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Abstract—A digital image may contain objects that can be
made up of multiple regions concerning different material prop-
erties, physical or chemical attributes. Thus, segmented simplicial
meshes with non-manifold boundaries are generated to represent
the partitioned regions. We focus on repairing non-manifold
boundaries. Current methods modify the topology, geometry or
both, using their own data structures. The problem of modifying
the topology is that if the mesh has to be post-processed,
for instance with the Delaunay refinement, the mesh becomes
unsuitable. In this paper, we propose alternatives to repair non-
manifold boundaries of segmented simplicial meshes, among
them is the Delaunay based one, we use common data structures
and only consider 2 and 3 dimensions. We developed algorithms
for this purpose, composed of the following tools: relabeling,
point insertion and simulated annealing. These algorithms are
applied depending on the targeted contexts, if we want to speed
the process, keep as possible the original segmented mesh or keep
the number of elements in the mesh.

I. INTRODUCTION

Simplicial mesh generation from images can be divided in
two approaches. (a) Meshes for representation, they aim to
minimize the approximation error between the original image
and the image represented by the mesh, for this reason the
elements of the mesh usually do not meet quality criteria
[1], [2]. (b) Meshes for numerical simulations, they consider
certain quality criteria like number, size and shape of their
elements [3], [4].

Meshes for representation frequently are generated directly
from images, then if we consider a triangle or tetrahedron as
a superpixel or supervoxel respectively [5], the mesh can be
segmented [6], improved and became suitable for numerical
simulation [7]–[9], however, it arises peaks that yield singu-
larities, namely non-manifold boundaries.

The manifoldness quality is mandatory or very important
for some applications, for instance, in surgical simulations
[10], it has been explored in the field of Mesh Repairing as
a consequence. Moreover, this quality is required to perform
computations of smoothness on a surface, also continuous
differential operators like normal and curvature are extended to
the discrete case, almost the majority of geometric algorithms
are not suitable if the mesh does not have this quality [11].

The significant contribution is the introduction of repairing
algorithms for this atypical problem based on three tools:
relabeling, point insertion and Simulated Annealing.

II. RELATED WORK

In the field of irregular or unstructured meshes, triangular
surface meshes are research objects [12]. In [13], it is proposed

a method to convert a mesh with singularities into a man-
ifold; it consists of identifying singular edges, those having
2k incident triangles, with k as constant, they are divided
into k manifold edges, however the mesh may still contains
singular vertices, they therefore are duplicated, the strategy is
to produce the minimum number of duplications. Furthermore,
[14] proposes a strategy based on two important operations:
cutting and stitching, the former consists of cutting the surface
around a singular edge, the result is a mesh with empty
spaces, the latter operation involves joining two adjacent open
edges while guaranteeing the manifoldness. Later, [15] uses
the cutting and stitching, but the stitch operation is guided by
the Simulated Annealing technique, this alternative helps to
rebuild the mesh with certain guarantees on the shape.

Researches in high-dimensional meshes have been pro-
posed, in [16], simplicial complex with non-manifold objects
is decomposed into quasi-manifold (weaker condition than
manifold) components, for this purpose it uses its own data
structure and split the non-manifold simplices.

For tetrahedral meshes, [10] introduces two conversion
algorithms that are used according to their purpose: (a) Modify
only the connectivity, through vertex duplications. (b) Modify
the connectivity and geometry, it erodes small amounts of
material around the singular object.

Finally, we present research based on tetrahedron label-
ing. One of the process in [11] uses a region growing of
tetrahedrons labeled as matter or freespace, it proposes faster
methods to detect a singular vertex based on a graph and add
a tetrahedron preserving the manifold quality [17]. Similarly,
in [18], tetrahedrons of a Constrained Delaunay Tessellation
(CDT) are labeled as inside or outside using the minimization
of a function depending on the winding number until a
manifold mesh is obtained if it is possible.

III. PROPOSAL

The input mesh M is a list of vertices S ∈ Rd and a list of
cells C, each cell has d+1 facets (facets and cells correspond
to triangles and tetrahedrons in R3 and edges and triangles
in R2). Moreover, M =

⋃n−1
i=0 m

i, where n is the number of
submeshes, a submesh is a set of cells that do not necessarily
form a closed space, it can be composed by several closed
spaces, but is only made up of a single material. We can
represent the submesh in M as the function i : σ ∈ M → N
that maps the σ cell to the material label, where N is the set
of natural numbers with 0 depicting the background



The boundary ∂M is the list of facets which are included
in exactly one cell of M . We introduce a practical use in
triangulation data structure [19], the infinite vertex v∞ (v∞ /∈
Rd, Figure 1) such that we define an infinite cell connecting
a ∂M facet and v∞, the set of infinite cells compound an
abstract submesh m−1, −1 is its material label, we denote the
abstract mesh M−1 = M ∪ m−1, this will help us later for
singular vertex detection.

Boundary vertex

Boundary cells

Boundary facet

Singular vertex

Infinite vertex

Infinite cell

Corner vertex

Fig. 1. Usual terms.

A topological space is (d − 1)-manifold if every point in
the space has a neighborhood homeomorphic to a (d − 1)-
ball (1-ball is an edge and 2-ball is a disk). In the discrete
case, a polygonal curve is 1-manifold if all its vertices are
regular, a vertex is regular if it belongs to at most two edges.
In the same way, a triangle surface mesh is 2-manifold if all
its vertices are regular, a vertex is regular if its opposite edges
in the triangles form a simple polygon [11]. If a vertex is not
regular, it is singular.

The boundaries of submeshes are denoted by ∂mi, they
are not assumed to be (d − 1)-manifold, to fix them we use
the relabeling (change of material label) with deterministic
criteria and point insertion, but both do not assure repair all
the singularities. Due to this reason, the simulated annealing
technique is needed, it uses relabeling with probabilistic crite-
ria and creating filling cells in the worst case. Our goal is that
all boundaries ∂mi would be (d− 1)-manifold without filling
cells in M .

A. Singular Vertex Identification

Let L be a set of cells, then Lv is all the cells in L that
have v as vertex. gv is the adjacency graph of M−1v (includes
infinite cells), to find singular vertices we define the graph Gv
similar to [17], it is obtained from gv by removing the graph
edges between a cell in ma

v and other cell of mb
v , where a 6= b,

in Figure 2b we see the graph Gv when d = 2 and d = 3.
A component is the set of cells that depict a subgraph of

Gv , mi
v can have many components, we classify mi

v according
its number of components: .
• Triple-over-component, mi

v has three or more compo-
nents. v is a singular in ∂mi.

• Double-component, mi
v has two components. v is singu-

lar in ∂mi.
• Single-component, mi

v has one component. If d = 2, v is
always regular in ∂mi, on the other hand, when d = 3, v
is regular in ∂mi if the set of cells M−1v \mi

v has a path
in gv , otherwise v is singular ∂mi.

v v v v v
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Fig. 2. A multi-material vertex in 2 and 3 dimension (a) and its Gv graph
(b). A triple-over-component (c), double component (d) and single-component
(e).

Gv also works for corner vertices, those that belong to
an infinite cell (Figure 1). In the 3D case, finding singular
vertices, involve finding singular edges. In both dimensions, v
can be singular with respect to several submeshes, for this we
save the material labels of the submeshes where v is singular
in a vector P , decreasingly ordered according to the number
of components.

B. Relabeling

To repair a singular vertex v in ∂mi, we relabel cells around
v in such a way mi

v becomes single-component and v regular.
For this we walk the vector P and perform the following:

1) Component Ordering: First, we get the label i of P . mi
vk

is a component, where k = 1, 2, .., q and q is the number of
components, for instance in Figure 3a, q = 2. We save each
component mi

vk in a vector named Q, increasingly ordered
according the criterion described by the equation 1.

c1 = E(mi
vk) (1)

E returns the greatest distance of an edge in mi
vk.

2) Erosion or Dilation Criterion: To decide if mi
v should be

eroded or dilated we apply a criterion to each component mi
vk,

we compute Rv (the signed discrete curvature in a planar curve
[20] and signed mean curvature in triangle surface mesh [21])
of v with respect to ∂mi

vk, moreover, we compute sumR =∑
Rw where w is a regular vertex in ∂mi and fits w ∈ mi

vk

and w 6= v.

c2 =

{
1 if (Rv)(sumR) ≥ 0

0 otherwise
(2)

mi
v is dilated if at least half of the elements, b(q + 1)/2c, in

Q meet c2 = 1, otherwise it is eroded. The Figure 3d presents
a vertex with two components, where c2 = 1 for mi

v1, in this
case we dilate mi

v; conversely, mi
v is eroded in Figure 3b,

where c2 = 0 for mi
v1 and mi

v2. If mi
v is a single-component

in a 3D mesh, we always dilate. We explain each operation
below.
• Erosion. We iterate Q to relabel each component until

the next-to-last, namely, mi
v becomes single-component.

To get the new material label, we measure the boundary
facets (length or area) in mi

vk and identify the material
label with which mi

vk shares greater neighborhood or



there exists greatest intersection. Finally, we update P .
Notice when d = 3 a single-component does not mean v
is regular in ∂mi.

• Dilation. We take two different components k and l from
Q and select a point y in mi

vk (for instance, the centroid
of a boundary facet) and other z in mi

vl, then, we figure
out a path of adjacent cells through the visibility walk
[22] between y and z, Figure 3e. We relabel cells in
the path with i and update P , if there still exist more
than one component, we repeat the process until mi

v

becomes single-component. For 3D special case, if mi
v is

single-component, but v is singular in ∂mi, it is dilated
by eroding the set of cells Mv\mi

v using i as the new
material label.

Due to relabeling can generate new singular vertices we mark
all relabeled cells, so they will not be relabeled again, in order
to avoid loops, thus relabeling may not work for all cases, other
than scattered singular vertices.
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Fig. 3. A singular vertex v with its components (a), erosion case (b) repaired
with relabeling using c1 criterion (c). Below, we show the dilation process
(e-g).

C. Point Insertion

This tool is applied on a Delaunay based simplicial mesh
that meets the following conditions, the cells in M are
included in the convex hull of S, and the circumball (d-ball
whose boundary passes through every vertex of cell) of each
cell does not contain a vertex in its interior.

We select one component mi
vk, in order to erode mi

v through
the insertion of w vertex. At the end of this process, the cells
of mi

vk are destroyed such that new cells with w as vertex
are created, suppose for the 2D case, if abv is a triangle in
mi
vk with vertices a, b and v; after inserting w it creates a

triangle abw of the same material, the same happens with all
triangles in mi

vk. Moreover, after inserting, the cells of other
components mi

vl, where k 6= l, and the cells outside Mv are
not affected by the insertion. We try to find a position in space
to insert a point w and fit the previous conditions, then, we
do the following.
• Circumball intersection. We seek that the cells in mi

vk

would be destroyed, so the point to be inserted w should

be inside the circumballs of all cells in mi
vk, namely, w

should be in the circumball intersection, if it exists.
• Cell preservation. In order to not affect cells of other

components mi
vl nor the cells outside Mv , we verify that

w is not in the interior of their circumballs. If w fit this
last condition, then we can erode mi

vk.
• Cell restoration. After destroying cells whose circum-

balls were affected by w, we have a cavity, Figure (4c),
due to M is Delaunay, we reconstruct the cavity as
follows, in the 2D case there exist a new edge aw for
each vertex a of the polygonal cavity, in the 3D case,
there exist a new triangle abw for each edge ab in the
polyhedral cavity [23], [24]; this allows us to recover the
cells of mi

vk where v is replaced by w as we show in the
Figure 4.
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Fig. 4. Point Insertion, from left to right: Circumball intersection (red
circumcircles), cells preservation (blue circumcircles) and cell restoration (c-
d).

If d = 2, we apply the point insertion when mi
v is double-

component, Figure 5, the special case in Figure 5h is obtained
by eroding the path of adjacent cells (See Section III-B2)
through the point insertion.
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Fig. 5. Alternatives to repair a singular vertex v ∈ R2 in ∂mi, when mi
v is

a triple-over-component (top) and double-component (bottom).

If d = 3, we use the point insertion when mi
v is

double-component or single-component, Figure 6. A single-
component is dilated by eroding one of the components in
Mv\mi

v through point insertion, Figure 6j.
The point insertion tool is not always applicable, so we

propose the simulated annealing as an additional tool.

D. Simulated Annealing

Is a computational stochastic technique of approximation
to the global minimum of a given function ε : Z → R which
maps a valid state zt ∈ Z to the set of real numbers. To achieve
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Fig. 6. Alternatives to ensure repair of a singular vertex v ∈ R3 in ∂mi,
when mi

v is a triple-over-component (top), double-component (middle) and
single-component (bottom).

the optimization, it is necessary define a set of neighboring
states Zt for each zt.

The process begins with an arbitrary state zt, next, we
randomly select one of its neighboring states zu ∈ Zt, to
know if zu replace the current state, it is required to make an
stochastic experiment between the probability

p(zt, zu) = e−
ε(zu)−ε(zt)

T (3)

(where the temperature T > 0) and a random number; if
ε(zu) < ε(zt), then p(zt, zu) is greater than 1, zu replace the
current state without making the experiment, the probability
of accepting lower states decreases as slowly as T decreases,
if T tends to 0 then limT→0 e

− ε(zu)−ε(zt)
T = 0, then there is

no possibility of accepting lower states [15], [25].
Let M be the input mesh with singularities. We define the

filling cell as a triangle or tetrahedron that allows us to repair
the singular vertices in ∂mi, where 0 ≤ i ≤ n − 1, they
compound the filling submesh mn where n is its material
label, if σi is a cell in mi it may become a filling cell σn
through label change, our goal is that all ∂mi would be (d−1)-
manifold, although it can have filling cells.

1) The set of states: The set of states Z are all the valid
segmented meshes Mt, we say that Mt is valid if all ∂mi

are (d − 1)-manifold and it may contain filling cells in the
worst case, however ∂mn is not necessarily (d−1)-manifold.
The input mesh is not a valid state, for it to be, it has to be
preprocessed by the Random Repairing procedure, explained
below, also we recover the original label of cells, it will be
useful later.

2) The sets of neighboring states: The sets of neighboring
states Zt of a valid mesh Mt ∈ Z, are all the segmented
meshes that can be derived of Mt, after performing the
following steps:
• Random label assignment. We define the probability x1

which if applied to every filling cell σn, if a random
number is lower than x1, then σn takes its original

label, otherwise the material label with which shares the
greatest neighborhood is assigned to σn. At the end of
this process we recover the singular vertices, if exist.

• Random repairing. For each singular vertex we verify
if it can be repaired without generating new singularities,
for this, if a random number is lower than x2 we erode,
otherwise we dilate, for the 3D case of single-component
we erode it by dilating the neighbor components. If this
is not possible, we fix it creating filling cells such that Mt

is valid, it consists of the same procedure than erosion,
Figure 7. Creating filling cells occasionally generates new
singularities, if it happens we continue creating filling
cells until we get a valid state.

v
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v

(b)

v
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Fig. 7. Repairing with filling cells (blue). For 2D case, we repair a triple-
over-component and double component in the same way as erosion (a). For
the 3D case, we repair a triple-over-component and double component in the
same way as erosion (b), but we repair a single-component by dilating its
neighbor components with filling cells (c).

3) The cost function: Our goal is generate manifold bound-
aries without filling cells, then our cost function is defined as:

ε(Mt) = # filling cells in mn;mn ∈Mt (4)

Usually, in simulated annealing we do not know if minimum
global is achieved in a given step. For our approach, we know
that the minimum global of ε is 0.

4) A single simulated annealing Step: A step is performed
in the following way, let Mt be the current valid mesh. First
a neighbor mesh Mu ∈ Zt is chosen randomly. Then, the
stochastic experiment is performed against the probability:

p(Mt,Mu) = e−
ε(Mu)−ε(Mt)

T (5)

If the experiment is successful, the transition from Mt to Mu

is accepted and Mu replace the current mesh, otherwise we
keep Mt.

5) The complete simulated annealing process: Consists of
s phases and each one has t steps. The phases differ between
them by the drop in the temperature T . Let 0 be the first phase
and s − 1 the last phase. Then, the temperature Tk of the k
phase is given by:

Tk = T0(tf
k) (6)

Where tf is the factor which controls how fast the temperature
will change in each phase. The input mesh has a number
of singularities, in our experiments we take t = number of
singularities of the input mesh, also T0 = 1 and tf = 0.9,
for all experiments in 2D and 3D meshes we worked with
x2 = x1 = 0.8, and the number of phases is s = 100, however,
it ends before the phase 3 for all situations.



E. Repairing Algorithms

The relabeling tool imply a lower computational cost and
does not change the geometry nor the topology of the mesh,
but there no exists a guarantee that it fixes all the singularities.
Point insertion is much more efficient than the relabeling
because it certainly does not affect cells outside Mv , but it
involves a high computational effort. The simulated annealing
solves all the singularities by creating, in the worst case,
filling cells and probably distorting the partition more than
the previous tools. According to this description, we elaborate
three algorithms summarized in Figure 8, each algorithm has
its own qualities and are explained as follows.

1) Repairing 1 (REP1): It takes as priority the relabeling,
if it is not possible we apply the point insertion, lastly we take
all the remaining singular vertices that could not be repaired
for the simulated annealing process. This algorithm repair the
mesh with lower computational cost and try to not change the
original segmented mesh.

2) Repairing 2 (REP2): The main option is the point
insertion, if it is not possible we apply the relabeling and
finally the Simulate Annealing. It is appropriate if we want
to preserve the original segmented mesh as possible.

3) Repairing 3 (REP3): It only consists of the simulated
annealing and its main advantage is that it does not insert
points, namely, the number of cells in the mesh is preserved.

Simulated

Annealing

Point Insertion

Relabeling

Relabeling

Point Insertion

Simulated

Annealing

Simulated

Annealing

Repairing 1 (REP1) Repairing 2 (REP2) Repairing 3 (REP3)

Fig. 8. Repairing algorithms description.

IV. RESULTS

We discuss the different criteria, tools and algorithms to
repair singularities of segmented simplicial meshes when d =
2 or d = 3, we have two distinctive contexts when n = 2
and n > 2. We took the meshes from [8], whose distinctive
attribute is small cells near boundaries and larger cells in their
interior, also they are Delaunay. The algorithm implementation
was made in C++ [26] and using the CGAL library [27]. Our
timings were obtained on an Intel(R) Core(TM) i7 2.50GHz
processor with 12GB memory.

In order to evaluate different results we consider some
measures. We denote the output mesh as M ′ with its set of
vertices S′, also |S′| is the number of vertices in S′, then the
number of new vertices is |S′|− |S|. Furthermore, to measure
the similarity between the input and output meshes we select
the list of boundary facets from M ′ and M , next we compute
δ = dH/diag where dH is the RMS symmetric Hausdorff

distance, computed using [28] for d = 3 and adapted for
d = 2 (we can see some results in Figure 9), moreover
diag is the bounding box diagonal of the list of original
facets. δ is normally used to measure the similarity between
triangle surface meshes, for our work we complement it by
considering the modified space µ′ = µ(M)−µ(M∩M ′)

µ(M) , µ(M)

is the area/volume (for d = 2/3) of M and µ(M ∩M ′) is
the area/volume covered by cells of the same label and is
computed using [29], we express µ′ as a percentage and means
the percentage of modified space. δ and µ′ give us a hint about
the similarity between M and M ′.

A. 2D Results

The mesh Taurus shown in Figure 9 contains 2 submeshes,
5505 vertices, among which 30 are singular. We could repair
all the singularities using a single tool among relabeling, point
insertion and simulated annealing, it is because most of the
singular vertices are isolated and the components have few
cells, then we can insert a point with ease. In simulated
annealing we do not use the c2 criterion, thus, it visually
distorts the segmentation more than the other tools.

In Table I, we compare the tools applied in Taurus. The
point insertion tool is the only one who creates new vertices,
however in terms of noise, the point insertion has the upper
hand, because it modifies smaller area (µ′) and its boundary is
closer to the original boundary (δ) than the other results. On
the other hand, relabeling with c1 criterion modifies the area
lesser than the simulated annealing, for this model it took just
one step because of scattered singular vertices. If we consider
the time of execution, relabeling has the best score, in contrast
to point insertion, which has the worst result.

TABLE I
COMPARISON OF TOOLS APPLIED IN Taurus, FIGURE 9, IS A SEGMENTED

MESH WITH 2 SUBMESHES AND 30 SINGULAR VERTICES.

Tool |S′| − |S| µ′ (%) δ (.10−5) Time (s)

Relabeling with c1 0 0.120 7.562 0.006
Point insertion 30 0.046 3.170 0.124

simulated annealing 0 0.118 12.328 0.008

Tweety is showed in Figures 10 and 11, it is a mesh with
5 regions and 3125 vertices, among which 500 are singular,
namely a little more than the sixth part of the vertices are
singular, in this model we can evaluate the effectiveness of our
algorithms for 2D meshes, due to dense areas with singular
vertices, REP1 had to insert points in contrast to relabeling
Taurus. REP2 has worked for the majority of cases, thus the
number of new vertices is almost the same as the singularities
as we can see in Table II. This time REP3 has more steps than
the previous case as we can see in Figure 11a.

The Table II shows some details of the repairing algorithms
for 2D meshes with 2 or more submeshes, the set of meshes
are Taurus, Tweety, Titicaca Lake and Thundercats, all of
them were repaired successfully without creating filling cells.
SA represents the number of singular vertices repaired by
simulating Annealing and #sv is the number of singular
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Fig. 9. Taurus: Singular vertices (a) are repaired applying the relabeling with c1 (b), next, applying the point insertion (d) and finally, the simulated annealing
(e). For all the cases we use c2, except the last case. We also show the Hausdorff distance from the output set of boundary facets to the original set of
boundary facets, it is normalized by the bounding box diagonal.

(a) (b) (c) (d)

Fig. 10. Tweety: It contains 5 submeshes and 500 singular vertices (a), they
are successfully repaired by REP1 (b), REP2 (c) and REP3 (d).

(a) (b) (c)

Fig. 11. REP3 iterations in Tweety. The first (a), forth (b) and the eighth step
(c) which is the last.

vertices in the input mesh. Better results are highlighted in
bold.

B. 3D Results
Hyena has 2 submeshes, 93808 vertices and 2139 singular

vertices. In Figure 12 we see the repairing algorithms, they
have the same qualities than their 2D version, but relabeling
or point insertion may not repair all the singularities by
themselves, each one requires at least the simulated annealing.
REP3 works well as we can appreciate in Figure 13. Finally,
as the 2D case, Figure 14 shows the Hausdorff distance from
the output boundaries to the original boundaries normalized
by diag.

(a) (b) (c) (d)

Fig. 12. Hyena: It has 2 submeshes and contains 2139 singular vertices (a),
we show the three-dimensional version of REP1 (b), REP2 (c) and REP3 (d).

(a) (b) (c)

Fig. 13. REP3 iterations in Hyena. The steps number 1 (a), 5 (b) and 29 (c).

Chest has 4 submeshes with 44952 vertices among which
4903 are singular. The number of singular vertices is dense in



TABLE II
REPAIRING ALGORITHMS FOR 2D MESHES.

Model n |S| #sv Algorithm
Details of the algorithm

SA |S′| |S′| − |S| µ′ (%) δ (10−5) Time (s)

REP1 0 5504 0 0.130 7.562 0.006

Taurus 2 5504 30 REP2 0 5534 30 0.056 3.170 0.124

REP3 30 5504 0 0.152 12.327 0.008

REP1 0 4364 0 0.002 0.159 0.005

Titicaca Lake 2 4364 17 REP2 0 4381 17 0.001 0.073 0.082

REP3 17 4364 0 0.010 0.733 0.007

REP1 1 3140 16 2.054 38.490 0.139

Tweety 5 3124 500 REP2 0 3527 403 1.452 24.682 2.111

REP3 500 3124 0 2.440 78.417 0.073

REP1 0 2815 0 0.325 44.442 0.006

Thundercats 2 2815 36 REP2 0 2851 36 0.255 43.330 0.291

REP3 36 2815 0 0.475 266.551 3.253
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Fig. 14. Hyena: Visualization of Hausdorff distance from the repaired meshes REP1 (b), REP2 (c) and REP3 (d) to the original mesh (a) normalized by the
bounding box diagonal.

some regions of the boundaries and some of them belong to at
most 4 submeshes, this was an important model to evaluate our
repairing algorithms, singularities were repaired successfully,
Figure 15.

(a) (b) (c) (d)

Fig. 15. Chest: It has 5025 singular vertices which are distributed in the
boundaries of 4 submeshes (a). We can appreciate how singular vertices with
three materials in its star are repaired with REP1 (b), REP2 (c) and REP3
(d).

The Table III shows a comparison of the repairing algo-
rithms in 3D meshes, the set of meshes are hyena, Head,
Chest, Knee and Carp, all the singularities in these meshes
were repaired successfully without creating filling cells. The
nomenclature is the same as the previous table.

(a) (b) (c)

Fig. 16. REP3 steps in Chest: it is required 10 step to repair all the
singularities, we show the number 1 (a), 4 (b) and the final (c).

V. CONCLUSION

The repairing algorithms worked for all the meshes from
[8] using almost the same approach for d = 2 and d = 3.
We proposed three tools: the relabeling, point insertion and
simulated annealing, which were combined to produce three
algorithms REP1, REP2 and REP3. Each algorithm has its own
qualities and can be applied to different contexts. REP1 has
lower time of execution and does not produce a lot of noise.
REP2 keeps the original segmented mesh more than the others
algorithm, but imply a high computational cost. Finally, REP3
does not insert any point in the mesh, but it highly distorts the
segmented mesh.

The algorithms can also work for other simplicial meshes,
beside the Delaunay one, we just do not have to consider point
insertion, but they have not been tested for other meshes.



TABLE III
REPAIRING ALGORITHMS FOR 3D MESHES.

Model n |S| #sv Algorithm
Details of the algorithm

SA |S′| |S| − |S′| µ′ (%) δ (.10−3) Time (s)

REP1 2 93953 145 0.041 0.342 7.468
Hyena 2 93808 2139 REP2 4 94822 1014 0.023 0.130 15.045

REP3 2139 93808 0 0.053 1.183 18.884

REP1 2 48892 290 0.119 0.651 13.179
Head 3 48602 4903 REP2 8 50729 2127 0.074 0.344 18.996

REP3 4903 48602 0 0.155 1.053 21.853

REP1 9 46161 1209 0.181 0.950 27.219
Chest 4 44952 5025 REP2 14 47770 2818 0.141 0.553 29.943

REP3 5025 44952 0 0.790 2.571 37.210

REP1 19 44110 291 0.205 0.779 21.451
Knee 8 43819 5162 REP2 10 46038 2219 0.138 0.371 28.689

REP3 5162 43819 0 0.777 4.209 51.102

REP1 10 32751 917 0.169 0.732 18.921
Carp 3 31834 3655 REP2 12 33871 2037 0.109 0.374 26.296

REP3 3655 31834 0 0.253 3.263 32.282
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