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Abstract—The Image Foresting Transform (IFT) is a general
framework to develop image processing tools for a variety of tasks
such as image segmentation, boundary tracking, morphological
filters, pixel clustering, among others. The Differential Image
Foresting Transform (DIFT) comes in handy for scenarios where
multiple iterations of IFT over the same image with small
modifications on the input parameters are expected, reducing
the processing complexity from linear to sublinear with respect
to the number of pixels. In this paper, we propose an enhanced
variant of the DIFT algorithm that avoids inconsistencies, when
the connectivity function is not monotonically incremental. Our
algorithm works with the classical and non-classifical connectivity
functions based on root position. Experiments were conducted on
a superpixel task, showing a significant improvement to a state-
of-the-art method.

I. INTRODUCTION

The Image Foresting Transform (IFT) algorithm [1] is a
framework to develop image processing operators that has
been used in a number of successful applications including
morphological filters [2], boundary tracking [3] [4], region
segmentation [5] and classification [6]. The initial usage of the
IFT algorithm was restricted to the so called smooth connectiv-
ity functions [1], since IFT with this class of connectivity func-
tions was guaranteed to generate a forest (i.e., a graph with no
cycles) of paths with optimum costs. Afterwards, non-smooth
connectivity functions were proposed [7]. Even though the IFT
with these functions does not always output an optimum-path
forest, its resulting spanning forest still presents interesting
properties from the perspective of the desired applications,
such as edge persecution [8] and superpixel segmentation [9].
Indeed, in some cases, the optimal results have shown to be
optimum according to other criteria, such as a cut measure in
the image graph [5] [10] [11].

The proposed IFT algorithm runs in linear time with the
number of pixels, when the priority queue is implemented by
bucket sorting, or linearithmic time for a heap-based imple-
mentation. In applications that require user interaction, such
as seed-based interactive image segmentation, the Differential
Image Foresting Transform (DIFT) [12] algorithm allows to
modify segmentation (i.e., reconstruct the optimum-path for-
est), by changing the seed set along iterations, without starting

over the process. The DIFT algorithm uses partial results from
previous iterations and makes changes only over the required
regions of the image, presenting much higher performance
than the IFT, with sublinear-time execution. However, the
current DIFT algorithm can generate a series of anomalies,
such as the presence of cycles in the output graph, when the
connectivity function is not monotonically incremental1.

This paper presents a novel differential algorithm, named
DIFTmod, which maintains the same time complexity order
of the original DIFT and handles a family of non-smooth
connectivity functions, refered to as root-based path-cost
functions. We also demonstrate the potential of DIFTmod in
the context of superpixel segmentation, improving a state-of-
the-art method in this area.

The paper is organized as follows: In Section II, we present
the IFT and DIFT algorithms. Section III shows the anomalies
of the original DIFT algorithm as associated with root-based
path functions. The proposed algorithm, called DIFTmod, is
presented in Section IV. In Section V, we show an application
of the proposed modified DIFT for superpixel segmentation.
We discuss the experiments and results in Section VI. Finally,
we state the conclusions in Section VII.

II. TECHNICAL BACKGROUND

A. Image Foresting Transform (IFT)

An image can be interpreted as a weighted graph G =
〈I,A〉, whose nodes are the image pixels in its image domain
I ⊂ Z2, and whose arcs are the ordered pixel pairs 〈s, t〉 ∈ A
(e.g., 4-neighborhood or 8-neighborhood).

A path π = 〈t1, . . . , tn〉 is a sequence of adjacent pixels
(i.e., 〈ti, ti+1〉 ∈ A, i = 1, 2, . . . , n − 1) with no repeated
vertices. The notation πt = 〈t1 = r, . . . , tn = t〉 indicates a
path with terminus at a pixel t and the notation πr t indicates
a path from a pixel r (origin/root) to a pixel t (destination
node). A path is also said trivial, when πt = 〈t〉. A path
πt = πs · 〈s, t〉 indicates the extension of a path πs by an arc
〈s, t〉. Π(G) indicates the set of all paths in a graph G.

1A monotonically incremental path cost function is a particular case of
smooth function [1].



A label map is a function L : I → {0, ..., l} where l− 1 is
the number of classes/clusters in the image.

A predecessor map is a function P : I → I ∪ {nil} that
assigns to each pixel t in I either some other adjacent pixel
or a distinctive marker nil /∈ I — in which case t is said to
be a root of the map. A spanning forest is a predecessor map
which contains no cycles. For any pixel t ∈ I, a spanning
forest P defines a path πP

t recursively as 〈t〉 if P (t) = nil,
and πP

s · 〈s, t〉 if P (t) = s 6= nil.
A connectivity function f : Π(G) → V computes a value

f(πt) for any path πt, in some totally ordered set V of cost
values. A path πt is optimum if f(πt) ≤ f(τt) for any other
path τt in G. For applicable connectivity function f , the image
foresting transform (IFT) takes an image graph G = 〈I,A〉,
and returns an optimum-path forest P — i.e., a spanning forest
where all paths πP

t for t ∈ I are optimum. The IFT is a
generalization of Dijkstra’s algorithm to smooth connectivity
functions [1]. As shown by Frieze [13], the original proof
of Dijkstras algorithm is easily generalized to monotonic-
incremental (MI) connectivity functions, which conforms to
f(πs · 〈s, t〉) = f(πs)�〈s, t〉, where f(〈t〉) is given by an ar-
bitrary handicap cost, and � : V×A → V is a binary operation
that satisfies the conditions: x′ ≥ x⇒ x′ � 〈s, t〉 ≥ x� 〈s, t〉
and x� 〈s, t〉 ≥ x, for any x, x′ ∈ V and any 〈s, t〉 ∈ A.

Figure 1 presents the IFT algorithm. It computes a path-cost
map V , which converges to Vopt for smooth functions [1].
It is also optimized for handling infinite costs, by storing in
the priority queue Q only the nodes with finite-cost path,
assuming that Vopt(t) < +∞ for all t ∈ I. In the case of
non-monotonically incremental functions, the state test t /∈ K
(Line 10) is required to ensure that each pixel will be removed
from Q (Line 7) just once during execution of the algorithm.
In the case of MI functions, this state test is considered only
a performance improvement [1] to avoid the computation of
the path-cost in Line 11.

B. Differential Image Foresting Transform (DIFT)

In interactive segmentation based on markers, the user
can add markers to and/or remove markers from previous
interactions in order to improve the results. In this context, the
DIFT enables the computation of a differential segmentation
that aims at fixing wrongly segmented parts from previous
iterations. For that purpose, the DIFT algorithm makes use of
a root map as a function R : I → {r0, . . . , rm} that assigns
some root marker ri, i ∈ {0, 1, 2, ...,m} to each pixel t in I,
such that πP

t = 〈ri, . . . , t〉. At each iteration, the DIFT applies
the following rules:

- Addition of markers: Suppose the insertion of a new
marker r′ during an iteration, such that πr′ s becomes
an optimum path to a pixel s (possibly s = r′). If the new
path through s extended by the arc 〈s, t〉 offers a lower
cost f(πr′ s ·〈s, t〉) to t than its current one in V (t), then
the path πP

t will be updated as πr′ s · 〈s, t〉 and t will be
inserted in Q. However, in the case that the offered cost
f(πr′ s · 〈s, t〉) is the same as its current value in V (t)
and the predecessor P (t) equals s, the segmentation label

Input: Image graph G = 〈I,A〉,and function f .
Output: Optimum-path forest P and the path-cost map V .
Auxiliary: Priority queue Q, variable tmp, and set K.

1. K ← ∅
2. for each t ∈ I do
3. Set P (t)← nil, V (t)← f(〈t〉)
4. if V (t) 6= +∞ then
5. insert t in Q
6. while Q 6= ∅ do
7. Remove s from Q such that V (s) is minimum.
8. Add s to K.
9. for each pixel t such that 〈s, t〉 ∈ A do

10. if t /∈ K then
11. Compute tmp← f(πP

s · 〈s, t〉).
12. if tmp < V (t) then
13. Set P (t)← s, V (t)← tmp.
14. Set L(t)← L(s).
15. if t /∈ Q then
16. insert t in Q.

Fig. 1. Original IFT Algorithm proposed in [1]

L(t) will not be updated and t will not be reinserted in
Q as required. Hence, without the test of the predecessor
P (t) = s (Line 16 of DIFT algorithm in Figure 2), the
path suffix of πr′ t will not be updated, which might
cause an inconsistency in the label map L(P (t)) 6= L(t).
This inconsistency is described in details in Section II-B1.

- Removal of marker: In the case of a removed root r, the
entire tree of the marker/seed r must be removed, creating
a set of frontier pixels F = {t : 〈s, t〉 ∈ A ∧ r = R(s) ∧
R(t) 6= R(s)}. These frontier pixels will be inserted in
the priority queue to start a new dispute for the conquest
of the removed area. Figure 3 shows how the procedure
is executed for marker removal.

- Simultaneous addition and removal of markers: In this
case, the removal is executed first, defining the frontier
pixels, the new markers are initialized, removing from F
all new markers that eventually also belong to it.

The original DIFT algorithm does not have the state test t /∈ K,
because it was developed only for MI functions. Given that we
are interested in functions that are not MI, we are presenting
DIFT with the state test, referred to as DIFT∗ (Figure 2).
However, this generates some inconsistencies:

1) Problems with the state test: DIFT∗ is able to process
only the necessary pixels in each interaction. Still, under
certain circumstances it generates inconsistencies between the
map of labels and the map of predecessors. An inconsistent
label map contains a pixel s such that L(R(s)) 6= L(s), that
is, the label of s is distinct from the label of its root.

Figure 5 presents an example in which an inconsistency in
the map of labels L happens after an execution of the DIFT∗.
It uses the cost function fmax in Equation 1, where δ(s, t) is
the weight on arc 〈s, t〉 and H(s) a handicap value.

fmax(〈s〉) = H(s)
fmax(πs · 〈s, t〉) = max{fmax(πs), δ(s, t)} (1)



Input: Image graph G = 〈I,A〉, maps P,R,L, V , labeling
function λ, sets of new markers S ′ and remove pixels MR.

Output: Maps P, R, L and V .
Auxiliary: Priority queue Q, sets frontier F and states K.

1. Q ← ∅, K ← ∅
2. V, P, F ← DIFT-TreeRemoval (V,L, P,R,MR,A)
3. F ← F \ S ′
4. for each s ∈ S ′ do
5. if f(〈s〉) < V (s) then
6. V (s)← f(〈s〉), L(s)← λ(s), P (s)← nil
7. R(s)← s and insert s in Q whith cost V (s)
8. for each s ∈ F do
9. Insert s into Q with cost V (s)

10. while Q 6= ∅ do
11. Remove s from Q such that V (s) is minimum.
12. Add s to K
13. for each t such that 〈s, t〉 ∈ A do
14. if t /∈ K then
15. Compute tmp ← f(πP

s · 〈s, t〉)
16. if tmp < V (t) or P (t) = s then
17. P (t)← s, V (t)← tmp
18. L(t)← L(s), R(t)← R(s)
19. if t /∈ Q then
20. Insert t in Q

Fig. 2. DIFT∗ Algorithm
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Fig. 3. Representation of the procedure adopted by DIFT for removal of a
root. a) Result of initial interaction with the user with three root markers. b)
Removal of the root r3 and creation of the frontier by DIFT-TreeRemoval
Procedure (see Figure 4). c) Result of path propagation from the frontier
pixels. Note that only a subset of the graph has to be modified.

Given the initial image graph in Figure 5(a), an initial
segmentation is executed producing the maps in Figure 5(b)
which contains two markers in green and orange. In a second
interaction showed in Figure 5(c), the orange marker and its
subtree are removed and a blue marker is inserted. The frontier
pixels of the removed subtree and the inserted marker are
show in yellow. Figure 5(d) shows the moment in which an
inconsistency occurs in the label map during the execution
of the DIFT∗. Pixel s leaves the queue Q before pixel t and
change its state, because we employed FIFO tie-break police.
Later, when pixel t leaves the queue, it can not propagate
its label to s since s was already evaluated. Therefore t is
the predecessor of s, but they have distinct labels in the
end of DIFT∗ execution (see Figure 5(e)). Figure 5(f) shows
the expected non-inconsistent result after running the IFT

Input: Maps P, R, L, V and set MR of remove markers.
Output: Maps P, R, L, V and set F of frontier pixels.
Auxiliary: FIFO queue T and set M of roots of trees marked.

1. F ← ∅, M ← ∅
2. while MR 6= ∅ do
3. Remove any s from MR

4. r ← R(s), M ←M ∪ {r}
5. if V (r) 6= +∞ then
6. Insert r in T , V (r)← +∞, P (r)← nil
7. while T 6= ∅ do
8. Remove s from T
9. for each t such that 〈s, t〉 ∈ A do

10. if P (t) = s then
11. V (t)← +∞, P (t)← nil
12. R(t)← nil, L(t)← nil
13. else
14. if R(t) /∈M then
15. F ← F ∪ {t}

Fig. 4. DIFT-TreeRemoval Procedure

algorithm with the same two markers.
In [14] the following solution alternatives were analyzed

(for functions monotonically increasing).
1) Set the priority policy of Q as LIFO.
2) Consider the addition and removal operation as two

independent operations.
3) Do not use the state test in the DIFT∗ algorithm.

These alternatives do not work properly with DIFT∗ algorithm
for more general functions, which is the objective of this work.

III. DIFT∗ FOR ROOT BASED PATH FUNCTIONS

In recent years IFT algorithm employed non-smooth func-
tions in order to improve the results for several applica-
tions [7] [15]. With this kind of path function, the use of the
state test is mandatory in order to avoid reprocessing pixels
and the occurrence of infinite loops. In this section we will
show how DIFT* algorithm fails to output consistent cost and
label maps when executed with some kinds of non-smooth
path functions. The inconsistency in the map of cost values
happens when DIFT [12] or DIFT∗ generates a cost map
that does not correspond to any cost map generated through
IFT (considering different tie-breaking policies). We propose
a novel solution to correct the presented issues that extends
the DIFT∗ algorithm.

A. Problems
Firstly, we will study the behavior of some functions that

depend on properties of the root propagating the paths. We
will consider the function feuc in Equation 2 and the function
fabs add in Equation 3 which is a simplification of the function
used in [9].

feuc(πt = 〈t〉) =

{
0 if t ∈ S
+∞ otherwise

feuc(πr s · 〈s, t〉) = ‖t− r‖2
(2)
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Fig. 5. Execution of DIFT∗ Algorithm, with roots in diamond shape. Yellow
pixels are in the priority queueQ and gray pixels have already been evaluated.
a) Graph with 4-neighborhood adjacency and weights in the edges. b) First
interaction completed with fmax function, Equation 1. c) Addition of a new
marker (upper corner) and frontier set wraps the removed orange zone. d)
Some steps later the pixel s is evaluated, propagates a wrong label and changes
its state, afterward, t predecessor of s, will be evaluated and will not modify s.
e) Result obtained after two interactions through DIFT∗, s and its predecessor
t have different labels. f) Desired result.

fabs add(πt = 〈t〉) =

{
0 if t ∈ S
+∞ otherwise

fabs add(πr s · 〈s, t〉) = fabs add(πs) + |I(r)− I(t)|+ 1

(3)

Equation 2 consists in the Euclidean distance path function.
It may generate an inconsistency in the cost map from the
second interaction of the DIFT∗. Suppose the first iteration of
the DIFT∗ with a single marker presented in Figure 6(b) over
an input image graph of Figure 6(a). Now suppose the blue
marker (r′) is inserted at the second iteration of the DIFT∗ as
showed in Figure 6(c). After a few steps, pixel s offers t a
higher cost (i.e., 5) than it current one (i.e., 4), but by the test
of predecessor, pixel t is conquered by the path πr′ s,t, as
showed in Figure 6(e). This leads to an inconsistent cost map

since pixel t will have a higher cost compared to the result
obtained by two executions of the IFT (compare Figures 6(e)
and (f)).

Applying DIFT∗ algorithm with path function fabs add

described in Equation 3 may output a graph with cycles, which
violates the fact that the IFT algorithm should result in an
spanning path forest. Suppose we execute the first iteration of
DIFT∗ over the image graph in Figure 7(a). It will produce the
forest in Figure 7(b). Then, the orange marker and its tree are
removed, and a new green marker is inserted in the beginning
of the second interaction, as showed in Figure 7(c). The yellow
pixels belong to the frontier of the removed tree. After a few
propagations, Figure 7(d) displays the propagation of pixel
s offering t a higher cost than its current one. Still, by the
predecessor test, pixel t is conquered by path πs·〈s, t〉 resulting
in the graph of Figure 7(e). Note that the pixel with red bound
in Figure 7(e) leaves the queue before pixel t, conquering it
again, and generating a cycle showed in Figure 7(f). Note that
the connected component to which t belongs does not even
have a root node.
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Fig. 6. DIFT∗ algorithm, roots in diamond shape, yellow pixels are in the
priority queue Q and gray pixels have already been evaluated. a) Graph
with 8-neighborhood adjacency and the initial cost map. b) Labels after first
interaction completed with feuc function. c) Addition of a new marker. d)
Some steps later the pixel s offers t at a higher cost than V (t) but by the
test of predecessor t is conquered. e) Result obtained after two interactions
through DIFT∗. f) Desired result.

IV. PROPOSAL DIFTMOD ALGORITHM

We propose here a novel algorithm, DIFTmod (Figure 8),
to reinforce the predecessor test. The objective is to continue
using the state test, having a high performance solution and
to be able to deal with the previously reported problems,
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Fig. 7. Inconsistency of DIFT∗ algorithm with function fabs add, and roots
in diamond shape. Gray pixels have already been evaluated. a) Graph with
4-neighborhood adjacency and intensities in the nodes. b) Labels after first
interaction completed. c) Remove of orange tree and addition of marker (green
label), yellow pixels belong to the frontier set. d) Some steps later, pixel
s offers pixel t higher cost than its current one (V (t)) but by the test of
predecessor t is conquered. Yellow pixels are in the priority queue Q. e) Red
circle around the node that leaves the queue before node t, generating a cycle
in the graph. Yellow pixels are in the priority queue Q. f) Incorrect resulting
cycle graph obtained after two interactions of DIFT∗.

including the issue reported in the Section II-B1 and also with
non-smooth path functions presented in Section III.

Moya’s alternatives [14], presented in Section III-A, do
not support our objective. LIFO policy does not output an
equitable segmentation. Performing the marker addition and
removal in two separated operations increases the amount of
processing, since nodes may be processed more than once.
Finally, removing the state test is not an alternative again
because of the reduced performance due to the multiple
processing of nodes among other problems.

Therefore, we propose the following alternative: if the cost
offered by path πr′ s · 〈s, t〉 to pixel t is equal to the current
cost of t and both pixels have different labels L(s) 6= L(t)
and P (t) = s, t is placed as an extension of the path and t
is inserted in the priority queue Q with a policy LIFO (only
for this insertion, after this insertion the priority queue works
with policy FIFO). This prevents path suffixes of path πr′ t,
having a higher priority with the same value of V (t) in Q to
be evaluated before the pixel t.

Now, to prevent problems related to functions which employ
properties of roots, as explained in Section III, we included
other conditions to the predecessor test of the DIFT∗ algo-
rithm. The idea is to verify if the subtree of a pixel s, being
evaluated, is in an inconsistent state. A subtree rooted in t is
inconsistent if the cost offered from a path πs extended to t
is greater than the current cost of πt and s is the predecessor
of t.

Procedure RemoveSubTree in Figure 9, releases the entire

subtree, converting its pixels to trivial trees of infinite cost, and
transforms all neighboring pixels into frontier pixels, inserting
them in Q.

Input: Image graph G = 〈I,A〉, maps P,R,L, V , labeling
function λ, sets of new markers S ′ and remove pixels MR.

Output: Maps P, R, L and V .
Auxiliary: Priority queue Q, sets frontier F and states K.

1. Q ← ∅, K ← ∅
2. V, P, F ← DIFT-TreeRemoval (V,L, P,R,MR,A)
3. F ← F \ S ′
4. for each s ∈ S ′ do
5. if f(〈s〉) < V (s) then
6. V (s)← f(〈s〉), L(s)← λ(s), P (s)← nil
7. R(t)← R(s) and insert s in Q with cost V (s)
8. for each s ∈ F do
9. Insert s into Q with cost V (s)

10. while Q 6= ∅ do
11. Remove s from Q such that V (s) is minimum.
12. Add s to K
13. for each pixel t such that 〈s, t〉 ∈ A do
14. if t /∈ K then
15. Compute tmp ← f(πP

s · 〈s, t〉)
16. if tmp < V (t) then
17. P (t)← s, V (t)← tmp
18. L(t)← L(s), R(t)← R(s)
19. if t /∈ Q then
20. Insert t in Q with policy FIFO
21. else
22. if P (t) = s then
23. if tmp > V (t) then
24. DIFT∗-RemoveSubTree(V,L, P,R,Q,K, t)
25. else
26. if tmp = V (t) and L(t) 6= L(s) then
27. L(t)← L(s), R(t)← R(s)
28. if t /∈ Q then
29. Insert t in Q with policy LIFO

Fig. 8. Algorithm DIFTmod

V. APPLICATION TO GENERATION OF SUPERPIXELS

Superpixels are the result of an over-segmentation of the
image and have been used in a wide variety of applications of
computer vision, segmentation, object detection and 3d recon-
struction. One of the most well-known superpixel algorithms
is the Simple Linear Iterative Clustering (SLIC) [16], which
divides the image using an adaptive k-means clustering.

The IFT-SLIC algorithm [9] considers the first initialization
of clusters in a similar way as SLIC and adapts the superpixels
by calculating the IFT with a connectivity function that
depends on the root pixel of each superpixel according to
Equation 4. The algorithm is repeated a few times (e.g. 10),
updating the central position of each superpixel.



Input: Maps V,L, P,R, priority queue Q, set K, adjacency
A and pixel u (root of the subtree to be removed)

Output: Maps V,L, P,R, priority queue Q, set K
Auxiliary: Sets H e H ′.

1. H ← ∅, H ′ ← ∅
2. Insert u in H e H ′

3. while H 6= ∅ do
4. Remove a from H and from K
5. L(a)← nil , P (a)← nil
6. R(a)← nil , V (a)← +∞
7. if a ∈ Q then
8. Remove a from Q
9. for each pixel b such that 〈a, b〉 ∈ A do

10. if P (b) = a then
11. Insert b in H
12. else
13. Insert b in H ′

14. while H ′ 6= ∅ do
15. Remove a from H ′

16. if V (a) 6= +∞ then
17. if a ∈ Q then
18. Update a in Q with cost V (a)
19. else
20. Insert a in Q with cost V (a)

Fig. 9. Procedure DIFT∗-RemoveSubTree

fD(πt = 〈t〉) =

{
0 if t ∈ S
+∞ otherwise

fD(πr s · 〈s, t〉) = fD(πs) + (‖I(r)− I(t)‖) · α)β + d(s, t)

(4)

A. Differential mode of IFT-SLIC

It is possible to use the DIFT in order to reduce the
computation effort at each iteration, but since the path function
used by IFT-SLIC is an expansion of the function presented in
Equation 3, inconsistencies may occur. With the modifications
presented in Section IV though, it is possible to generate con-
sistent results, capable of being reproduced by the execution of
the IFT. A demonstration is available at the author’s website2.

VI. EXPERIMENTAL RESULTS

To compare the time reduction and the obtained results, we
execute the algorithms for different values of the parameters.
In the Equation 4 we used 20 samples for α in [0.01,0.2] and
β equals to 12.

The number of superpixels can be exact if we distribute
uniformly the number of initial superpixels but for the exper-
iment we use as a parameter an approximate number k as
it is realized in SLIC. In the experiment, we used the test
set of 50 natural images of the public GrabCut dataset [17].
We execute the DIFT∗ algorithm, the DIFT∗ algorithm with
the proposed modifications (DIFTmod) and the IFT algorithm

2http://www.vision.ime.usp.br/∼mtejadac/diftmod.html

executed 10 times (IFT 10x) to get an image with the labels
of each superpixel.

In order to calculate the accuracy of the new algorithm,
we compare the labeled images of the differential algorithms
with the result obtained by the IFT 10x. Since the number
of superpixels is the same in all results, we match the labels
of the superpixels of the differential algorithms with those of
the IFT 10x, because the labels of each superpixel may have
shifted occasionally during iterations.

For example for the swimmer image in Figure 10, we calcu-
late the images of labels for IFT x10 and DIFTmod algorithms
(Figure 10(b)(c), shows the edges of each superpixel). The
divergence of the number of non-matching labeled pixels is
shown in Figure 10(d), note that the greatest divergence occurs
at the borders of each superpixel.

That divergence occurs in areas with little information to
define good borders (absence of contrast) or because they
are areas of tie-breaking showed in Figure 10(c), that is
why we give the tolerance of 1 pixel at the borders and
consider the result of Figure 10(e). At the end of the process
Figure 10(e) shows the largest differences between the result
of the algorithm IFT x10 and the DIFTmod.

As a result of the experiments, we obtain a reduction of
processing time. Figure 12(b) shows the time of the first
execution of IFT common for the three algorithms (blue
zone), the savings ratio of calculating the superpixels of
differential mode without inconsistencies and highlighting the
performance for the range of alpha values that produce better
results α ∈ [0.04, 0.08] as explored in [9] and [18]. Figure 12
shows the processing time for different values of k. Figure 13
shows the visual results of the DIFT? algorithm and the
DIFTmod algorithm.

The percentage of divergence observed in the experiment is
shown in Figure 11. For the DIFT∗ algorithm, the divergence
grows according to the increase in the values of the parameters
k and α in addition to the probability of having inconsistencies
in their result. On the other hand, for the DIFTmod algorithm
the divergence remains almost constant, presenting low values
(< 0.05%) as compared to total number of pixels in the image.

Clearly, the computation of superpixels through the IFT-
SLIC algorithm using the proposed DIFTmod algorithm ob-
tains a low computational cost and high precision results
compared to IFT x10 algorithm.

VII. CONCLUSION

In this paper, we modified the original DIFT algorithm in
order to avoid inconsistencies that may occur with classical
functions, as well as extending it to other connectivity func-
tions, that depend on the position of the root. The experiments
show flawless results with running times very close to the
original DIFT. They also show the importance of exploring
other types of functions in the IFT framework.

As future works, we intend to explore the differential
calculation of the Oriented Image Foresting Transform (OIFT)
in 3D images with the DIFTmod algorithm, by adding the
support for other types of not MI functions.



(a) (b)

(c) (d) (e)

Fig. 10. Graphical measure of accuracy of algorithms. a-b) Show the edges of the superpixels obtained by the algorithms IFT x10 and DIFT-mod respectively,
with parameters k = 450 and α = 0.06. The divergent areas are highlighted with zoom. c) Shows the original image and areas with little information to
define exact edges. d) Divergent areas between results of IFT x10 and DIFTmod algorithms. Note that most of the differences occur in areas with low contrast.
e) Divergent areas with 1-pixel tolerance (adjacency 4) at the edges of superpixels. White pixels represent notable differences in the algorithm results.
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Fig. 11. Percentage of pixels divergence between results of differential
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