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Abstract—Phragmites australis (common reed) commonly
found in the coastal wetlands can rapidly alter the ecology of
these systems by outcompeting native plant species for resources.
Identifying and mapping Phragmites can help resource managers
to restore affected wetlands. In this work, we use probabilistic
neural network with wavelet texture features for mapping regions
with Phragmites in visible spectrum imagery acquired at low
altitude with small unmanned aerial system. Evaluation study
was conducted with imagery acquired in the delta of the Pearl
River located in southeastern Louisiana and southwestern Mis-
sissippi, United States of America. In comparison to state-of-the-
art, our approach presented improvements in several statistical
variables such as overall accuracy and kappa value. Furthermore,
we show that the remaining omission and commission errors with
this technique are generally located along boundaries of patches
with Phragmites, which reduces unnecessary efforts for resource
managers while searching for nonexistent patches.

I. INTRODUCTION

Phragmites australis (Cav.) Trin. ex Steud. is a perennial
grass species that is found on every continent except Antarc-
tica. In the United States, it is found in the 48 contiguous
states [1]. This vegetation type can grow up to 4.8 m with an
average height of 3.6 m in brackish and freshwater wetlands.
An invasive Eurasian haplotype of Phragmites has begun to
proliferate in North American wetlands, often forming dense
monospecific stands in invaded sites [2]. Phragmites invasions
are frequently associated with decreases in plant biodiversity
[3], declines in habitat quality for fish and wildlife [4],
disruptions to biogeochemical cycles [5] and other ecosystem
services. Furthermore, in highly braided waterbodies, such as
the delta of the Pearl River in southeastern Louisiana, this
vegetation can also be a navigation hazard to small boats by
reducing visibility.

Currently, resource managers have a variety of tools to
reduce or mitigate the impact of invasive Phragmites, includ-
ing mowing, cutting, burning, grazing, and herbicides [6].
However, in order to apply such control methods, it is first
necessary to map the Phragmites locations. Multiple methods
can be used to do this, such as walking around or through
a stand with a handheld Global Positioning System (GPS)

unit, image acquisition by satellites, or manned aircraft. Each
method has associated pros and cons.

Walking around or through Phragmites stand with a GPS
unit to manually map the stands is labor intensive and can
be dangerous to field crew members due to terrain, dense
vegetation, dangerous wildlife, or insect-borne diseases. The
analysis based on imagery acquired by high-resolution sensors
mounted on planes or satellites can be relatively expensive [7].
Poor spatial resolution of satellite or aircraft captured imagery
restricts the ability to delineate and map small Phragmites
patches. Additionally, for free satellite imagery, rate of orbit
and time to market for imagery may not be feasible for
resource manager goals. Consequently, reestablishment of a
Phragmites stands after management efforts may go unnoticed
until satellite imagery is updated. Manned aircraft are an
alternative to satellites, but can be prone to pilot error during
image collection. Moreover, it can be costly, and may have a
lower spatial resolution than what is needed.

To overcome these drawbacks, i.e., low spatial resolution
and slow satellite revisit rates, we used a Low Altitude Remote
Sensing (LARS) approach with a small Unmanned Aerial
System (UAS). According to Anderson and Gaston [7], UASs
can offer to ecologists a promising route to responsive, timely,
and cost-effective monitoring of environmental phenomena
at spatial and temporal resolutions that are appropriate to
the scales of many ecologically relevant variables. Recently,
Samiappan et al. [8] presented a method for mapping regions
with Phragmites based on true-color high-resolution imagery
acquired with UAS. Among the approaches in their investiga-
tion, they showed that the combination of Grey Level Co-
Occurrence Matrix (GLCM) with Support Vector Machine
(SVM) provides good results.

In this work, we present a new approach for mapping
Phragmites using LARS. We apply, instead, wavelet transform
for texture feature extraction and, based on these features, we
classify regions as with or without Phragmites by applying
Probabilistic Neural Network (PNN). Our contributions in-
clude:

• Our approach provides a decrease of 64.3% in spatial



error rate for the site I and 60.0% for site II, if compared
to state-of-the-art results;

• The false positives and false negatives, with our approach,
are, in general, partially true positives and true negatives,
which reduces the posterior man effort while searching
for inexistent patches; and

• We show the results of a comparative study about accu-
racy of other classification techniques;

We demonstrate the results of our work with imagery
acquired by Samiappan et al. from the lower Pearl River region
(see Fig. 1). The classification maps that were created using
the proposed solution were validated by a domain expert.

The organization of this paper is as follows: Section II
describes the main works related to mapping invasive alien
plants, mainly Phragmites. Section III presents the details
of the study area, the technical details and specifications
of the UAS, and the camera sensor used. This section also
covers the steps involved data preprocessing. Section IV
describes the three main stages to map Phragmites: feature
extraction, PNN training and classification process, and post-
classification. Later, in section V, the results are presented
followed by conclusion in Section VI.

II. RELATED WORK

Considering that invasive plant species not only pose a
serious threat to biodiversity and water resources but also
have impacts on human and animal well-being [9], there
is a growing community studying and discussing different
approaches to map these species efficiently. Phragmites often
spans multiple years and multiple spatial scales, from small
individual patches to whole landscapes [10]. Consequently,
there is a wide range of applications for mapping this specific
type of vegetation considering different spatial and spectral
resolutions.

One platform that is widely used to map Phragmites is the
satellite. As already described, this kind of platform has some
drawbacks if compared with other possibilities. However,
generally, it can offer a higher spectral resolution that can be
important to overcome the lower spatial resolution problem.
In [11]–[13], the authors proposed the use of EO-1 Hyperion,
Quickbird, GeoEye, and WorldView-2 platforms to remotely
sense the vegetation here analyzed. Pengra et al. [11] tested
the applicability of Hyperion hyperspectral satellite imagery
to create a raster map of this kind of vegetation using a
Spectral Correlation Mapper algorithm. The proposed solution
presented limitations mainly with intermixing of different
vegetation classes and the mixing of water and vegetation in
deep marshess. Gilmore et al. [12] suggested the classification
of few invasive plants using hierarchical object-oriented image
analysis. Rules based on the spectral variability and elevation
information of species throughout the growing season were
used to direct classify the proposed vegetation. They used a
multispectral imagery, obtained by the QuickBird satellite, and
LiDAR data. This approach achieved good results with Phrag-
mites mainly because of the elevation information. However,
the solution had problems to classifying Typha spp. because

this vegetation was confused with Phragmites and a number
of species because of the diffuse clonal growth habit.

Another platform that is commonly used to acquire data
and map invasive plants, is manned aircraft [13]–[15]. Calvio-
Cancela et al. [14] used Ultralight Airborne Imaging Spec-
troscopy to map invasive plants using spectral features, sizes
and growth pattern of each plant to map each area using
SVM. The main problem with their solution is small patches
of the target or background species, when mixed with other
categories, generating mixed reflectance spectrum. Everitt and
Yang [15] proposed to use aerial color-infrared (CIR) pho-
tography and CIR digital imagery combined with Iterative
Self-Organizing Data Analysis that performs unsupervised
classifications to map broom snakeweed. The main problem
presented in their work was the similar spectral signature
among different classes.

Villa et al. [13] proposed a method based on four different
vegetation indexes derived from multitemporal and multisen-
sor remote sensing dataset to monitor the conservation status
and to assess the morphological complexity of Phragmites
australis. They used data obtained through manned aerial
platforms and satellites (GeoEye and Worldview 2) with
spectral range from 0.40 nm to 1.04 µm. Enhanced vegetation
index and normalized difference aquatic vegetation index were
proved to be useful for mapping. Despite the good result
presented in vegetations response in sparse to medium-density
conditions, this work had a considerably high cost, mainly
because of the necessity of high spatial and spectral data.

It is known that there is a growing interest in LARS
approaches using UAS due to its cost, safety and better
mapping capabilities. Considering this fact, recently, several
works have used UAS to map Phragmites. In [16], Samiappan
et al. used digital surface models, normalized difference vege-
tation index, soil-adjusted vegetation index, and morphological
attribute profiles with SVM to map Phragmites. Zaman et al.
[17] proposed the combination of high-resolution multispectral
images and a classification algorithm based on learning theory
to produce quantitative land cover descriptions that identify
Phragmites locations. Husson et al. [18] considered the use
of multispectral imagery as well. Their solution was based on
threshold classification and Random Forest.

Despite the different classification techniques used to map
Phragmites, the majority of the papers cited above are based
on the use of sensors with a larger spectral range. This fact can
be explained mainly by the fact that the relationship between
Phragmites biomass and infrared/red reflectance ratios is well
established in [19]. In addition, some of the authors also
considered the use of elevation models, which, as already
described, have a considerable capacity to distinguish a plant
under analysis from other classes. The main focus of this
work is to propose a novel solution based only on true-color
imagery, considerably reducing the quantity of data in analyzes
to generate Phragmites maps. In [20], a similar approach for
mapping the Phragmites using the supervised classification
was proposed. In both [8] and [20], the authors described
that distortion and blurring in the imagery, and inter-mixing



Fig. 1. The study site near Pearlington, Mississippi, USA (about 2600 acres)
selected for developing and evaluating techniques to map invasive Phragmites.

between classes, were the main limitations of their proposed
solutions. In [8], it was proposed a LARS approach using
high-resolution visible imagery and texture features to map
Phragmites. The authors showed a comparison between four
techniques of texture analysis with SVM in true-color imagery
to map Phragmites. The tests conducted with Gabor Filters
(GF), GLCM, Segmentation-based Fractal Texture Analysis,
and Wavelet Texture Analysis (WTA) by the authors indicated
that the proposed texture-based approaches were suitable to
map this kind of vegetation. This work was the most similar to
the one proposed here, presenting a similar flow of execution
for the generation of the map. The main differences between
[8] and the work presented in this paper is the optimization
of the result using PNN in place of a SVM classification.

III. STUDY AREA

The study site near Pearlington, Mississippi, United States
of America (USA) was selected for evaluating the proposed
technique to map invasive Phragmites (Fig. 1). The region
can be classified as a tidal freshwater marsh. It is one of
the most intact river systems in the southeast USA [21] with
one of the healthiest marsh complexes in the USA [22]. The
Pearl River has been identified as a high priority focus for
conservation attention within the Eastern Gulf Coastal Plain
and Northern Gulf of Mexico eco-regions [22]. Data was
collected on 23 September 2014 in the lower Pearl River
basin west of Pearlington, Mississippi north and south of US
Highway 90. Analysis was conducted on data collected at two
sites: (I) Desert Island and (II) Browns Island, with a total
area of approximately 2600 acres (1063 ha).

A. Image Aquisition

The data was acquired using a waterproof Altavian Nova
UAS that weighs approximately 7 kg with payload, has an
2.7 m wingspan and 1.5 m length, and is capable of water
landings. This system can capture data on flights lasting 90
minutes.

The camera used to acquire images is a modified Canon
Rebel EOS SL1 that captures true color images. The size of
the images acquired is 5184 × 3456 pixels with 8 bits per
RGBA channel. Considering the camera’s specifications and
an altitude of approximately 231m, the ground sample distance
maintained was approximately 5 cm/pixel side. Aiming to keep
an overlap of five images or more in the region of analysis,
the flight plan was defined considering 50% side overlap and
70% forward overlap.

The software used to create the mosaic was Agisoft Pho-
toscan Pro. The latitude, longitude, and altitude that the UAS
stored during the flights were used to define initial camera
positions in the software. Orthomosaic tiles were exported at
a size of 3184×3184 pixels and stitched together into a virtual
mosaic using Geospatial Data Abstraction Layer software.
The geo-referencing was performed using only data obtained
through the flight telemetry data.

B. Ground Reference Map
To build the ground reference map (GR), in the work by

Samiappam et al. [8], domain experts recorded the boundaries
of three selected patches by walking around them with a
Trimble Geo 7X GPS unit, with sub-decimeter accuracy. After
collecting coordinates of GR patches, the true color image
was loaded into Environmental Systems Research Institute
ArcMap program. The boundaries of the same three patches
were manually digitized by a domain expert based on direct
visual inspection of the image mosaic in ArcMap. These
digitized boundaries were then compared to the in situ patch
GR boundaries. Samiappan et al. showed that the difference
between both boundaries is almost insignificant. Aiming to
physically verify the rest of the GR Phragmites patch locations
along river channels and roadways, the authors of this work
returned to the field. The authors navigate around these patches
with a GPS unit or visit patches that were inland from a
river channel or roadway during the revisit. These series of
actions were performed with the intention of ensuring that the
digitized boundaries could be used as a ground reference to
verify the system’s accuracy.

IV. MAPPING Phragmites
Our approach can be divided in three stages: texture feature

extraction, PNN classification, and Post-classification.
The input to our classification system consists of a true-color

image in GeoTIFF format, that provides extra georeferencing
information. In our study, one pixel of such images represents
a square area of approximately 25cm2. We divide the input
images into blocks of 100 × 100 pixels to further perform
classification of blocks individually. Thus, we classify blocks
with physical area of ca. 25m2 as with Phragmites or without
Phragmites. This setup was defined aiming to respect the
ability of the system to delimit and map small Phragmites
patches.

A. Wavelet Texture Features Extraction
Samiappan et al. [8] reported that, in imagery captured

with UAS, Phragmites are visually distinguishable from other
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Fig. 2. Image blocks examples (top), representing the five most common object categories in the study area, and their respective wavelet texture signatures
(bottom) concerning four statistical properties (mean, entropy, standard deviation, and energy value) for each sub-band (LL, LH , HL, and HH). For
illustration purpose the values were normalized.

objects due to unique properties like roughness, granulation,
and regularity. In Fig. 2 (top), a set of blocks representing
areas with Phragmites, trees, soil, river, and highway, let
us compare and notice these characteristics. Hence, at least
visually, we can identify blocks with Phragmites due to their
spatial frequency distribution.

Human visual system is very effective at interpreting spatial
frequency of the luminance channel at multiscale. This ability
can be emulated by means of wavelet transforms. Wavelet
transforms enable multi-resolution analysis of features by
decomposing data X = {x1, x2, ..., xN} into two sub-bands
L|H = {l1, l2, ..., lN

2
, h1, h2, ..., hN

2
}, where L represents the

low-pass component and H represent its high-pass counterpart.
This can be extended to bi-dimensional data, where four
sub-bands are obtained by performing low- and high-pass
decomposition in both horizontal and vertical directions. In
this work, each input block is converted to grayscale by
computing the luminance and after, the blocks are applied to
the Haar wavelet transform [23], that extracts the low-pass
components by averaging and the high-pass counterpart by
differencing, according to the following equations:

li =
x2i + x2i+1

2
(1)

hi =
x2i − x2i+1

2
(2)

For such, we employ a first pass horizontally to the image
block, dividing it into two subregions concerning the two sub-
bands L (low-frequency) and H (high-frequecy). Later, we
take these sub-bands as input to a second pass, now vertically,
which results in four sub-bands with 2:1 downsampling.
Fig. 3b shows the four sub-bands (i.e., approximation LL,
details in horizontal point LH , details in vertical point HL,
and details in diameter HH at top-left, top-right, bottom-left,
and bottom-right, respectively) obtained after applying one

(a) (b)

Fig. 3. One level of Haar wavelet transform applied to (a) example block
with 100 × 100 pixels. The output (b) is divided into four sub-regions with
50×50 pixels each. Top-left (LL) shows the approximation values, top-right
(LH) shows details in horizontal, bottom-left (HL) shows details in vertical,
and bottom-right (HH) shows details in diagonal.

level Haar wavelet transform to Fig. 3a. The input images were
captured at an approximate constant and low ground distance
by the UAS, thus, more than one level Haar transform is not
required.

In order to represent spatial frequency, from each sub-band,
we compute four statistical parameters, i.e., mean, standard
deviation, entropy (S), and energy value (E), composing 16
parameters of each image block. Entropy is often described as
a measure of randomness and energy a measure of frequency
distribution. Entropy and energy can be computed as follows:

S = −
∑
i

pi log pi, (3)

E =
∑
i

|pi|2, (4)

where pi are pixels’ values. Fig. 2 (bottom) shows the values
of these four parameters for the example blocks on the top
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Fig. 4. Illustration of our PNN’s architecture for classification. The input
layer has 16 nodes, one for each input parameter. The pattern layer is fully
connected to the input layer, and its nodes represent the training cases. The
summation layer averages the results from pattern layer for each of the two
categories (positive P or negative NP ). And the output layer decides to which
category (i.e., with or without Phragmites) the input corresponds.

row. Note the difference in the values of parameters for each
block category, which makes these parameters suitable for
classification of Phragmites in this context.

B. Classification with Probabilistic Neural Networks

Specht [24] presented the PNN classifier, that is a specific
configuration of feedforward artificial neural network (ANN).
According to Specht, there are some advantages in using PNN
over other classification algorithms, among them, it has a well-
defined structure and, hence, straightforward implementation;
it has an instantaneous training process, where the training
cases are incorporated into the network as new nodes; and it
is robust with respect to noise in the input. Moreover, under
certain easily met conditions, it can approach a Bayes optimal
result.

A typical PNN has four layers: input, pattern, summation,
and output (Fig. 4). The input layer maps the n input param-
eters from the input data to the PNN. We represent this layer
as the vector v with length n = 16, where each input node
xi corresponds to one component of v, in our case, the four
parameters computed from each sub-band in the input block.

The pattern layer has one node pi for each training case and
it is fully connected with the input layer. Computation in each
pattern node is given due to the following equation:

pi =
1

(2π)
n
2 σn

exp

[
− (v − vi)

T (v − vi)

2σn

]
, (5)

where vi is the vector representing the corresponding training
case and σ is a smoothing parameter, experimentally defined
here as σ = 0.1.

Note that the pattern nodes can be divided into subgroups
according to the training cases’ category. In this work, it was
defined two categories in the PNN: positive answer (P ) for
blocks with Phragmites and negative answer (NP ) for blocks
without Phragmites.

The summation layer computes the maximum likelihood
of input v being classified into each one of the categories.
For such, each node in the summation layer corresponds to
one distinct category and it is connected to the corresponding
subgroup of nodes in the pattern layer. In fact, the summation
nodes perform an averaging of the results in the connected
pattern nodes as follows:

sc =
1

Nc

Nc∑
i

pi (6)

where pi in the sum represents the results from pattern nodes
of category c and Nc is the total number of pattern nodes
in this category. If the probabilities for each category are the
same, the decision layer unit classifies the pattern v following
the Bayes’ decision rule based on the output of all summation
layer neurons as follows:

Ĉ(v) = argmax {sc} , i = 1, 2, · · · , q (7)

Where Ĉ(v) denotes the estimated class of the pattern w
and q is the total number of classes in the training samples.

Prior to running the PNN, it is necessary to define the
training cases. For such, we use a ground reference map
that indicates the regions with Phragmites in the input map.
The training cases are randomly selected blocks, where 50%
of them are completely inside regions with Phragmites and
the other half are completely outside these regions. The total
number of selected blocks comprises ca. 10% of the whole
input map area. The remaining blocks, which are not known
by the classifier, were used for the system evaluation. With
the training and test set defined, the system was trained and
the classes were predicted.

C. Post-Classification

After the PNN classification, the maps are generated using
the cartography information from the imagery. To do this, a
binary image was constructed where each block of 100× 100
pixels is defined with the respective class value. After, the
perimeter of each Phragmites patch is identified and the
positions in the perimeter image are transformed in latitude
and longitude using the image properties and cartographic
information saved. The perimeter of all Phragmites patches is
then used to create a shape file. This final georeferenced map
can be easily utilized by the resource manager for decision
making.

V. RESULTS

To evaluate the system’s performance we used the kappa
coefficient (κ), overall accuracy (OA), agreement (A), com-
mission error (CE), and omission error (OE). According to
Viera and Garrett [25], the κ is the most commonly used
statistic in remote sensing for studies that measure agreement
between two or more learners. The OA is the rate of correct
pixels among all pixels. The A is the rate of correct pixels
within a given category, in other words, it represents the
probability of a reference pixel being correctly classified. The



Fig. 5. Classification results obtained using PNN with Wavelet textures for study site I, where Phragmites agreement is outlined in red, omission cases
outlined in green, and commission cases in blue.

Fig. 6. Classification results obtained using PNN with Wavelet textures for
study site II, where Phragmites agreement is outlined in red, omission cases
outlined in green, and commission cases in blue.

CE is the rate of pixels misclassified as P , and the OE is the
rate of pixels misclassified as NP .

Table I shows the statistical results for our approach. Note
that the κ values are all above 0.8, which, according to [25],
represents substantial to almost perfect agreement. Further-
more, the OE is substantially higher than the CE for P
answers. There are several factors that explain these values,
for example, it is possible to establish that, with our approach,
the main area of misclassification is with respect to blocks that
represent locations of transition between P and NP (see Fig. 5
and 6). In some of these blocks the non-Phragmites object
comprises higher area than Phragmites, and, as consequence,
the distance found by the classifier between the block’s pa-
rameters and NP was smaller than with P . Another source
of errors are plant species of interest intermixed with other
species. Again, it is possible that these other species are more
representative in the block being analyzed, and thus, the PNN
classifier will identify as NP .

TABLE I
CLASS-SPECIFIC CLASSIFICATION ACCURACIES (IN PERCENTAGE),
AGREEMENT (IN PERCENTAGE), OA (IN PERCENTAGE), AND KAPPA

STATISTIC FOR SITE I AND II.

Site I Site II
Class P NP P NP
OE (%) 14.8 0.4 20.6 0.2
CE (%) 3.1 2.4 3.8 1.6
A (%) 85.2 99.6 79.3 99.8
κ 0.89 0.86
OA (%) 97.5 98.3



Based on the work by Kotsiantis [26], we performed a
comparative study with other classification approaches. Since
decision trees can be translated into a set of rules by creating
a separate rule for each path [27], this study did not consider
this kind of logical learning method. In addition, since we
propose the use of PNN and WTA for mapping Phragmites,
and PNN is a specific configuration of ANN, we did not
include other neural networks for comparison. Hence, our
comparative study comprises the following classifiers: SVM,
k-nearest neighbors (k-NN), Decision Tree (DT), and Nave
Bayes (NB). Tables II and III show the system’s performance
considering these classifiers for site I and II, respectively. The
results for SVM were obtained from the work by Samiappan
et al. [8].

From the data presented in Tables I, II, and III, it is
possible to conclude that there is an inverse relationship
between Phragmites and not Phragmites agreement. While
k-NN and DT have higher P agreements, they have smaller
NP agreements. In the other side, PNN and SVM have higher
NP agreements and smaller P agreements. Despite de fact
that PNN did not present the highest Phragmites agreement,
it presented the highest not Phragmites agreement, κ, and
OA for both sites. Among all, k-NN presented the highest
P agreement and SVM the highest OA for both sites.

TABLE II
LEARNING ALGORITHMS ASSESSMENTS FOR SITE I

SVM k-NN DT NB
Class P NP P NP P NP P NP
OE (%) 27.0 2.6 7.7 7.4 12.8 6.7 10.4 11.1
CE (%) 17.9 4.3 32.3 1.4 31.4 2.3 42.5 1.9
A (%) 72.9 97.3 92.3 92.6 87.2 93.3 89.6 88.9
κ 0.73 0.74 0.72 0.64
OA (%) 93.0 92.6 92.4 89.0

TABLE III
LEARNING ALGORITHMS ASSESSMENTS FOR SITE II

SVM k-NN DT NB
Class P NP P NP P NP P NP
OE (%) 35.6 1.3 10.0 7.7 12.4 9.5 24.6 9.7
CE (%) 16.5 3.6 45.54 1.1 51.4 1.4 55.6 2.7
A (%) 64.4 98.7 90.0 92.3 87.6 90.5 75.4 90.3
κ 0.70 0.64 0.57 0.5
OA (%) 95.5 92.1 90.2 89.0

In addition, if we compare the most reliable maps from site
I, i.e., PNN (Fig. 5), SVM (see [8]), and k-NN (Fig. 7), it
is possible to verify that PNN was the unique technique that
did not present new Phragmites patches that don’t exist. That
is, the system’s misclassification were mainly located in the
boundaries, and, in few cases, in the middle of real patches.
Note that, misclassification along boundaries will not increase
resource managers’ effort, since they would not need to move
to new areas that do not have Phragmites. Thus, the proposed
solution improves the confidence level of the generated maps.

Fig. 7. Site I assessment for k-NN classification, where Phragmites agreement
is outlined in red, omission cases outlined in green, and commission cases in
blue.

A. Implementation Details

The experiments were performed on a 2.5GHz Intel i5-
2450M on 64-bit Microsoft Windows operating system with 8
GB of RAM. The overall processing time per square kilometer
is approximately 45 min. The proposed solution was developed
using MATLAB.

VI. CONCLUSION

We presented a novel approach for automatic classification
of invasive Phragmites in imagery aquired by LARS with a
small, hand-launched UAS. For comparison and consistency,
we performed evaluation with the same imagery aquired by
Samiappan et al. [8]. Our experimental study shows that the
combination of PNN and wavelet textures yields superior
classification accuracies if compared to that of SVM, k-NN,
DT, and NB. A major improvement in class accuracies was
found with the reduction of OEs and CEs for both P and
NP classes with misclassification generaly along boundaries
of Phragmites’ patches. Moreover, our approach improves the
κ accuracies, with values above 0.8.

The ground reference data used to assess the accuracy of
the proposed classification scheme is a combination of field
visits, photographs and visual analysis of the high-resolution
LARS-UAS data by an expert in the field of aquatic invasive
species. In numerous inaccessible parts of the study areas,
other native and non-native trees were surrounded by dense
stands of Phragmites, which resulted in the assumption that
the entire area was Phragmites. The resulted OE caused by
this disagreement was found to be approximately equal to
50% of total CE. A significant amount of OE and CE was
reduced with the application of PNN without adding any other
information such as other spectral bands.

Based on experimental results presented in this research,
wavelet texture features are able to distinguish Phragmites
stands accurately. Experimental results reporting κ, OA, OE,
and CE are sufficient to conclude that low-cost UAS based
mapping can be achieved with a visible range sensor and
LARS.

As future work, we propose to reduce the computational cost
with a General-purpose Graphics Processing Unit (GPGPU)



implementation of both, wavelet texture features extraction
and classification with PNN. In addition, aiming to reduce the
Phragmites omission error, we propose the implementation of
recursive block subdivision and further classification when the
original block summation is below a specific threshold.
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