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Abstract—Geographic mapping of coffee crops by using remote
sensing images and supervised classification has been a chal-
lenging research subject. Besides the intrinsic problems caused
by the nature of multi-spectral information, coffee crops are
non-seasonal and usually planted in mountains, which requires
encoding and learning a huge diversity of patterns during the
classifier training. In this paper, we propose a new approach for
automatic mapping coffee crops by combining two recent trends
on pattern recognition for remote sensing applications: deep
learning and fusion/selection of features from multiple scales.
The proposed approach is a pixel-wise strategy that consists in
the training and combination of convolutional neural networks
designed to receive as input different context windows around
labeled pixels. Final maps are created by combining the output
of those networks for a non-labeled set of pixels. Experimental
results show that multiple scales produces better coffee crop maps
than using single scales. Experiments also show the proposed
approach is effective in comparison with baselines.

Index Terms—Deep Learning; Remote Sensing; Coffee Crops;
High-resolution Images; Agriculture.

I. INTRODUCTION

Cropland planning, which is typically represented by using
thematic maps, is fundamental in computational agribusiness
applications. In some countries, the correct mapping of crop
areas is also a requirement for including producers in govern-
ment funding programs. Although many land use surveys are
still done manually, the use of remote sensing images as a
source of information to automatically create thematic maps
is becoming more common over the years [1, 2].

Despite of recent advances in image acquisition and in
supervised classification algorithms, recognition of crop re-
gions in remote sensing images still poses many challenges.
In the State of Minas Gerais (Brazil), coffee farming is a
very important economic activity [3]. Coffee crop recognition
is difficult because it is usually cultivated in mountainous
regions. This causes shadows and distortions in the spectral
information, which makes hard the classification and inter-
pretation of shaded objects in the image because spectral
information is either reduced or totally lost. Moreover, growing
of coffee is not a seasonal activity, and, therefore, in the same
region, there may be coffee plantations of different ages, which
also affects the observed spectral patterns [4, 5].

Traditional automatic methods based on supervised clas-
sification for high spatial resolution remote sensing images
are composed by three main steps [1, 2, 6]: (i) segmentation,
(ii) feature extraction and, (iii) training. In this context, many
works have been demonstrated the importance of combining
features from multiple scales in order to obtain high quality
automatic thematic maps [6, 7].

More recently, new state-of-the-art results have been
achieved by deep learning-based approaches in pattern recog-
nition for remote sensing applications [8]. The main advan-
tages of deep-based strategies is the capability of learning data-
driven spatial features and classifiers (in different layers) and
adjusting this learning, in running time, based on the accuracy
of the network, giving more importance to one layer than
another depending on the problem. As a drawback, these deep
learning strategies usually require too much labeled samples.
Concerning automatic creation of thematic maps, specifically,
some strategies have been proposed for learning not only high-
quality spectral-spatial features but also the pixel context in an
integrated way, which avoid the need of segmenting the image
as a first step [9, 10].

This work aims at identifying coffee plantations in high spa-
tial resolution remote sensing images. The proposed approach
employs deep-based semantic segmentation to automatically
learn coffee patterns. In order to obtain more accurate maps,
we have proposed to learn and combine coffee patterns in
multiple scales, as presented in Fig. 1. More specifically, we
proposed and evaluated three convolutional neural network
architectures based on context window concept [9] and a
majority voting scheme to combine their outputs in a single
multiscale final map.

The remainder of this paper is structured as follows. Re-
lated work is presented in Section II. Section III presents
the methodology. Experimental protocols as well as obtained
results are discussed in Section IV. Finally, in Section V we
conclude the paper and point out promising directions for
future work.

II. RELATED WORK

The development of algorithms for spatial extraction in-
formation is a hot research topic in the remote sensing
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Fig. 1. The proposed approach. Non-labeled pixels are classified by ConvNets that consider different-size context windows around each pixel as input. This
process generates a probability map for each ConvNet that are combined to create the Final Map.

community [11]. It is mainly motivated by the recent ac-
cessibility of high spatial resolution data provided by new
sensor technologies. Even though many visual descriptors have
been proposed or successfully used for remote sensing image
processing [12–14], some applications demand more specific
description techniques. As an example, very successful low-
level descriptors in computer vision applications do not yield
suitable results for coffee crop classification, as shown in [15].
Thus, common image descriptors can achieve suitable results
in most of applications. Furthermore, higher accuracy rates
are yielded by the combination of complementary descriptors
that exploits late fusion learning techniques. Following this
trend, many approaches have been proposed for selection of
spatial descriptors in order to find suitable algorithms for each
application [16–18]. Cheriyadat [17] proposed a feature learn-
ing strategy based on Sparse Coding, which learned features
from well-known datasets are used for building detection in
larger image sets. Faria et al. [16] proposed a new method
for selecting descriptors and pattern classifiers based on rank
aggregation approaches. Tokarczyk et al. [18] proposed a
boosting-based approach for the selection of low-level features
for very-high resolution semantic classification.

Despite the fact the use of Neural Network-based ap-
proaches for remote sensing image classification is not re-
cent [19], its massive use is recent motivated by the study on
deep learning-based approaches that aims at the development
of powerful application-oriented descriptors. Many works have
been proposed to learn spatial feature descriptors [20–23].
Firat et al. [20] proposed a method that combines Markov
Random Fields with ConvNets for object detection and clas-
sification in high-resolution remote sensing images. Hung et
al. [21] applied ConvNets to learn features and detect invasive
weed. In [22], the authors presented an approach to learn fea-
tures from Synthetic Aperture Radar (SAR) images. Zhang et
al. [23] proposed a deep feature learning strategy that exploits
a pre-processing salience filtering. Moreover, new effective
hyperspectral and spatio-spectral feature descriptors [24–27]
have been developed mainly boosted by the deep learning
growth in recently years.

Regarding coffee crop recognition tasks, some recently pub-
lished works have proposed approaches based on supervised

classification to classify segmented regions [4, 6]. Other works
have also addressed the coffee crop recognition problem by
improving scene classification instead of investigating seman-
tic segmentation [28, 29]. Finally, some effort has been done in
order to apply deep-based strategies to create coffee land-cover
maps [5, 9]. Besides the aforementioned efforts, to the best of
our knowledge, the proposed approach differs from literature
because there is no other one for geographical mapping of
coffee crops based on deep learning considering multiple
pixel-wise semantic segmentation scales for high-resolution
remote sensing images.

III. THE PROPOSED APPROACH

Our approach consists in the combination of Convolutional
Networks (ConvNets) that learn patterns in different scales
to assign a class to each pixel from an input remote sensing
image. This strategy is based on the notion of context win-
dows proposed in [9] and introduced in Section III-A. These
windows are used by the ConvNets, which architecture is
presented in Section III-B, to extract information and classify
the pixels. Finally, the final multi-classifier is described in
Section III-C.

A. Context Windows

As introduced, the proposed coffee crop mapping is based
on a pixel-wise technique, in which each and every pixel of
the input image is classified independently. Given that the
information extracted from the pixel itself may not be enough
to allow its classification, we employ the notion of context
window. This notion is based on the fact that the pattern
of each pixel is represented by a sufficiently large context
window which is centered on the pixel in order to include the
pattern of its neighborhood. This window allows the approach
to extract relevant information about the region of the centered
pixel, which may help in its final classification. Note that the
context window may require a different ConvNet architecture
depending on its size to capture the relative scale patterns.
Thus, it is obviously that different size of context windows
(one for each scale) produces distinct features for the same
pixel.
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Fig. 2. Example of multiple context windows for the same pixel (a–c). The
patterns are represented by windows centered on the pixel of interest to include
the context of its neighborhood.

B. Convolutional Networks Architecture

Convolutional networks (ConvNets) [30], a deep learning
technique, are defined by neural network architectures typi-
cally composed of many layers. Each layer is composed of
processing units, also known as neurons. They can simultane-
ously learn data-driven features and classifiers. Furthermore,
the learning rate can be adjusted, in runtime, based on the
accuracy of the network.

This feature learning step may be stated as a technique that
learns a transformation of raw data input to a representation
that improves the class separability [30]. Since encoding the
spatial features in an efficient and robust fashion is the key
for generating discriminatory models, the feature learning
step is a great advantage of ConvNets when compared to
conventional methods, such as low- and mid-level methods.
This advantageous process takes place in multiple layers
(responsible for encoding spatial features automatically) that
learn adaptable and specific feature representations in a data-
dependent hierarchical way. As a result, low-level descriptors
are learned in initial layers of the network and high-level
features in the deeper ones. This process aims to extract
all feasible information from the data, which creates robust
features and classifiers.

Formally, given a set of labeled sample pixels and their
contextual windows, the process for learning representations
and classifiers to semantically segment remote sensing images
consists in training a ConvNet to learn the feature patterns that
compose the class of interest regions.

This process was performed, in this paper, by three networks
presented in Fig. 3, Fig. 4, and Fig.5. It is important to
point out that the ConvNet architecture is dependent on the
contextual window size. Complex patterns with many objects
and structures may require large window size. Consequently,
large window size requires more complex ConvNets, i.e., more
layers, filtering and pooling operations. The architectures,
based on the one proposed by Nogueira et al. [9], have three
convolutional layers and two fully-connected. However, they
differ considerably on the size of filters and the strides of the
convolutional layers.

Specifically, the ConvNet #1 receives as input 17×17 pixels
context windows and all convolutional layers are composed by
3 × 3 filters with stride 1. The ConvNet #2 receives as input
25 × 25 pixels context windows. The first two convolutional
layers are composed by 4 × 4 filters with stride 1. The last

convolutional layer optimize 3 × 3 filters with stride 1. The
ConvNet #3 receives as input 33× 33 pixels context windows
and all convolutional layers are composed by 4×4 filters with
stride 1.
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Fig. 3. ConvNet #1: architecture with 17× 17 context windows as input.
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Fig. 4. ConvNet #2: architecture with 25× 25 context windows as input.
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Fig. 5. ConvNet #3: architecture with 33× 33 context windows as input.

As can be seen in Fig. 3, Fig. 4, and Fig. 5, some auxiliary
techniques were employed between some of layers, such as
dropout regularization [31] and max pooling. It is important to
emphasize that Rectified Linear Unit (ReLU) is the processing
unit selected to be used in all layers of the proposed ConvNets
because of its advantages when compared to others (such
as Hyperbolic Tangent and Sigmoid), including: (i) works
better to avoid saturation during the learning process; (ii)
induces the sparsity in the hidden units; and (iii) does not
face gradient vanishing problem [32] as with Sigmoid and
Hyperbolic Tangent functions.

The size of context windows are empirically defined accord-
ing with the usual size of coffee crops in real world. Thus,
ConvNet #1 considers 20m around each pixel, ConvNet #2
encodes features in a 30m radio, and ConvNet #3 considers
40m around the pixels. The main difference among them is
the classical tradeoff between context information and noise,
i.e., the largest ConvNet is used to encode more context and



less noise, while the small one may be used in cases when
larger context brings too much noise, disturbing the results.

C. Multi-scale Classifier

Given an input image, the process of creating a coffee crop
map consists in two main steps: (i) classification of context
windows; and (ii) the combination of probabilities maps from
each ConvNet.

As mentioned, the first step is the classification of the
multiple context windows for each unlabeled pixel by using the
ConvNets proposed in Section III-B. This process also works
for a set of non-contiguous pixels, which means that predicted
regions could be in the same remote sensing image. When a
context window is classified by a ConvNet, the probability
function generated by this classification is, in fact, associated
with the pixel at the center of that window. This process allows
the method to create a probability map over entire regions (or
images), which, after some post-processing method, results in
a semantic segmented image.

The second step is the combination of the output probability
map from each ConvNet. In this work, we combine the output
probability maps from the ConvNets by using a majority
voting scheme, as shown in Fig. 6. Given the class probabilities
of each ConvNet, the final class is defined by their sum. The
final class is the one with maximum sum probability.
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ConvNet #3
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Fig. 6. Example of probability combination for deciding the final class of an
input pixel.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experiments that we per-
formed to validate our method. We have carried out experi-
ments in order to address the following research questions: (1)
is multiple scale combination more effective than individual
ConvNets for semantic segmentation of coffee crops? (2) Are
the proposed methods effective in the coffee crop recognition
problem when compared to the baselines?

A. Setup

1) Baselines: We compare the proposed method against
two approaches that follows the traditional three-main-step
strategy: (i) segmentation, (ii) feature extraction and, (iii)
classification. These approaches, named here as MSC-Boost
and HMSC-Boost, are based on boosting of classifiers and
combine features from multiple segmentation scales [6]. In
our experiments, both approaches are implemented to consider

features extracted from five segmentation scales. The main dif-
ference between them is that MSC-Boost consider all regions
segmented over the segmented scales while HMSC-Boost starts
from the coarse regions and use the other scales in sequence as
refinement steps. We have used the same engineered features
of the original paper [6]. For a better comparison, we also
include results with a SVM with RBF and the best engineered
descriptor in the best segmentation scale as reported in [6].

2) Dataset: It is a composition of scenes taken by the
SPOT sensor in 2005 over Monte Santo de Minas county,
State of Minas Gerais, Brazil. This area is a traditional
place of coffee cultivation, characterized by its mountainous
terrain. In addition to common issues in the area of pattern
recognition in remote sensing images, these factors add further
problems that must be taken into account. In mountainous
areas, spectral patterns tend to be affected by the topographical
differences and by interferences generated by shadows. This
dataset provides an ideal environment for multi-scale analysis,
since the variations in topography require the cultivation of
coffee in different crop sizes. Another problem is that coffee is
not an annual crop. This means that, in the same area, there are
plantations of different ages. In terms of classification, we have
several completely different patterns representing the same
class while some of these patterns are much closer to other
classes. The dimensions of the image used are 3000 × 3000
pixels with spatial resolution equals to 2.5m. To facilitate
the experimental protocol, we divided the dataset into a grid
of 3 × 3, generating 9 subimages with dimensions equal to
1000× 1000 pixels. In the experiments, we used 10 different
sets of 1 million pixels each, to be used for training and
classification (testing stage). The results of the experiments
described in the following sections are obtained from all
combinations of the 9 subimages used (6 for training and 3
for classification).

3) Assessment of results: To analyze the results, we com-
puted the overall accuracy and Kappa index for the classified
images at each iteration. In our experiments, the overall accu-
racy is defined as the sum of true positive and true negative
samples divided by the total number of samples. Kappa is
an effective index to compare classified images, commonly
used in RSI classification [6]. Experiments in different areas
show that Kappa could have various interpretations and these
guidelines could be different depending on the application.
However, Landis and Koch [33] characterize Kappa values
over 0.80 as “almost perfect agreement”, 0.60 to 0.79 as
“substantial agreement”, 0.40 to 0.59 as “moderate agree-
ment”, and below 0.40 as “poor agreement”. Negative Kappa
means that there is no agreement between classified data and
verification data.

4) Implementation details: The proposed approach was
implemented by using the Tensorflow framework. This frame-
work is more suitable due to its support to parallel program-
ming using CUDA, a NVIDIA parallel programming based
on graphics processing units. Therefore, Tensorflow adopted
and employed along with libraries as CUDA and CuDNN4.
The complete set of experiments was performed on a 64 bits



Intel i7 4960X machine with 3.6GHz of clock and 64GB of
RAM memory. We have used the following GPUs: a GeForce
GTX770 with 4GB of internal memory and a GeForce GTX
Titan X with 12GB of memory, both under a 7.5 CUDA
version. Ubuntu version 14.04.3 LTS was used as operating
system. The ConvNet and its parameters were adjusted by
considering a full set of experiments based on [9].

B. Results

1) Multiple × Individual Scales: In this section, we com-
pare the classification results obtained by using individual
scales represented by ConvNet #1, ConvNet #2, and ConvNet
#3 against the combination of scales by using the proposed
combination scheme. Table I presents the classification results.

TABLE I
CLASSIFICATION USING CONVNETS OVER DIFFERENT SCALES AND THE

COMBINED RESULTS.

Scale Overall Acc. (%) Kappa (κ)
#1 87.57± 1.58 0.713± 0.016
#2 88.40± 1.27 0.725± 0.017
#3 88.02± 1.47 0.719± 0.023

Combination 88.90± 4.00 0.739± 0.054

According to the results, one can observe that the combi-
nation of scales achieves better maps than the best individual
scale. We can suppose that the proposed combination improves
the results by exploiting the diversity of individual ConvNets
in different scales.

Overall, we could observe that the voting scheme com-
bination create an intermediate result among each scale, as
expected. We show an example of result for each single scale
and the combination of them in Fig. 7. Observe, for instance,
the reduction of false positives pixels (red) from each scale in
comparison with the combination map.

2) Comparison to the baselines: In Table II is presented
the results for the proposed approach and the baselines.

TABLE II
CLASSIFICATION RESULTS COMPARING THE PROPOSED APPROACH

AGAINST THE BASELINES.

Approach Overall Acc. (%) Kappa (κ)
SVM (RBF) 80.09± 1.58 0.748± 0.025
MSC-Boost 82.28± 1.60 0.780± 0.025
HMSC-Boost 82.69± 1.68 0.788± 0.024
Ours 88.90± 4.00 0.739± 0.054

Concerning overall accuracy, one can be note the proposed
approach overcome the results of the baselines. This shows
that the combination of ConvNets on different scales can be
a powerful tool for recognition of coffee crops. On the other
hand, obtained results are not competitive observing Kappa
index.

There are two important issues that may justify this results
and can lead us to future improvements: (1) ConvNets are very
sensitive to unbalanced dataset and deep features learned may
not be enough to represent coffee crops; and (2) fully-trained

CombinationConvNet #3

ConvNet #2ConvNet #1

Fig. 7. Results for the combination and each single scale. Pixels correctly
classified are shown in white (true positive) and black (true negative) while
misclassified pixels are displayed in red (false positive) and green (false
negative). We highlight some false positive group of pixels with white circles.

ConvNets does not perform well for small training datasets.
In this sense, obtained results match the conclusion presented
by [29], in which BIC descriptor outperforms fully-trained
ConvNets in different configurations. The best way to improve
results is to perform fine tuning over a pre-trained network.
The use of more powerful classifiers instead of softmax also
leads to improvements.

Fig. 8 illustrate an example of results comparing the pro-
posed method against the HSMC-Boost baseline. One can
observe that the main difference in these examples is that
the proposed approach produces less false negative than the
baseline. On the other hand, our approach produced more false
positives.

Overall, our approach seems to be promising in reducing
two main problems found in the baselines: (1) to discriminate
recently planted coffee crops; and (2) to detect paths between
the crops. As pointed by dos Santos et al. [6], most of the
HSMSC-Boost classification errors are related to confusion
caused by recently planted coffee crops, which usually appear
in light blue in the composition of colors displayed. The pro-
posed approach achieve good better in those areas. Moreover,
it was more effective in assigning the class “non-coffee” to
the paths between crops, as can be also observed in Fig. 8.
The more the number of “black lines” between coffee crops
the more accurate was the classification of paths.

The regions in red in Fig. 8(c) indicates most of the false
positives produced by the proposed approach are due to dense
native vegetation canopy. We believe the misclassified pixels
can be better classified by including largest context windows
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Fig. 8. Example of results: (a) input image, (b) ground truth, (c) the proposed approach, and (d) HMSC-Boost. Pixels correctly classified are shown in white
(true positive) and black (true negative) while the errors are displayed in red (false positive) and green (false negative).

in the process. Also, these pixels are easier to remove by
using some post-processing approaches than the misclassified
regions produced by HSMC-Boost and other segmentation-
based methods found in the literature. Note that the proposed
approach misclassifies some very small group or even isolated
pixels.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new approach based on Convo-
lutional Neural Networks to learn spatial feature arrangements
from remote sensing images in multiple scales aiming at the
recognition of coffee crops. Experimental results show that the
combination of ConvNets designed for semantically segment
using different-size input really improves the final map in
comparison with single scales. Our approach also achieves
promising results in coffee crop recognition when compared
to baselines.

As future work, we intend to apply the proposed approach
in other applications. We also plan: to analyze larger context

windows; to investigate more multi-scale fusion strategies; to
develop a strategy to perform fine-tuning; and to address the
imbalanced dataset training problem.
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