adopt superscript indices to represent levels of the
hierarchy, jt corresponds to a (meta)node in the t-th level
of the hierarchy, t = 0 is the original network. We denote by
|jt| the number of nodes from the original graph merged into
jt. Since the column hj of H corresponds to the column xj
in the attribute matrix X ( 1), we define a new probability
matrix Ht with columns given by:

htj =
1

|jt|
∑
s∈jt

hs (5)

In other words, htj is the average of the columns in H
corresponding to nodes in jt. Entries in htj can also be
interpreted as probability vectors. Our merging mechanism
avoids repeated computations of the NMF for each level,
which would be computationally demanding and more difficult
to interpret, since the basis vectors (topics) in W would
change in each level. Therefore, the proposed methodology
renders the hierarchical construction computationally viable
and mathematically sound.

IV. DATASETS AND METRICS

The effectiveness of our methodology is assessed using six
networks with multivariate data associated with the nodes.
Those datasets, jointly with four quality metrics, are used to
evaluate and compare our approach against other methods.

A. Datasets

Artificial. This network has 30 nodes, evenly distributed in
6 classes, designed to have more edges within classes than
between classes. Each node corresponds to a document repre-
sented by a word-frequency vector. Nodes in the same classes
share the same non-empty entries in the word-frequency vec-
tor, with different values. Moreover, word-frequency vectors
from different classes are orthogonal, nodes from different
classes have no similarity. Figure 2 depicts a node-link vi-
sualization of this dataset and three levels of the hierarchy.

level 0 level 1 level 2 level 3

Fig. 2. A node-link visualization of the Artificial Network hierarchy. The
meta node size represents the number of the nodes in the finer levels grouped
in this. Edges that were matched and collapsed in each step was colored red.
The nodes are colored on a bottom-up way.

College Football. Proposed by Givan and Newman [5],
it provides information about the game table of a College
Football Division in 2000. It has 115 nodes, each representing
a team, divided into 12 conferences. Teams from the same
conference tend to face each other more often than teams
from distinct conferences, with the exception of a conference.
The network is constructed by creating edges between nodes
(teams) that face each other in the season.

We associate multivariate data to each node i by creating a
feature vector xi with dimension 115. Each entry xij stores
the number of times the team i played against the team j.
Since the teams are divided in 12 conferences, we aim to build
a hierarchical representation where the coarser level contains
exactly 12 nodes (figure 3).
VIS Conference. The VIS Conference dataset [36] contains
information of papers published at the IEEE VAST, InfoVis,
and SciVis conferences. Each author is represented by a node,

level 0
x

level 4

level 4 level 3

level 2level 1level 0

Fig. 3. College Football Network and the five levels of the hierarchical
representation from our approach (clockwise from top left). The nodes are
colored on a bottom to top way.



connected if the authors collaborated in at least once. The
node information is derived from the titles of the papers
authored, as a term-frequency matrix. We consider only the
largest connected component, with 966 nodes and 4,323 edges.
Movies. The Movies Dataset contains information about
movies from the Movie Database (TMDb). Each movie is
represented as a node, and two nodes are connected if the
movies have at least one actor in common. We considered two
different sets of attributes, one is a genre × movies matrix,
and the other keywords × movies.
MovieLens. MovieLens is a research site of the University
of Minnesota. It helps users to find movies they like, rate
movies, and build profiles. Each user is represented as a
node and users are linked if they rated the same movie with
maximum score (5), resulting in a network with 478 nodes and
39,991 edges. The multivariate information associated with
the nodes is generated from the ratings. Specifically, X is a
movies×users matrix, where each column corresponds to the
rate a particular user gave to the movies.

B. Metrics of Validation

The effectiveness of our methodology is assessed by three
different metrics from other works, modularity, ∆–Measure,
and K-Way Ratio Cut Cost Metric. These three metrics quan-
tify the quality of the clusters on a graph. In our tests, each
meta node in the coarser level is considered as a cluster
comprising nodes from the original network, allowing the use
of these metrics.
Modularity. It was used by Newman [14] and Wang et al. [22]
to validate their simplification methods. Networks with high
modularity have dense connections within defined groups and
sparse connections among different groups. Assuming that the
nodes are labeled according their group, let eij be the fraction
of edges connecting nodes from group i to group j and ai =∑

j eij . The modularity Q is defined as:

Q =
∑
i

(eii − a2
i ) (6)

where Q = 0 indicates random groupings and Q = 1 indicates
the maximum modularity, created by well structured groups.
∆–Measure. The ∆-measure [16], [17] assesses the quality of
group formation by measuring pairwise relationships between
the groups. Let Φ = {G1,G2, ...,Gk} be a partition of the
nodes from G such that Gi ∩ Gj = ∅, for all i 6= j, and

PGj (Gi) = {u| u ∈ Gi and ∃ v ∈ Gj s.t. (u, v) ∈ E}. (7)

Making pi,j = (|PGj (Gi)| + |PGi(Gj)|)/(|Gi| + |Gj |) we
define the ∆-measure as:

∆(Φ) =
∑
Gi,Gj∈Φ

= (δGj (Gi) + δGi(Gj)) (8)

where,

δGj (Gi) =

{
|PGj (Gi)| if pi,j ≤ 0.5

|Gi| − |PGj (Gi)| otherwise
(9)

To obtain the average contribution of the groups, we divide it
by k. The smaller the result, the better the group formation.

This definition does not account for edge weights, so we
apply Equation (8) only on edges with weight greater than
zero. We call this version the modified ∆–measure.
K-Way Ratio Cut Cost Metric. The K-Way Ratio Cut Cost
Metric [15] measures the cost of a graph cut generating a k-
way partition Φ = {G1,G2, ...,Gk}. Let Eh be the sum of the
weights of the edges with exactly one end in Gh. The cut cost
can then be defined as:

cost(G) =

k∑
h=1

Eh

|Gh|
(10)

Similarly to the ∆–measure, the smaller the K-Way Ratio
Cut Cost the better the partition.

V. RESULTS AND COMPARISONS

In this section we present a comprehensive set of experi-
ments and comparisons to validate and show the effectiveness
of the proposed methodology. We divide the experiments in
three main groups:

1) Assessment of the proposed graph matching process,
2) Evaluation of the mechanism employed to measure the

similarity between (meta)nodes, which define weights to
the edges, and

3) Comparison against existing simplification techniques.
Factorization methods denoted with capital H (HNMF,

HGNMF, HSNMF) indicate that they are employed as de-
scribed in our methodology. Factorization methods without
the capital H correspond to the traditional methods (NMF,
GNMF, SNMF). In these methods, a node j will belong to
the cluster i if hij is the largest entry in hj , as is usual
with NMF-based data clusterization [22], [24]. Therefore,
in traditional methods, no hierarchical structure is obtained,
and the simplification is accomplished in a single step. As
previously stated, the Artificial and College Football datasets
were simplified until 6 and 12 meta nodes were obtained in the
coarser level. The other datasets were simplified to 10 meta
nodes in the coarser level.

A. Graph Matching and Filtering

To evaluate the effectiveness of the our matching, we
compare it with MWM. We also assess the impact of ignoring
edges with small weights from process (SMMf and MWMf ).

The tables in Figure 4 show the quality of the simplified
networks for the Artificial (AD), College Football (CF) and
VIS (VIS CCN) datasets, with and without filtering the edges.
The tables in Figure 4 also show the quality of the simplifica-
tion, using three different factorizations, HNMF, HGNMF and
HSNMF. Different factorization schemes generate different H
matrices, thus affecting the edge weights and matching.

According to the modularity measure, the proposed SMM
mechanism resulted in better quality simplifications for the AC
and CF datasets, regardless of the factorization method. In the
VIS dataset, the MWM was superior, although SSM+SMNF
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Fig. 4. From top to bottom, quality measurements (median/best values) from the modularity function, modified ∆–measure, k–way Ratio Cut Cost Metric
applied to the Artificial, College Football, and VIS datasets.

obtained similar results. Regarding the ∆–measure and K-
way Ratio Cut, where smaller values are better, the proposed
SMM clearly created simplifications of better quality in most
of the cases, regardless of the factorization method. Notice
that the filtering mechanism tends to further improve the
simplification, with a few exceptions. Although not shown,
similar results were found in the other datasets.

B. Node Similarity and Edge Weights

The similarity measure between nodes is essential for a good
simplification. Our approach relies on the NMF and on the
cosine of the angle between the probability vectors, but there
are other measures that could be used to gauge the similarity
between nodes, some of which present lower computational
cost. In order to show that this adopted combination is a viable
alternative, we compare it against other four mechanisms to
measure the similarity between nodes. The node similarity is
used only to assign edge weights, running the simplification
process according to the proposed pipeline (Figure 1).
Neighborhood Similarity. Let Ni be the set of nodes in the
neighborhood of a node i, the neighborhood similarity between
nodes i and j is given by:

N (i, j) =
|Ni ∩Nj |
|Ni ∪Nj |

(11)

This topology-based measure [29] disregards node attributes.
Clustersize Similarity. Clusters tend to have groups with
a uniform number of elements. The clustersize similarity
between two meta nodes jt1 and jt2 is given by:

C(jt1, jt2) = 1− |jt1|+ |jt2|
max

jt
i
,jt

k
∈V t
{|jti |+ |jtk|}

(12)

where |jt| is the number of nodes contained in the meta node
jt and V t is the set of (meta)nodes in the t-th level. This is
topology-based measure [29] that ignores node attributes.
Degree Similarity. Let di be the degree of node i. The degree
similarity is given by:

D(i, j) = 1− di · dj
max
r,s∈V

{dr · ds}
(13)

This is also a topology-based metric.
Cosine without NMF. To investigate if the NMF-based prob-
ability vector indeed brings benefits of the similarity between
nodes, we considered it directly to the attribute vectors:

cosine(i, j) = cos(xi, xj) (14)

where xi and xj are the attribute vectors of i and j.
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Fig. 5. Comparison against other node similarity measures. The horizontal
lines are the median (red line) and the best result (blue line) of our method with
the SMM approach (Figure 4). The best result is the bigger on the modularity
graphics and the smaller on the ∆–measure graphics. For the Artificial Dataset
the median and best are the same in each metric of validation.

Figure 5 shows the result of using these measures to
compare nodes and assign weight to edges. The horizontal
bars correspond to the proposed approach (matrix factorization
+ cosine of probability vectors) best results (red) and best
median (blue) in the SMM. We also evaluate all the measures
with MWM to show that our method with SMM also performs
better than other measures with MWM. Our measure outper-
formed or was similar to the best results presented by other
metrics, in all cases and datasets.



C. Comparison Against other Simplification Techniques

We conclude the tests with a set of comparisons against
existing network simplification methods. More specifically, we
compare our approach against the simplification techniques
proposed by Newman [14] and Chan et al. [15].

The comparisons use the quality metrics described in
Section IV, also employed by Newman [14] and Chan et
al. [15], where the proposed methods were optimized for their
respective metrics. We are using them to assess the three
methods, leading to fair comparison.

Results obtained from the comparisons are summarized in
Figure 6, where each row corresponds to a quality metric and
each column to a dataset. Since our approach uses NMF with
a random initial condition, we ran each configuration 20 times,
assembling quality measure results in the box plots depicted
in the figure. Each column in Figure 6 is divided into four
color strips, one for each factorization method. Each color bar
contains two box plots, which corresponds to the proposed
SMM scheme without (left in each color strip) and with (right
in each color strip) the edge weight filtering mechanism. The
brownish color strips (rightmost color strip in each column)
correspond to the results of the traditional NMF clustering;
clusters of nodes are computed directly from the factorized
matrices in a single step. Since the methods by Newman [14]
and Chan et al. [15] are deterministic, their quality measures
are shown as horizontal lines in Figure 6.

For the Artificial dataset, composed of nodes distributed in
six classes, the simplification was accomplished until six meta
nodes remain in the coarser level. Similarly, the other methods
were configured to generate six clusters in the final represen-
tation. Our approach was superior to Newman’s method in
all metrics, with the best results reached by HGNMF. Chan’s
method presented a tendency to obtain better results in this
dataset, although, considering the median behavior of our
approach, both perform quite similarly.

Regarding the other comparisons, varying the metrics and
datasets, the HGNMF version of our approach outperformed
Newman’s method in 19 out of 20 comparisons. Considering
the performance of our approach regardless of the factorization
and filtering mechanism, we obtained better results in all
datasets when compared to Newman’s method. The HGMNF
variant of our approach outperformed Chan’s method in 11
out of 20 comparison. Considering all possible factorizations,
our approach was superior in 16 out of 20 comparisons.

Generally speaking, the HSNMF variation has better perfor-
mance when the modularity metric is used, while the HGNMF
tends to be superior according to the other metrics. Comparing
the HNMF, HGNMF, and HSNMF against their traditional
counterpart, i.e., NMF, GNMF, and SNMF, we clearly show
that the hierarchical variants presented better results in all
the cases, except for the College Football dataset, where the
traditional non-negative factorization performed slightly better.

VI. DISCUSSION AND LIMITATIONS

The proposed methodology obtained good results in most
of the experiments and evaluations considered, showing our

choices as to factorization procedure, edge weight assignment,
graph matching, and merging of attributes worked in unison.

Our methodology outperformed the methods of New-
man [14] and Chan et al. [15] in most cases, even though
those two methods have been conceived to optimize some of
the metrics we used in the comparisons.

A limitation of our method occurs when the network has the
topology of a star graph. In this configuration, our approach
can only collapse one edge at a time.

VII. CONCLUSION

We presented a new method to create a hierarchical clus-
tering on a network with multivariate information on the
nodes. With the NMF resulting matrices, we can group the
network and classify the nodes on each pass of the hierarchy
using the topics determined by the NMF. To choose the
nodes that we group together, we created a similarity measure
based on the results of the NMF that measures how much
two nodes should be on the same cluster. To validate our
similarity measure based on NMF, we compared our results
with others similarity measures based on topology and based
on the multivariate information. To validate our method, we
compared our hierarchical clustering with the traditional NMF
clustering and with other classical network clustering methods.
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