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Abstract—In this paper, we propose a model to learn a feature-
category latent representation of the data, that is guided by a
semi-supervised auxiliary task. The goal of this auxiliary task is to
assign labels to unlabeled data and regularize the feature space.
Our model is represented by a modified version of a Categorical
Variational Autoencoder, i.e., a probabilistic generative model
that approximates a categorical distribution with variational
inference. We benefit from the autoencoder’s architecture to
learn powerful representations with Deep Neural Networks in
an unsupervised way, and to optimize the model with semi-
supervised tasks. We derived a loss function that integrates
the probabilistic model with our auxiliary task to guide the
learning process. Experimental results show the effectiveness of
our method achieving more than 90% of clustering accuracy by
using only 100 labeled examples. Moreover we show that the
learned features have discriminative properties that can be used
for classification.

I. INTRODUCTION

Clustering is an unsupervised problem, widely used in
different applications, with the goal of finding hidden patterns
or groupings within the data. Commonly, clustering methods
are totally unsupervised, meaning that no labels are consid-
ered in the process. However, in many situations, a small
amount of information is available that may help to guide
the learning process by using both type of data, i.e., semi-
supervised learning [1]–[5]. A similar approach called semi-
supervised clustering [6], [7] aims to improve the performance
of unsupervised clustering algorithms with limited amounts of
supervision in the form of labels on the data or constraints.

One of the problems when working with semi-supervised
learning is how to learn representations for both labeled and
unlabeled data. In the last few years, Deep Neural Networks
(DNNs) have emerged with promising results for different
machine learning tasks, DNNs can help to learn good repre-
sentations for the data. Normally, these representations can be
learned in a supervised way by performing classification [8]–
[10] and subsequently adopting the learned representations, or
by extracting useful information from data in an unsupervised
way [11], [12]. However these approaches do not consider an
end-to-end learning framework, as they depend on learning the
representations from data and then using these representations
for other tasks, e.g., clustering.

The second problem that arises is the representation of
clusters. Hence, Deep generative models [13], [14] have
become popular due to their ability to learn distributions
from data. By using Bayesian inference, researchers created
probabilistic generative models which learned representations

Fig. 1. Our proposed architecture based on the probabilistic model Cat-
VAE [15], [16]. Our encoder (φ) transforms the data into a feature (f ), that
is converted into a category (C) by a set of layers (ψ). The decoder (θ) uses
the latent variables (f and C) to reconstruct the image. Section III details the
construction of the architecture through a probabilistic model.

as distributions of the data in an end-to-end manner. Therefore,
the clusters can be represented by a probability distribution,
such as a categorical distribution [15], [16], or Mixture of
Gaussians [17], [18]. In this work, we do not focus on
generating images with the generative model, but rather use
the learning process of these models to improve our represen-
tations. Despite having good representations for the data and
clusters, an important problem remains: how to learn jointly
from labeled and unlabeled data?

To address the aforementioned problems, we propose a
modification on a generative model that transforms the data
into a feature-category latent space (as shown in Fig. 1), and an
end-to-end learning framework to teach the model to perform
clustering by transferring the knowledge of an auxiliary clus-
tering task. Our goal is to cluster the data by approximating
it with a categorical distribution, thus our model is based on
a Categorical Variational Autoencoder (CatVAE) [15], [16].
We use the labeled data to input knowledge about the existing
clusters to the categorical latent variables, by transferring the
information of the labeled data into the unlabeled data through
an auxiliary clustering task during training.

Our learning framework uses the generative process to
improve the learning through the different phases of our
model, while regularizing the categories and the feature rep-
resentations. Our two fold approach comprises, first, verifying
that the learned categories match the labels on the data, and,
secondly, by assigning the labels of the known data to the
unknown ones that are closer in the feature space. Moreover,
we minimize the distance of the features of the elements within



the same cluster to improve the representation and to ease the
category learning phase.

The first part of our architecture (depicted in Fig. 1) is
treated as an encoder where we obtain an embedding of the
current batch. This network is also called inference network
because it approximates the feature’s posterior with variational
inference. From the embedding we obtain an approximation
of the categorical distribution. Jointly, the features and the
categories are used as inputs to another network that acts as
a decoder that tries to reconstruct the original image. In the
literature, this network is also called a generative network,
because it can generate images with samples from the cate-
gorical approximation and feature representations. Although,
that is out of the scope of our current proposal.

To summarize, the contributions of our work are:
• a semi-supervised auxiliary task which aims to define the

clustering assignment for the unlabeled data that can be
used in conjunction with the labeled data;

• a regularization on the feature representations of the data,
by minimizing the inter-cluster feature distances which
helps to drive the learning process in this mixed tasks;
and

• a loss function to guide the learning process based on our
auxiliary task taking advantage of the generative model.

The remainder of this paper is organized as follows. We
present a brief comparison against existing work to contextu-
alize our proposal in Section II. In Section III, we formalize
the definition of our probabilistic model by introducing our
inference and generative model based on two latent variables
that represent our clusters and features. Section IV presents
our proposed semi-supervised auxiliary task comprising the
aforementioned contributions of our work. Section V shows
results verifying that our proposal gets at least 90% of per-
formance. And, finally, we give our concluding remarks and
future works in Section VI.

II. RELATED WORK

Clustering algorithms are commonly related to unsupervised
learning where no labeled data is available. There are several
studies that combines clustering with DNNs [19], [20]. These
works require to pre-train a DNN to obtain initial representa-
tions and then fine-tune the pre-trained network jointly with
a clustering algorithm like K-means. Recent works utilize an
end-to-end optimization [21], [22] involving DNNs and unified
loss functions to guide the learning process.

Semi-supervised learning has been applied mostly to clas-
sification problems. However, they use different types of
auxiliary tasks combined with DNNs (as we proposed in this
paper). For instance, Weston et al. [1] improved supervised
learning for deep architectures by adding an unsupervised
embedding on any (or all) layers as an auxiliary task. Recently,
Rasmus et al. [3] proposed a semi-supervised model based on
ladder networks where the learning task is similar to that in
denoising autoencoders but applied to every layer, not just the
inputs.

Besides of normal autoencoder-based architectures, other
methods take advantage of probabilistic graphical models and
Bayesian inference, such as Variational Autoencoders [13]
(VAEs) which are generative models represented by an en-
coder that infers the posterior distribution in a latent space
and a decoder which generates images by minimizing the
reconstruction loss. Recent works proposed extensions and
modifications over the VAE model by adding discrete variables
and considering the importance of hierarchical latent variables.
Kingma et al. [2] introduced a deep generative model for semi-
supervised learning based on a VAE whose latent space is
the joint distribution over data and labels. The problem with
this model is the layer-wise pre-training which sometimes is
costly because we require to train two networks, the first one
for better feature representations (M1) and the second one for
semi-supervised learning (M2). On the contrary, our approach
does not require pre-training because our auxiliary task helps
to improve the feature representations by considering the
distances between elements of the same cluster.

Maaløe et al. [4] introduced the auxiliary deep generative
model (ADGM) for semi-supervised learning which utilizes an
extra set of auxiliary latent variables to improve the variational
lower bound. Their model is an improvement to the model
proposed by Kingma et al. [2] in the sense that it is possible
to train the model in an end-to-end fashion with more than
one stochastic variable, and without pre-training. Despite of
the success of stochastic latent variables, their complexity
increases when dealing with discrete variables because it is
required to marginalize them out in order to backpropagate
them. Unlike their work, we do not marginalize out the
discrete variables when backpropagating instead we approx-
imate a categorical distribution by adopting the Gumbel-
Softmax/Concrete distribution proposed by Jang et al. [15]
and Maddison et al. [16].

Some works have explored the combination of clustering
with semi-supervised learning. For instance, Maaløe et al. [23]
proposed the Cluster-aware Generative Model (CaGeM) based
on a VAE and discrete variables. They showed that higher
latent representations can create clusters using unlabeled infor-
mation and their performance can be refined using additional
labeled information. Compared to our approach, they focus
on the improvement of generative performances rather than
clustering. More recently Dizaji et al. [22] introduced the
clustering model called Deep Embedded Regularized Clus-
tering (DEPICT) based on stacked softmax layers on top of
deep convolutional autoencoders. Unlike our approach, they
use softmax classifiers for the clustering assignments and
denoising autoencoders. We do not require a denoising and a
stacked softmax representation to define our clusters because
we take advantage of the generative process of our categorical
distribution.

III. PROBABILISTIC MODEL

In this section we define our probabilistic model based on
a Variational Autoencoder [13] (VAE). Unlike this generative
model, which approximates a Gaussian distribution, our model
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Fig. 2. The probabilistic graphical model of our proposed solution. (a)
The inference is done from the data, x, to the features, f , and finally
to the categories, C, which are a discrete node. We re-parametrized the
categories with a Gumbel-Softmax distribution, with g as a stochastic Gumbel
distribution generator. (b) The generative model corresponds to our decoder
that transforms the features, f , and the categories, C, into the reconstructed
data. (Double line nodes represent non-deterministic nodes.)

approximates a categorical distribution that fits better for
clustering. This variation of the VAE is called a Categorical
VAE (CatVAE) [15], [16].

We use two latent variables to model the data, the features,
f , and the categories, C, of the data, i.e., we have p(x, f,C).
Our assumption is that we can have a generative process, such
that if we sample f ∼ p(f) and C ∼ p(C), we can generate
a new data point by x ∼ p(x|f,C)—as shown in Fig. 2(b).
This process is the main driver of our method. Since we are
interested in clustering the data, we do not care about the
generated data, but rather about the existing latent space for
the categories.

Since we have a generative process, we also have the inverse
inference process: p(C, f |x). We assume that the categories
are dependent on the features, as shown in Fig. 2(a), thus,

p(C, f |x) = p(C|f)p(f |x). (1)

Nevertheless, computing the latter distribution is intractable
since the prior of x, p(x), needs to be computed for the entire
latent space. Thus, as the literature suggests, we approximate
the distribution with variational parameters (i.e., families of
distributions), such that

p(C, f |x) ≈ qψ,φ(C, f |x), (2)

that is, we want to find the variational parameters ψ and φ
that minimize the divergence between our variational posterior,
qψ,φ(C, f |x), and the true posterior, p(C, f |x), therefore we
have

argmin
ψ,φ

{
KL

(
qψ,φ(C, f |x)||p(C, f |x)

)}
, (3)

we explain the solution of this divergence in Section IV-A.
Due to the assumptions given by (1), we can approximate

the features as
p(f |x) ≈ qφ(f |x). (4)

This distribution allows us to compute our latent variables
from the data, x. On the other hand, our categorical variable,
C, is a discrete node that represents a categorical distribution
that we use to associate each cluster with each category.
Nevertheless, this variable will not allow us to easily train our
distributions as neural networks because we can not backprop-
agate through discrete nodes. Thus, we need to reformulate
it into a deterministic path within the model. We use the
reparametrization trick [13] by using a Gumbel-Softmax dis-
tribution [15], [16] to approximate our categorical distribution
with a continuous one. Since, we have a categorical variable
C with class probabilities πi, we transform it to a continuous
distribution, c, by

c = one hot
(
argmax

i
{gi + log πi}

)
, (5)

where one hot is an operator that generates a vector with a
one in the given parameter and zeros elsewhere, and with
independent draws gi ∼ Gumbel(0, 1).1 Nevertheless, we still
cannot backpropagate through the argmax operator, but we
can replace it with softmax function, such as

ci =
exp {(log(πi) + gi) /τ}∑k
j=1 exp {(log(πj) + gj) /τ}

, (6)

for every i, and where k is the number of categories. The
above conversion is known as the Gumbel-Softmax [15] or
the Concrete [16] distribution trick. The softmax temperature
τ controls the discreteness of (6). When τ → 0 the samples
are identical to those generated by (5), they become one-hot.
At higher temperatures τ → ∞ the samples are not longer
one-hot and become uniform.

To obtain the probabilities π of a given feature, f , we learn
them through another latent variable. As shown in Fig. 2(a),
we compute another variational distribution qψ(l|f), where l
is a latent variable that holds such probabilities, and f is our
feature. Since we are approximating this distribution with a
neural network, we can obtain the log(π) directly, instead
of the simple probabilities. Finally, we can approximate the
inference from the features as

p(C|f) ≈ qψ(C|f) ≈ qψ(c|l, g)qψ(l|f), (7)

where qψ(c|l, g) is defined as a Gumbel-Softmax distribution,
and when drawing c we compute (6).

We are implementing our distributions through neural net-
works; thus, the main distributions’ parameters corresponds
to the neural network’s parameters that implements them, i.e.,
qφ(f |x), qψ(l|f), and pθ(x|f,C)—cf. Fig. 1 and Section V-A.

1The distribution Gumbel(0, 1) can be sampled by drawing u ∼
Uniform(0, 1), and computing g = − log(− log(u)).



IV. LEARNING WITH AN AUXILIARY TASK

In this section we introduce our main proposal which allows
to jointly learn from both labeled and unlabeled data. To this
end, we define two auxiliary tasks, the first one considers the
feature representations of the data to learn cluster assignments,
and the second one is a regularizer which minimizes the
distances of the feature representations of the same cluster.

Our main objective for teaching our network is to improve
the cluster representations. To achieve it we must maintain the
reconstruction task that drives the distributions from which we
are deriving the inference of the category space. On top of
that, we must maintain the consistency of the label data we
have, and to maximize the chance of assigning correct labels
to our unlabeled data. The former is similar to performing a
classification task on the labeled data, as we want to predict the
correct label to each of them. The latter requires us to infer the
labels for the data. To do so, we exploit the information of the
existing ones to serve as representatives for each cluster, and
we assign them the labels of their closest known neighbor.
Finally, we need to minimize the differences of the feature
representations of within the same cluster.

To achieve all those goals, we define a loss function that
should be minimized as

Ltotal = wRLR + wCLC + wALA + wFLF , (8)

where LR is the reconstruction loss, LC is the loss of the
categorical distribution fit, LA is the assignment loss of an
element to a determined cluster, LF is the feature loss which
works as a regularizer for the feature representation in each
cluster. We consider the normalized version of each loss in
order to have values in the same range, in this way we can
define the importance of each loss by assigning them some
weights w∗. We explain the selection of these weights in
Section V-C.

A. Categorical VAE Loss

The loss function of this type of generative models is
derived with the help of variational inference. When working
with variational models we are interested in the posterior
p(C, f |x) because we want to learn a distribution from the
observable variable x. The posterior is intractable because the
normalization factor, p(x), depends on the latent variables. We
can approximate the posterior with a variational distribution
qψ,φ(C, f |x), cf. (2), that we want to find, by maximizing
the Evidence Lower Bound (ELBO) [13], L(ψ, φ), which is
equivalent to solve (3). A lower bound for the intractable log-
likelihood log p(x) obtained using Jensen’s Inequality is

log p(x) ≥ Eqψ,φ(C,f |x)
[
log

p(C, f, x)
qψ,φ(C, f |x)

]
= LP , (9)

where qψ,φ(C, f |x) is our approximation of the inference, and
p(C, f, x) is the joint probability between the likelihood (how
likely our categorical variable C and features f are to generate
data x) and a prior. We represent the approximate distribution
qψ,φ(C, f |x) with a deep neural network parameterized by ψ
and φ (as an encoder, see inference model in Fig. 1).

The variational lower bound specified in (9) is defined as

LP =Eqψ,φ(C,f |x) [log p(x|C, f)]−
KL
(
qψ,φ (C, f |x) ||p (C, f)

)
,

(10)

where the first term is the reconstruction loss (LR) which
encourages the decoder to learn to reconstruct the data when
using samples from the categorical latent space and feature
representations. We approximate this loss with the normalized
mean square error (MSE) defined by

LR =
1

N

N∑
i=1

1

|xi|
(xi − x̂i)2, (11)

where N is the number of samples, |xi| is the size of the
i-th input (e.g., number of pixels in an image) and x̂ is the
reconstruction of the input obtained from our network (as a
decoder, see generative model in Fig. 1).

The second term of (10) is the distance between the joint
distribution of our latent variables w.r.t. the given data and the
prior. However, we are not interested in the joint distribution,
but rather on a way to optimize each independent variable.
Thus, by working the KL-divergence we obtain

LP =Eqψ,φ(C,f |x) [log p(x|C, f)]−
Eqφ(f |x) [KL (qψ (C|f) ||p (C))]−
KL (qφ (f |x) ||p (f)) ,

(12)

where the new terms represent the regularization of C and f ,
respectively. Since, we are not assuming any variational distri-
bution for f , we will approximate it with the feature loss LF
(see Section IV-C). Note that for the C’s regularizer we obtain
the expected divergence over the possible features produced by
our data, i.e., f ∼ qφ(f |x). Since we want to maximize LP ,
we need to minimize the expected KL-divergence, which is
equivalent to minimize the KL-divergence alone. Hence, our
categorical loss becomes

LC = KL (qψ (C|f) ||p (C)) ≈ KL (qψ (l|f) ||p (l)) . (13)

This term can be interpreted as regularizing ψ, encouraging
the approximate posterior qψ(C|f) to be close to the prior
p(C). However, as we can see in (7), we are required to
approximate only the logits, qψ(l|f), because the first term
is already defined. The model proposed by Kingma et al. [13]
specifies the prior as a standard normal distribution N (0, 1)
because they consider a multivariate Gaussian for the ap-
proximate posterior. Unlike their model, ours uses categorical
latent variables. We specify the prior as a standard uniform
distribution Uniform(0, 1) because initially all categories are
equally likely to be chosen. Finally our normalized categorical
loss is given by

LC =
1

N logK

N∑
i=1

K∑
k=1

qik log (Kqik) , (14)

where N is the number of samples to cluster, K is the number
of clusters, qik are the probabilities of the logits obtained with
a softmax function and N logK is the normalization factor,
allowing to obtain values between 0 and 1.



B. Assignment Loss

To verify the assignments of the network to the unlabeled
data, we need to infer the more likely label for each unlabeled
sample we are observing. To achieve that we exploit the
information from the labeled data, and use them as represen-
tatives of their respective cluster to disperse their labels to the
unlabeled samples. In order to assign a label for the unlabeled
data, we use the nearest neighbor (1-NN) on the feature space,
i.e., we compare the feature of the unlabeled samples with the
labeled ones, and assign the label of the closest one. Note that
any other clustering or assignment algorithm will work for this
task, and we selected 1-NN for its simplicity. We rely on the
fact that similar features learned by the neural network should
belong to the same cluster.

Once we obtained the assignments for the unlabeled data,
we consider a modification of the negative log-likelihood
loss. Since log-likelihood loss maximizes the log-probability
of the correct assignment, this loss is normally used in
supervised learning. In our case, we have the assignments
for the unlabeled data, plus the existing labels of the labeled
data. One problem with this loss is that it only penalizes one
category at a time, and it does not assign the correct label
in case of a mistake. Our modification of the negative log-
likelihood, besides trying to maximize the log-probability of
the potential true category, it minimizes the log-probability of
other categories

LA =

N∑
i=1

K∑
k=1

[
− logP (cik|xik)+

∑
j 6=k

logP (cij |xik)

]
, (15)

where cik is the assigned category to the data xik, and cij are
the rest of categories, P (c∗|x∗) values are given by (6). That
is, the loss function penalizes the assignment if it is not correct
by moving the wrong predictions away, and the correct ones
closer. Note that (15) is not normalized, besides that, small
values of P (c∗|x∗) produce large values for − logP (c∗|x∗)
and small values for logP (c∗|x∗), i.e., limx→0 log(x) = −∞.
Thus, we normalize the values of this function independently
with a hyperbolic function

LA =
1

2N

N∑
i=1

K∑
k=1

[
tanh

(
− logP (cik|xik)

)
+

K∑
j 6=k

tanh
(
logP (cij |xik)

)
+ 1

]
,

(16)

where 2N is the normalization factor that allows values
between 0 and 1, we add the value 1 in the last term because
tanh produces values between −1 and 0 for negative values.

C. Feature Loss

In this section we introduce our second auxiliary task
defined as a regularizer over the feature representations. Let
D(a, b) be a metric function which measures distances be-
tween a and a group of elements b in the feature space. In
our experiments, we use D = `2 distance, but any distance
can be used. And given the features of all the data, we

want the neural network to learn an embedding such that the
distances between elements belonging to the same cluster are
minimized. Therefore we want the feature representations of
similar elements be as close as possible.

Since we have a subset of labeled data for each class, we
are sure that their feature’s distances have to be close. On the
contrary, we cannot be sure for the unlabeled data. That is
why we weight differently the importance of distances for the
labeled and unlabeled data (through a parameter α ∈ [0, 1]).
Our feature loss function is defined as

LF =
α

L

L∑
i

D(fi, ri) +
(1− α)
U

U∑
j

D(fj , rj), (17)

where L is the number of labeled samples, U is the number
of unlabeled samples, fi are the labeled data features, fj
correspond to unlabeled samples, and rk are all the labeled
features that correspond to the assigned cluster of fk, i.e.,
rk ∈ Ck, where Ck is the cluster that fk belongs to. We
normalize D(f, r) in order to obtain values between 0 and 1

D(f, r) =
1√
2|r|

|r|∑
l

‖f − rl‖, (18)

where
√
2|r| is the normalization factor, |r| is the number of

labeled features of the assigned cluster of f and the value
√
2

is an upper bound of the `2 distance assuming that the features
have positive values and unit norm, i.e., ‖f‖ = 1. We assure
that our features, f , have these properties (see Section V-A1).

V. EXPERIMENTS AND RESULTS

We evaluate the accuracy of our proposed method on the
standard MNIST [24] classification data set which consists of
70000 images of size 28 × 28, and 10 classes representing
digits. For our problem, we consider the number of classes as
the number of clusters, and try to learn the clustering of the
data, instead of simply classifying the data. We consider the
standard split of the data set which consists of 60000 images
for training and 10000 images for testing. From the training
set, we randomly chose 100 labeled examples (we ensure that
all classes have the same number of labeled images) that are
fixed for the whole training phase. After that, we randomly
split the 59900 training images left into 80% for training set
and 20% for validation set, we perform the splits trying to
maintain the classes balanced for both training and validation
sets (we group by labels and obtain the desired percentage for
each category). This set of images is our unlabeled data.

A. Proposed Network Architecture

We adopted the architecture proposed by Dilokthanakul
et al. [17] with modifications in the input and output of
the inference and generative networks. All the convolutional
layers, except the output layer of the generator network, are
followed by batch normalization [25] and rectified linear unit
(ReLU) as non-linearity. We represent the convolutional layers
as (n@h×w, s, p) where n is the number of filters, h and w
are the height and width of each filter respectively, s is the



stride and p is the padding. In the following we detail the
architecture of our networks.

1) Inference Network: This network is based on a con-
volutional encoder. It receives the input image (28 × 28),
then the next layers are convolutional: {(16@6 × 6, 1, 0),
(32@6 × 6, 1, 0), (64@4 × 4, 2, 1), (50@9 × 9, 1, 0)}.
At this point we have a vector of size (1 × 50), this size
was chosen experimentally (see Section V-C), followed by a
ReLU activation function in order to obtain positive values and
then normalize it to have unit norm with a `2 normalization
layer. This normalized vector is our feature representation
f—we benefit from this representation in our feature loss
(see Section IV-C). This layer is followed by three linear
layers with ReLU activations in between: {Linear(50, 50),
Linear(50, 25), Linear(25, k)}, the last layer outputs the
logits l of size k used to approximate a categorical distribution,
qψ(l|f) by (7). For MNIST, we require 10 categories, thus
qψ(l|f) ≈ Linear(25, 10). Then, we have another layer that
represents the Gumbel-Softmax version, c, of our categories,
C, of size (1 × 10) by (6). The feature and categorical
representations, f and c, respectively, will be passed as input
to the generator network.

2) Generative Network: This network is based on a con-
volutional decoder. It receives the feature vector f of size
(1 × 50) and a vector of probabilities, c, of size (1 × 10)
obtained from the Gumbel-Softmax distribution. These two
vectors are concatenated, (1 × 60) and fed to the generative
network as our input. First, a linear layer is applied to obtain
a vector with the same size of the feature representation f ,
Linear(60, 50). Then, it is followed by the reverse version
of the encoder: {(64@9 × 9, 1, 0), (32@4 × 4, 2, 1),
(16@6 × 6, 1, 0), (1@6 × 6, 1, 0)}. At this point we
have a matrix with the same dimensions of our input image
(28 × 28). We assume that the input image follows a
Bernoulli distribution (values between 0 and 1). Hence, we
use a Sigmoid layer as our final activation which outputs the
reconstructed image.

B. Training

Our model uses the initialization defined by LeCun et
al. [26]. For training we used Adam [27] optimizer with
the default hyperparameters for 1st- and 2nd-order moments
β1 = 0.9 and β2 = 0.999. We iterate for 100 epochs, and in
every epoch we consider a different random permutation of
our data. We use a batch size of 200 images being 100 the
labeled ones and the rest unlabeled.

C. Hyperparameters

An important step when training neural networks is the
setup of hyperparameters. Since it is hard to do a full hyperpa-
rameters search due to the high dimensionality and prohibiting
computational time, we chose our parameters independently.
All the hyperparameters were found in the validation set.
We started with the following setup: {fsz = 200, η = 0.1,
ηd = 0.5, τ = 0.5, α = 0.8, wR = 1, wC = 1, wA = 1,
wF = 1}, where fsz is the feature size, η is the learning

1 10 20 30 40 50

20.0

40.0

60.0

80.0

100.0 92.20

92.33

97.05

97.16

97.76

97.61

97.94

97.64

97.86

97.71

98.04

97.73

Iteration number

V
al

id
at

io
n

A
cc

ur
ac

y
(%

)

w∗ = 1
wC = 0.1
wA = 5

Fig. 3. Importance of weights (wA, wC ) at different epochs.

TABLE I
SELECTED HYPERPARAMETERS OF OUR MODEL.

Hyperparameter fsz η ηd τ α wA

Value 50 0.001 0.5 1.0 0.6 5

rate, ηd is the learning rate decay, τ is the temperature used in
Gumbel-Softmax, α is the importance of the labeled data in the
regularization of distances, and w∗ are the weights used in our
loss function L—cf. (8). We began varying the learning rate η,
we tested with values (0.0001, 0.001, 0.01, 0.1) and found that
0.001 gives better results. Additionally we decay the learning
rate by 0.5 every 50 epochs. For the temperature τ , used in
Gumbel-Softmax, we tested values (0.5, 1, 1.5), and found the
best result with a fixed temperature is 1. We tried to smooth
the temperature from 1 to 0.5 without good results. For α we
tested values (0.5, 0.6, 0.7, 0.8) and found that 0.6 is a good
trade-off value that gives more importance to the embeddings
of labeled data than the unlabeled ones, and simultaneously
avoids over-fitting by regularizing it with the unlabeled data.
The weights of our loss function were adapted separately.
We found that changing wR and wF did not improve the
results. Nevertheless, we obtained more than 90% accuracy
by increasing the assignment loss, i.e., wA. We tested several
values (5, 10, 20, 30), and with all of them we outperformed
our initial results. As shown in Fig. 3, without this weight
the assignment loss does not help in the guidance of the loss
function. Likewise, we improved the results by decreasing the
weight of the categorical loss, i.e., wC . We considered several
values (0.1, 0.2, 0.3, 0.4), and found that with 0.1 we obtained
similar results as those of increasing wA, see Fig. 3. We
tried to increase wA and decrease wC simultaneously, as both
of them improve the results independently, without success.
Finally, we set wA = 5 for the assignment loss and w∗ = 1
for the other weights, because we found that experimentally
giving more weight to the assignment of cluster drives the
process in a better way. We tested different sizes of feature
representations, as shown in Fig. 4, for values between 50 and
300 we obtained the best results, thus we chose the size of
50 because of efficiency and performance. Our final setup is
specified in Table I.
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Fig. 4. Hyperparameter setup on feature representation size.

D. Results

In this section we present our results compared to the state
of the art. While our main focus is clustering based on semi-
supervised learning, we also show competitive results for semi-
supervised classification. All the results of the related works
are reported from the original papers. The character ‘-’ means
that results for that metric or setup were not executed. For all
the experiments we did not perform any type of pre-processing
over the images, we only normalize their pixel values to the
range of [0, 1]. Our final results are performed using all the
60000 training samples with 5 random seeds for network
initialization and data splits.

1) Clustering: We evaluated our clustering results with
two clustering metrics commonly used in the literature, clus-
tering accuracy (ACC) and normalized mutual information
(NMI) [28]. Both metrics are in the range of [0, 1], where
larger values indicate more precise clustering results. For train-
ing, we considered 100 labeled examples evenly distributed
across the categories. Note that the related works are fully
unsupervised, even if the results are not comparable we want
to show that our model is good for clustering and illustrate
the results of similar tasks.

As we can see in Table II, unsupervised algorithms show
promising results, most of them obtained more than 90% of
performance. GMVAE [17] and VADE [18] are methods based
on generative models and bayesian inference that are very re-
lated to us in terms of the algorithms and techniques employed.
JULE-RC [21] and DEPICT [22] are models based on Deep
Neural Networks, the former use a recurrent approach and the
latter use denoising autoencoders. According to the results,
generative bayesian models can be applied to clustering and
show competitive results but they are outperformed by non-
generative approaches. Our results show that by considering a
small amount of labeled data, which commonly is easy to ob-
tain, it is possible to get good clusters and improve the results.
In Fig. 5, we can visualize the feature representations f of the
MNIST test set, we used t-SNE [29] for the visualization. We
can see how each digit was assigned to a different cluster.

2) Semi-supervised Classification: We evaluate our model
for the task of classification, considering only related works

TABLE II
CLUSTERING PERFORMANCE, ACC AND NMI, ON MNIST OF DIFFERENT

UNSUPERVISED ALGORITHMS

Model NMI ACC

GMVAE [17] - 0.778
VADE [18] - 0.945
JULE-SF [21] 0.876 0.940
JULE-RC [21] 0.915 0.961
DEPICT [22] 0.916 0.965
Proposed 0.954 0.983

Note that our results are not directly comparable with unsupervised methods. However,
we want to show our model’s clustering results.

0 1 2 3 4 5 6 7 8 9

Fig. 5. Visualization of the feature representations of the MNIST test set
with t-SNE [29], from 50 dimensions to 3. (View with 60◦ azimuth and 60◦

elevation.)

which use deep neural networks as their learning representa-
tions for a fair comparison. Table III shows the classification
error considering 100 labeled examples, and all the examples
of the data (fully supervised). We chose these values because
all the related works report their results with the same number
of labeled examples. Despite the design of our model that
is not built for classification, it achieves comparable results
with the state of the art, outperforming different models
such as EmbedCNN [1], which improves supervised learning
by jointly learning an embedding task using unlabeled data,
SWWAE [30], which uses unpooling layers in the decoder
and trains jointly a supervised loss with reconstruction loss
on each level of the network, and DEPICT [22], which em-
ploys denoising autoencoders with reconstruction losses in a
similar way as SWWAE [30], and has comparable results with
CatGAN [31] which is based on Adversarial Networks [14].
These results show that the feature representations learned by
our model have good discriminative properties that is desired
for the clustering embedding. The classification is a byproduct
of the cluster definition within our model.

We believe that our model does not perform so well as the
Ladder Network [3] due to the use of reconstruction losses
on each level of the network, we have seen that other models,
SWWAE [30] and DEPICT [22], use this type of regularization
on each layer and showed that reconstructing from denoising
layers improve the performance, besides that we have not
tested and compared our model with natural images datasets.
We leave these experimental tests for future works.



TABLE III
SEMI-SUPERVISED TEST ERROR (%) BENCHMARKS ON MNIST FOR 100

RANDOMLY AND EVENLY DISTRIBUTED LABELED DATA.

Model With n labeled examples

100 All

EmbedCNN [1] 7.75 -
SWWAE [30] 8.71 (± 0.34) 0.71
Small-CNN [3] 6.43 (± 0.84) 0.36
DEPICT [22] 2.65 (± 0.35) -
Conv-CatGAN [31] 1.39 (± 0.28) 0.48
Conv-Ladder τ -model [3] 0.89 (± 0.50) -
Proposed 1.67 (± 0.18) 0.70

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a variation of the Categorical
Variational Autoencoder, as well as a semi-supervised end-to-
end learning framework that is based on an auxiliary clustering
task. We assigned images to clusters, and regularizes the
embedding of the feature space by minimizing the distance
between similar feature representations, and by penalizing the
cluster assignment with the aid of the known data assignments.
Experimental results show that our approach can generate
good clusters with only 100 labeled images, additionally the
learned features have discriminative representations which can
be employed in classification tasks.

Future work focuses on the evaluation of clustering algo-
rithms (e.g., K-means, DBSCAN, agglomerative clustering,
etc.) as part of our auxiliary task, which can yield a full
unsupervised model. Furthermore improvements of our proba-
bilistic generative model can be performed by using generative
adversarial models.
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