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Abstract—Real-time Magnetic Resonance Imaging (rtMRI)
leads to the dynamic observation of hidden processes of ar-
ticulation in an unprecedented way. The non-invasive image
acquisition nature of MRI combined with enhanced anatomical
discrimination made rtMRI the reference in capturing vocal tract
configurations during speech production. However, this devel-
opment also unveiled challenges, such as the shape extraction
and analysis of the vocal tract contours automatically. This
work describes automated techniques for the segmentation of
the vocal tract and identification of articulatory structures using
rtMRI. The identification of these structures is vital for modeling
articulatory synthesis. The methodology is based on level set
methods to outline the vocal tract shape. Changes in the vocal
tract shape and its structures were investigated for different
corpora in order to bind the expression of phonemes and the
behavior of the anatomical shapes. These shapes were labeled
from basal form invariants, whose final evolution yielded the
classification of regions of interest. The methodology resulting
from this work may be employed in accent-suppression systems,
speech production for laryngectomized patients, and therapetic
techniques for children suffering from speech apraxia.

I. INTRODUCTION

Articulatory synthesis techniques aim to produce speech
through models of the vocal tract and its articulatory processes.
This is accomplished by modeling the shape of the vocal tract
and the airflow that vibrates the vocal chords. Fig. 1 illustrates
the contours of the vocal tract components: larynx, epiglottis,
tongue, lips, pharyngeal wall, glottis, palatine veil, and hard
palate. These eight anatomical components (exception: hard
palate) are known as speech articulators, which are controlled
during the production of speech [1]. Thus analysis of the
position and movements of these articulators is crucial for
studies of speech production.

Several techniques of image acquisition have been used to
observe the intrinsic processes of vocal tract articulation. We
cite ultrasound [2], X-rays [3], electromagnetic articulometry
[4], and magnetic resonance [5]–[8]. The noninvasive nature
of magnetic resonance imaging (MRI) used with its power of
anatomical discrimination has made this technique the refer-
ence in capturing vocal tract shape during speech production.
Since the first proposed study [7], many studies have been con-
ducted using MRI: vowel production; consonants production;
each of these in different languages, such as French, German,
Japanese, European Portuguese, and Brazilian Portuguese [9],
[10]. Advances in MRI technique made acquisitions possible

Fig. 1: Sagittal section of MR-RT image superimposed with
contours of speech articulators. The articulators of the vocal
tract, such as lip opening (LA), tongue tip constriction degree
(TTCD), and opening of palatine veil (VEL) are illustrated.
Adapted from Bresch e Narayanan (2009).

in real time (rtMRI), whose large number of images are
generated in order to capture the dynamics of articulation [11].

This progress, however, also uncovered several challenges,
such as the need of automatic extraction vocal tract contours
from MRI. While the boundaries between different tissues
may be manually delineated with great accuracy [12]–[14],
such approaches are imprecise due to inconsistencies among
frames, becoming unfeasible for large sequences of rtMRI. As
a consequence, efficient automated vocal tract segmentation
techniques are crucial to articulatory synthesis models.

Recent results for the extraction of vocal tract contour
depend on the human interaction, i.e., semiautomatic tech-
niques, either because of the training base [15], or because
of key point identification in air-cavity boundary estimation
[16]. Automatic assignment of such points has been explored
previously [17] by building a training base using principal
components based on several manual segmentation results.

A. Objectives

Considering that rtMRI technique offers great advantages
compared to others in the identification of vocal tract struc-
tures, we developed methodologies for the segmentation of
these images, whose final contours may support applications
that combine acoustic and phonetic transcriptions. Our specific
objectives are:

1) Extraction of the vocal tract from rtMRI automatically,
using the similarities between successive contours and



prior knowledge of vocal tract shape;
2) Automatic identification of structures: lips, tongue,

hard palate, palatine veil, pharyngeal wall, glottis, and
epiglottis.

B. Contributions

Our main contributions include:

1) Methodology and implementation of automatic segmen-
tation of real-time magnetic resonance images of human
vocal tract. Our method is robust to the absence of one
or more articulators, while other methods in the litera-
ture solve the problem for a specific articulator, using
structural hypotheses, or user interaction throughout the
process.

2) Classification of vocal tract structures, starting from
the definition of invariant points that will allow the
understanding of their dynamics for use in therapy.

3) Availability of acquired data for research use, as well
as the provision of the image acquisition protocol to
interested researchers.

II. RELATED WORK

The main efforts for vocal tract segmentation in MRI format
were performed in static MR images until the 1990s, but since
then most of contemporary solutions have been based on the
use of rtMRI technique.

Avila-Garca et al. have developed vocal tract research from
Southampton dynamic magnetic resonance imaging, which
consists basically of simultaneous recording of image and
sound. However, it became difficult to extract shapes due to the
noise in these images. These researchers, then, have limited
themselves to the problem of extracting tongue shape, which is
a highly deformable articulator. They combined active contour
models with the Hough transform to track the tongue [18].

Bresch and Narayanan describe an unsupervised method of
segmenting regions of an image using frequency domain rep-
resentation. Their algorithm aims to process extensive rtMRI
sequences of human vocal tract, using a synthetic anatomical
model as prior information, whose adjustment to the observed
data is fulfilled through optimizations. They extract the contour
and position of vocal tract articulators during the production
of speech [15].

Eryildirim and Berger, despite the article title refer to vocal
tract, started from a previous research of Berger refining a
tongue segmentation model. Their methodology comprises
principal component analysis with shape priors (manual seg-
mentations of a reference tongue). They adopt Chan-Vese
model (derivation of Mumford-Shah model) to optimize the
best fit contour to new instances. In this sense, their main
contribution is the automatic identification of limits for each
articulatory structure, and validating the reference model [19].

Vasconcelos et al. developed a research based on the study
of phonemes of European Portuguese. They constructed a
shape distribution for 21 sounds, which would represent the

main characteristics of vocal tract articulation. This prior in-
formation was used in conjunction with active contour models
to segment the vocal tract of new images [20].

Raeesy et al. employed a combination of two techniques,
which involve automatic localization of anatomical points [21]
from a training base, principal component analysis – that
would represent an improvement in relation to [20] –, and
oriented deformable models [22] to delineate the edges of
vocal tract – even if it is a large database [17].

Lammert et al. proposed the use of a mean of the intensities
of pixels in a given region of interest (in this case, air cavity)
to detect vocal tract constriction in images sequences [23].

Recently, Silva and Teixeira extended the approach in [17],
[20], using two active appearance models to separate the
oral phonemes from the nasals explicitly and manually. They
considered small training bases supported by the hypothesis
of low transition among images (i.e., maximized temporal
resolution) [24].

Although all these efforts have contributed to vocal tract
extraction parameters from rtMRI, this research area is still
incipient regarding effective segmentation solutions. This is
due to the great variability of upper airway shape caused by
distinct sounds, their variability between different speakers,
their connectivity with other structures, such as the larynx and
nasal cavity, and the presence of noise in the images.

III. METHODOLOGY

We characterize the images which we work with, and then
present our approach. This will combine low-level information
(pixels intensities) with high level information (shape and
positioning of speech articulators) to compensate low spatial
resolution of images and high variability of articulatory struc-
tures. Finally, we discuss validation of results.

A. Real-time Magnetic Resonance Imaging
The rtMRI used in the development and testing of this

segmentation methodology were acquired from native speak-
ers, who do not present hearing or speech impairment. This
project had a partnership that allowed images acquisition
of Brazilian people. The sampling rate was of 10 frames
per second; spatial resolution of 256 × 256 px2 (0.625 ×
0.625 mm2). Three sentences were said, marked with silence
among them: “Ela vê porco todo dia. Ela vê tigela todo dia.
Ela vê carro todo dia.” The series of images consisted of
120 pictures. The speakers were instructed to pronounce the
sentences slowly and naturally, so that the articulation could
be properly captured.

The images locate medial sagittal plane of the head. Despite
the noise treatment during the reconstruction phase of the
images, this still is quite present in the images. In addition, the
inomogeneity of magnetic field introduces local variations in
the intensities of pixels, making difficult to segment the vocal
tract.

It is relevant to mention the financial cost involved for the
construction of databases; the lack of a common protocol for
acquisition of vocal tract images; the public unavailability of
data for comparative evaluation of methodologies.



B. Automatic Segmentation of Vocal Tract

We use level set functions to segment the vocal tract out
of the rest of the image. This methodology is known to be
robust at extracting related regions, as well as at the presence
of artifacts in a variety of applications. This segmentation
method will be coupled with the similarities among con-
secutive images, propagating the results and allowing more
accurate contour extraction.

1) Pre-processing: Initially it is necessary to scale pixel
intensities, which takes the representation stored in disk to
the representation in memory, according to DICOM stan-
dard. Each image has the Rescale Intercept (RI) meta-
data (0028,1052) and the Rescale Slope (RS) metadata
(0028,1053), fields stored in the DICOM format.

The transformation T is used for all pixels of the image I
and is given by

T (x, y) = I(x, y) ·RS +RI.

Intensities were normalized linearly, considering Min and
Max, respectively, as the minimum and maximum intensities
of the image I , as well as newMin and newMax the new
minimum and maximum limits.

I(x, y) = (I(x, y)−Min) · newMax− newMin
Max−Min

+ newMin

Finally, we use Gaussian filter Gσ for smoothing artifacts
and noise.1 Empirically, a σ suitable for these images ranges
from 0.8 to 2.4.

2) Initialization of LSF: Three level curves are initialized
and evolved in parallel for each image, starting from the basal
state of the vocal tract. They individually comprise the region
above the air cavity, below the air cavity and the wall of the
pharynx. It is sufficient that the initial contours are close to
the regions, even if they do not perfectly represent the edges.
Some points of these contours are chosen to identify the limits
of the articular structures.

Both the vocal tract reference contours and the invariant
points of the articulatory structures are parametrized in the
model only once per speaker – this is all the prior information.

We also point that the evolution of vocal tract segmentation
through three curves, and not a single one, is motivated by
two reasons: the dynamics of articulators is refined (e.g. the
tongue is an articulator that exhibits a movement that leads to
several constriction possibilities); isolating the regions would
allow, if necessary, to adopt specific evolutionary strategies
(e.g. a different α signal).

3) Regularized Distance for Level Set Segmentation: In
conventional methods, an LSF can evolve with anomalies
caused by numerical errors and curve stability. A common
technique to avoid such irregularities is to restart the curve,
i.e., suspending its natural evolution and remodeling the LSF
as a function of distance. However, as shown in [25], this
shows a conflict between theory and practice, in addition to

1Anisotropic diffusion and bilateral filter were also tested at this stage, but
did not present relevant gains for the segmentation result.

introducing other difficulties, such as the condition to restart
the LSF.

The concept of level sets was expanded in [26] with a vari-
ational formulation. They introduced a term of regularization
that makes unnecessary to restart the LSF. (Anticipating to the
reader: the evolution of level set will be given as the gradient
flow that minimizes an energy functional.)

Let φ : Ω → R be a LSF defined on a domain Ω with
φ(x, t), as x the spatial component and t ≥ 0 the time
component. We define an energy functional:

E(φ) = µRp(φ) + λLg(φ) + αAg(φ) (1)

where Rp(φ) is a regularization term of the level set with
a potential function p that forces the absolute value of the
gradient to one of the minimum points of the level set; µ, λ >
0 and α ∈ R are constants; Lg(φ) is the line integral over the
zero level set curve; Ag(φ) corresponds to the weight given to
the area of the region of interest (inside the zero level set) - this
term accelerates the evolution of LSF when the initial contour
is far from the region of interest. Such terms are defined by
the functional:

Rp(φ) =

∫
Ω

p(|∇φ|)dx (2)

Lg(φ) =

∫
Ω

gδ(φ)|∇φ|dx (3)

Ag(φ) =

∫
Ω

gH(−φ)dx (4)

Note that g is an edge indicator2, δ is Dirac delta function,
and H is Heaviside function. We also observe that δ(φ) is
zero, except when considering the zero level of the LSF.

Li et al. propose a p double potential function for the
regularization term

p(s) =

{ 1
(2π)2 (1− cos(2πs)) if s ≤ 1
1
2 (s− 1)2 if s ≥ 1

This p function has two minimum points: s = 0 and s = 1.
Its goal is to keep the distance property |∇φ| = 1 only in a
neighborhood of the zero level set to ensure the accuracy of
its evolution. The LSF is constant with |∇φ| = 0 in regions
far from the zero level set, leading to curve smoothness.

Substituting in eq. (1) the eqs. (2) to (4), we have the
following approximation for the energy functional:

Eε(φ) = µ

∫
Ω

p(|∇φ|)dx + λ

∫
Ω

gδε(φ)|∇φ|dx+

+α

∫
Ω

gHε(−φ)dx

(5)

Finally the evolution of the level set φ will be derived from
the gradient flow that minimizes the functional energy Eε(φ).

2We used g defined by 1
1+|∇Gσ*I|2 , which is the convolution of Gaussian

kernel and I .



4) Gradient flow for energy minimization: We will mini-
mize an energy functional F(φ) to find the solution of the
steady state of the gradient flow equation [27]:

∂φ

∂t
= −∂F

∂φ

where ∂F
∂φ is Gâteux derivative of functional F(φ).

Gâteux derivative of this functional

F(φ) =

∫
Ω

L (x, φ(x),∇φ(x)) dx

is defined by

∂F
∂φ

=
∂L

∂φ
(x, φ,∇φ)−

n∑
i=1

∂

∂xi

(
∂L

∂φxi
(x, φ,∇φ)

)
(6)

where φxi represents ∂φ
∂xi

. Applying eq. (6) to eqs. (2) to (4),
we have:

∂Rp
∂φ

=
∂

∂x

p′ · φx√
φ2
x + φ2

y

+
∂

∂y

p′ · φy√
φ2
x + φ2

y


= ∇ ·

p′ · φx√
φ2
x + φ2

y

, p′ · φy√
φ2
x + φ2

y


= div

(
p′ (|∇φ|) ∇φ

|∇φ|

)
(7)

∂Lg
∂φ

=
∂

∂x

gδ(φ)
φx√
φ2
x + φ2

y

+
∂

∂y

gδ(φ) · φy√
φ2
x + φ2

y


= δ(φ) · div

(
g
∇φ
|∇φ|

)
(8)

∂Ag
∂φ

= αgδ(φ), hence δ function, by definition, (9)

is the derivative of H function.
Replacing eqs. (7) to (9) in gradient flow equation from

eq. (5):

∂φ

∂t
= µ · div

(
p′ (|∇φ|) ∇φ

|∇φ|

)
+

+ λδε(φ) · div
(
g
∇φ
|∇φ|

)
+ αgδε(φ),

(10)

5) Implementation: Li et al. implemented this method with
regularized distance using finite differences. In our implemen-
tation, we assumed:

1) ∆x = ∆y = 1;
2) ∆t = 5;
3) µ = 0.04;
4) λ = 5;

5) α = ±1.3.
∆t must satisfy Courant-Friedrichs-Lewy condition for a

functional F :

∆t ≤ min(∆x,∆y)

max|Fij |
.

The experiments carried out by Li et al., as much as ours,
do not bring sensitivity of µ and λ parameters. α parameter is
quite relevant and depends on the type of image used; the sign
of α is essential to cause contraction or expansion of LSF.

6) Temporal coherence in vocal tract segmentation: Once
the vocal tract has been outlined in one image, the process
will be repeated over the subsequent ones. With the vocal
tract contour, the following images take benefit from previous
segmentation results, increasing efficiency and accuracy of the
segmentation process.

After k interactions, once segmentation is finished, φk will
be φ0 for next image, i.e., the model will re-initialize with the
previous segmentation result.

The most important leverage is to capture similarities among
images caused by temporal coherence, without the need of
samples for training. Prior information of the contour was
used to constrain the segmentation only in the first frame,
encapsulating it in the evolutionary term of level set curve.

7) Identification of vocal tract structures: The variability of
vocal tract articular structures in the speech process, especially
caused by occlusions, is captured in the external energy
functional minimization process. This expands or contracts
the level curve for the region of interest, starting from the
structures locality in previous segmentation. Five invariant
points are manually marked only in the image that initializes
the method:
• P1: at upper dental arch, separating the upper lip from

hard palate;
• P2: at hard palate, separating it from the palatine veil;
• P3: at lower dental arch, separating the lower lip from

anterior part of the tongue;
• P4: at the beginning of epiglottis, separating it from the

back of the tongue;
• P5: at the end of epiglottis, separating it from the wall

of pharynx.
The automatic identification of vocal tract structures is

derived from level set curve evolution associated with tem-
poral coherence. The deformations of vocal tract propagate
the limits of articular structures, invariant points, along the
segmentations.

C. Validating the results

Segmentation is one of the methods that require evaluation
to determine if the obtained result is close to what is con-
sidered “true” [28]. In time, we point a dichotomy between
gold standard and ground truth: while this would be a true
(exact, perfect) but non-existent segmentation, that represents a
reasonable segmentation in suitable conditions for comparison
ends. In our context, the “truth” is circumscribed to the gold
standard.



The evaluation of segmentation method can be accom-
plished with qualitative techniques, which correspond to vi-
sual comparisons of the segmentation result with a reference
segmentation, and quantitative techniques, which briefly refer
to the accuracy, precision and efficiency of the method [28].

Thus we performed manual segmentations (construction of
the gold standard) to be used in the qualitative and quantitative
evaluation.

The qualitative evaluation needs was done by a specialist
in speech therapy that judged if vocal tract contour as well as
the articulators highlighted are credible.

The quantitative evaluation involved the measurement of
several quantities that we detail below.

1) Comparison metrics: Appropriate metrics for comparing
segmented regions are discussed in [29]–[31]. In our context,
we will consider the metrics: Jaccard, Dice, Tanimoto, Accu-
racy, True Positive, True Negative, False Positive, False Nega-
tive Rates, and Hausdorff distance. These metrics evaluate the
automatic segmentation in relation to a manual segmentation,
in terms of areas and distances between the contours. We will
compare them to evaluate segmentation quantitatively.

IV. RESULTS

We present the results with our methodology, aiming to
distinguish the air cavity from the tissues of vocal tract, as
well as to identify articulatory structures.

A. Initial images

The whole process starts from rtMRI of the vocal tract, such
as the image 2a, and ends with segmentations of the articular
structures, such as the image 2b.

(a) (b)

Fig. 2: Sagittal slice of vocal tract with resolution 0.625 ×
0.625 mm2. Image 2a corresponds to the ninth frame of the
analyzed series. Image 2b is the result of segmentation. The
invariant points, listed in III-B7, are highlighted in orange.

We performed the manual segmentation of 10 representa-
tive frames of vocal tract the articulation, comprising basal,
constrictive, and occlusal states (see Fig. 3). We recall that
such segmentations are used as gold standard in the qualitative
and quantitative evaluations, and have been submitted to the
criticism of a speech and language therapy specialist.

B. Qualitative Evaluation of LSF Evolution

The model is initialized from a single manual segmentation
and five invariant points – this is the only prior information.

We present the segmentation of vocal tract along several
frames (see Fig. 4), in which different states of the articulators
are observed, including situations of occlusions and artifacts
generated by magnetic field inomogeneity (especially on the
lips).

In red, the lips are standing out; in yellow, the hard palate
and the tongue; in turquoise blue, the palatine veil; in green,
the epiglottis; in dark blue, the wall of the pharynx and the
glottis.

C. Quantitative Evaluation of LSF Evolution

Considering the metrics, applied to the same qualitatively
evaluated frames, we have the results presented in Tables I
to III.

D. Analysis of results

From the qualitative point of view, speech and language
specialist assessed the segmentations as correct. In some
frames, there is some overlap of the contours when palatine
veil and wall of the pharynx are oppressed. 3

From the quantitative point of view, regarding the measures
used in the areas between manually and automatically seg-
mented regions – Jaccard, Dice, Tanimoto –, we have a fairly
high identification among the regions in general, but especially
for the region of pharynx and lower vocal tract. The upper
vocal tract region has lower rates of about 80% on average as
opposed to 90% in the other regions. In terms of sensitivity and
specificity, the model presented high rates of TPR and TNR
in all regions. But it is important to mention that the rate of
false negatives increases substantially for the upper region.

Considering the perimeter matching between manual and
automatic segmentation, evaluated by Haussdorf distance, we
have a mean of 1.63 mm for the pharyngeal region, 2.41 mm
for the lower region, and 2.89 mm for the upper region.
In comparison of absolute values, the distances are small;
in relative terms, the position of some structures may be
punctually misleaded – for instance, the position of tip of the
tongue.

Finally, we point that the use of level sets the robustness
for deformations of the vocal tract, which stems from the
evaluation in subpixel adopted in the method. The consistency
shown is also relevant compared to the possible human errors
resulting from manual segmentation.

V. CONCLUSION

Real-time magnetic resonance imaging has led to unprece-
dented progress in the study of speech. In the last decade,
several methodologies have been developed to enhance the
understanding of the articulatory process, using different types
of evaluation from the simple analysis of vowels to the

3A possibility of improvement arises: to restrain parallel evolution to the
upper and lower regions; the second step would be to segment the wall of the
pharynx subject to the limits imposed by previous ones.



TABLE I: Segmentations of pharyngeal region

Frame Jaccard Dice Tanimoto Accuracy TPR TNR FPR FNR Haussdorf (mm)
13 93% 97% 93% 98% 93% 100% 0% 7% 2,07
14 97% 99% 97% 99% 98% 100% 0% 2% 1,53
15 94% 97% 94% 98% 94% 100% 0% 6% 1,77
18 96% 98% 96% 99% 98% 99% 1% 2% 1,40
22 95% 98% 95% 98% 95% 100% 0% 5% 1,53
23 97% 99% 97% 99% 98% 100% 0% 2% 1,25
25 96% 98% 96% 98% 96% 100% 0% 4% 1,88
29 95% 98% 95% 98% 96% 100% 0% 4% 2,34
30 97% 98% 97% 99% 97% 100% 0% 3% 1,25
36 96% 98% 96% 98% 96% 100% 0% 4% 1,25

TABLE II: Segmentations of lower vocal tract

Frame Jaccard Dice Tanimoto Accuracy TPR TNR FPR FNR Haussdorf (mm)
13 92% 96% 92% 98% 93% 100% 0% 7% 2,58
14 91% 95% 91% 98% 92% 100% 0% 8% 3,06
15 91% 95% 91% 98% 93% 99% 1% 7% 2,65
18 90% 95% 90% 97% 92% 99% 1% 8% 2,17
22 93% 96% 93% 98% 97% 98% 2% 3% 2,17
23 92% 96% 92% 98% 95% 99% 1% 5% 2,25
25 94% 97% 94% 98% 96% 99% 1% 4% 2,17
29 89% 94% 89% 97% 92% 99% 1% 8% 2,34
30 92% 96% 92% 98% 93% 99% 1% 7% 2,17
36 92% 96% 92% 98% 93% 99% 1% 7% 2,58

TABLE III: Segmentations of upper vocal tract

Frame Jaccard Dice Tanimoto Accuracy TPR TNR FPR FNR Haussdorf (mm)
13 85% 92% 85% 98% 85% 100% 0% 15% 2,80
14 84% 91% 84% 98% 86% 100% 0% 14% 2,58
15 86% 93% 86% 98% 87% 100% 0% 13% 2,86
18 87% 93% 87% 99% 89% 100% 0% 11% 3,25
22 83% 91% 83% 98% 85% 100% 0% 15% 2,72
23 83% 91% 83% 98% 84% 100% 0% 16% 3,19
25 79% 88% 79% 97% 81% 100% 0% 19% 2,65
29 78% 87% 78% 97% 79% 100% 0% 21% 3,00
30 83% 90% 83% 98% 83% 100% 0% 17% 3,00
36 87% 93% 87% 98% 87% 100% 0% 13% 2,86

elaboration of anatomic-geometric models for the vocal tract.
In particular, it is possible to verify that the vast majority of
models requires interaction with user at some point, so that it
provides information that the method is not able to identify
(e.g. the air cavity as a function of constriction of tongue).

In the context of vocal tract segmentation, we noticed the
contrast of air-tissue interface in the vocal tract and, thus, we
also investigated the application of operators that extract the
edges of structures. We studied methods based on discrete
differentials (Roberts, Sobel, Prewitt, and Laplacian of Gaus-
sian); some morphological operators, especially morphological
gradients; Canny operator; and watershed based partitioning
technique. None of them proved to be flexible or robust enough
to deal with occlusions, which are frequent in vocal tract
dynamics, and, above all, to capture temporal coherence of
forms.

In this work, we developed a methodology which is based
on level set curves with regularized distance for static images
[26]. But it differs from that by using three LSFs simultane-
ously, perpetuating key points over dynamic medical images,
and leading to classification of structures. We do not require
training base, nor specific treatment for any language, but only
the prior knowledge of vocal tract structure of the speaker for

method initialization. The text read consisted of a fixed number
of sentences that presented phonetic variations in prosodic and
phonological contexts, underlying to characteristics of daily
conversation. The results captured the contour of the vocal
tract correctly, considering flexibility to deal with degenera-
tion, occlusion, and division of vocal tract structures. In this
sense, the use of temporal coherence was fundamental for level
sets evolution. It should be noted that, in the absence of prior
information, although robust, LSFs do not consistently capture
the vocal tract contours.

With respect to the identification of articulatory structures,
we obtained relevant independence from the characterization,
sometimes statistical, of shapes variation – which is considered
in most other methods from the literature. Prior information,
regarding only the initial image, once per speaker, comprises
the identification of five invariant points of articulatory struc-
tures. These points add positioning of structures to the model,
but not interfere in the evolution of the level set function.

We also point the relevance of temporal resolution, in order
to guarantee a gradual transition of articulatory structures
movement along the frames, and not just a sudden change
of state. In addition, different facial biotypes should be con-
sidered before clinical practice.



(a) Frame 13 (b) Frame 14

(c) Frame 15 (d) Frame 18

(e) Frame 22 (f) Frame 23

(g) Frame 25 (h) Frame 29

(i) Frame 30 (j) Frame 36

Fig. 3: The accuracy of manual segmentation is dependent
on the sensitivity of acquisition instrument. It is required
anatomical knowledge for correct distinction of articulators.

(a) Frame 13 (b) Frame 14

(c) Frame 15 (d) Frame 18

(e) Frame 22 (f) Frame 23

(g) Frame 25 (h) Frame 29

(i) Frame 30 (j) Frame 36

Fig. 4: Evolution of LSF over several frames. Frame 22:
we notice the presence of artifact on the lower lip due to
constriction.



This methodology may be used in innovative applications,
such as the creation of systems for accent-suppression, speech
production for laryngectomized patients, and therapy of chil-
dren suffering from speech apraxia.
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Pesquisa do Estado de São Paulo (FAPESP) for supporting
this research (grant no. 2015/20814-8).

REFERENCES

[1] E. Bresch, Y. C. Kim, K. Nayak, D. Byrd, and S. Narayanan, “Seeing
speech: Capturing vocal tract shaping using real-time magnetic reso-
nance imaging [Exploratory DSP],” IEEE Signal Processing Magazine,
vol. 25, no. 3, pp. 123 – 132, 2008.

[2] D. Whalen, K. Iskarous, M. Tiede, and D. Ostry, “The haskins optically
corrected ultrasound system (HOCUS),” Journal of Speech, Language,
Hearing Research, vol. 48, pp. 543 – 554, 2005.

[3] J. Fontecave and F. Berthommier, “Semi-automatic extraction of vocal
tract movements from cineradiographic data,” in Interspeech, 2006, pp.
569 – 572.

[4] J. S. Perkell, M. H. Cohen, M. A. Svirsky, M. L. Matthies, I. Garabi-
eta, and M. T. T. Jackson, “Electromagnetic midsagittal articulometer
systems for transducing speech articulatory movements,” Journal of the
Acoustical Society of America, vol. 92, no. 6, pp. 3078 – 3096, 1992.

[5] T. Baer, J. C. Gore, L. C. Gracco, and P. W. Nye, “Analysis of vocal
tract shape and dimensions using magnetic resonance imaging: Vowels,”
Journal of the Acoustical Society of America, vol. 90, pp. 799 – 828,
1991.

[6] C. Alvey, C. Orphanidou, J. Coleman, A. McIntyre, S. Golding, and
G. Kochanski, “Image quality in non-gated versus gated reconstruction
of tongue motion using magnetic resonance imaging: a comparison
using automated image processing,” International Journal of Computer
Assisted Radiology and Surgery, pp. 457 – 464, 2008.

[7] D. Demolin, S. Hassid, T. Metens, and A. Soquet, “Real-time MRI and
articulatory coordination in speech,” Comptes Rendus Biologies, vol.
325, no. 4, pp. 547 – 556, 2002.

[8] P. Badin, G. Bailly, M. Raybaundi, and C. Segebarth, “A three-
dimensional linear arti-culatory model based on MRI data,” in 5th
International Conference on Spoken Language Processing, 1998, pp.
417 – 420.

[9] A. L. D. Martins, “Aumento de resoluo de imagens de ressonncia
magntica do trato vocal utilizadas em modelos de sntese articulatria,”
Ph.D. dissertation, UFSCAR, Brasil, 2011.

[10] F. N. Gregio, “Configurao do trato vocal supragltico na produo das vo-
gais do portugułs brasileiro: dados de imagens de ressonncia magntica,”
Master’s thesis, PUC-SP, Brasil, 2006.

[11] S. Narayanan, K. Nayak, S. Lee, A. Sethy, and D. Byrd, “An approach
to real-time magnetic resonance imaging for speech production,” The
Journal of the Acoustical Society of America, vol. 115, no. 4, pp. 1771
– 1776, 2004.

[12] V. Lecuit, “Sagittal cut to area function transformations: A comparative
study,” Mmoire, 1992.

[13] D. Demolin, T. Metens, and A. Soquet, “Three-dimensional measure-
ment of the vocal tract by MRI,” Philadelphia, USA, 1996, pp. 272 –
275.

[14] M. Stone, E. P. Davis, A. S. Douglas, M. N. Aiver, R. Gullapalli, W. S.
Levine, and A. J. Lundberg, “Modeling tongue surface contours from
cine-MRI images,” Journal of Speech and Hearing Research, vol. 44,
no. 5, pp. 1026 – 1040, 2001.

[15] E. Bresch and S. Narayanan, “Region segmentation in the frequency
domain applied to upper airway real-time magnetic resonance images,”
IEEE Transactions on Medical Imaging, vol. 28, no. 3, pp. 323 – 338,
2009.

[16] J. Kim, N. Kumar, S. Lee, and S. Narayanan, “Enhanced airway-tissue
boundary segmentation for real-time magnetic resonance imaging data,”
International Seminar on Speech Production, 2014.

[17] Z. Raeesy, S. Rueda, J. K. Udupa, and J. Coleman, “Automatic segmen-
tation of vocal tract images,” IEEE 10th International Symposium on
Biomedical Imaging: From Nano to Macro, 2013.

[18] M. S. Avila-Garca, J. N. Carter, and R. I. Damper, “Extracting tongue
shape dynamics from magnetic resonance image sequences,” in Inter-
national Conference on Signal Processing, 2004, pp. 288 – 291.

[19] A. Eryildirim and M. Berger, “A guided approach for automatic seg-
mentation and modeling of the vocal tract in MRI images,” in European
Signal Processing Conference (EUSIPCO), 2011.

[20] M. Vasconcelos, S. Ventura, D. Freitas, and J. Tavares, “Towards the
automatic study of the vocal tract from magnetic resonance images,”
Journal of Voice, vol. 25, no. 6, pp. 732 – 742, 2011.

[21] S. Rueda and J. Udupa, “Global-to-local, shape-based, real and virtual
landmarks for shape modeling by recursive boundary subdivision,” in
Proceedings SPIE, vol. 7962, 2011, pp. 796 247–796 247–13.

[22] J. Liu and J. Udupa, “Oriented active shape models,” IEEE Transactions
on Medical Imaging, vol. 28, no. 4, pp. 571 – 584, 2009.

[23] A. Lammert, V. Ramanarayanan, M. Proctor, and S. Narayanan, “Vocal
tract cross-distance estimation from real-time MRI using region of
interest analysis,” in Interspeech, 2013.

[24] S. Silva and A. Teixeira, “Unsupervised segmentation of the vocal tract
from real-time MRI sequences,” Comput. Speech Lang., vol. 33, no. 1,
pp. 25–46, Sep. 2015.

[25] J. Gomes and O. Faugeras, “Reconciling distance functions and level
sets,” J. Vis. Commun. Image Represent., vol. 11, no. 2, pp. 209–223,
2000.

[26] C. Li, C. Xu, C. Gui, and M. Fox, “Distance regularized level set
evolution and its application to image segmentation,” Image Processing,
IEEE Transactions on, vol. 19, no. 12, pp. 3243–3254, 2010.

[27] G. Aubert and P. Kornprobst, Mathematical Problems in Image Pro-
cessing: Partial Differential Equations and the Calculus of Variations
(Applied Mathematical Sciences). Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2006.

[28] E. Berry, A Practical Approach to Medical Image Processing, ser. Series
in Medical Physics and Biomedical Engineering. CRC Press, 2007.

[29] K. Babalola, B. Patenaude, P. Aljabar, J. Schnabel, D. Kennedy,
W. Crum, S. Smith, T. Cootes, M. Jenkinson, and D. Rueckert, “Compar-
ison and evaluation of segmentation techniques for subcortical structures
in brain MRI,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2008. Springer, 2008, pp. 409–416.

[30] R. Morey, C. Petty, Y. Xu, J. Hayes, H. Wagner, D. Lewis, K. LaBar,
M. Styner, and G. McCarthy, “A comparison of automated segmen-
tation and manual tracing for quantifying hippocampal and amygdala
volumes,” Neuroimage, vol. 45, no. 3, pp. 855–866, 2009.

[31] T. Kohlberger, V. Singh, C. Alvino, C. Bahlmann, and L. Grady, “Evalu-
ating segmentation error without ground truth,” in Medical Image Com-
puting and Computer-Assisted Intervention–MICCAI 2012. Springer,
2012, pp. 528–536.


