
Handwriting Synthesis from Public Fonts
Dennis G. Balreira, M. Walter

Institute of Informatics - Universidade Federal do Rio Grande do Sul - Brazil

Fig. 1: Example of Handwritten Synthesis using our approach. (a) Digitized letter from Brazilian writer Mário de Andrade.
(b) Excerpt of the letter used as input to our algorithm. (c) On the top the same excerpt processed to remove texture and color
and below our synthesis result.

Abstract—Handwriting synthesis generates renderings of text
which look like they were written by a human but are in fact
synthesized by a model. From an input sample of the desired
handwriting, we introduce an algorithm that finds the best
match between characters using as source for the output text
the large collection of publicly available fonts designed to look
like handwriting. For each character in the desired output text,
we find the best match among the public fonts using a metric
that matches both the shape and appearance of the input real
character. Once we have the set of best characters we build
the output sentence or paragraph by concatenation of individual
characters. Our results show that even though human calligraphy
is highly individual and specialized, visually similar renderings
are possible for many applications that do not demand full
similarity. On a user study with 12 subjects, our synthesis results
were considered, on average, 71% similar to the input samples.

I. INTRODUCTION

With the advance of digital technologies, many forms of
communication became old-fashioned and were exchanged
by faster and more efficient ways. Handwritten text is one
example. Today, we rely almost 100% of the time on typed
digital text send using e-mail and many other forms. At the
same time, handwritten messages now have special status and
are used in particular cases, suggesting care and friendship
between sender and receiver. There is even a market for
letters written by hand, where companies handwrite the letter
for customers [1]. Digital messages cost close to nothing to
produce whereas handwritten text still requires attention and
usually more time than digital communication. In this context,
an interesting possibility is to turn any input string into images
that look like they have been handwritten, down to the texture
of the pen or pencil.

The goal of handwritten text synthesis techniques is to
provide images that look like were written by a human hand,
either an anonymous hand or, harder, in the handwriting of
a particular person, alive or not. The field is not new, with
research going as back as the early 90s [2] but has attracted

new attention recently [3]. There are many applications which
could benefit from faster automatic handwritten synthesis.
Online cards for special occasions could be sent, for instance,
with text messages written in the sender’s handwriting. Appli-
cations in the creative industries include lettering in comics
and special editions of books. Artificial handwriting could
also be used to generate CAPTCHAS, instead of machine
generated ones. Artificial CAPTCHAS continue to be readable
by humans but less prone to automated attacks [4] [5]. Properly
printed, artificial handwritten notes could be used for more
personal communication between companies and customers.

Our main contribution is an algorithm that searches for
the best match given an input glyph and a set of candidates.
A glyph is a technical term often used in typography, and
it conveys the idea of a graphic symbol that represents a
writable meaningful character. For instance, the character a
is a glyph, whereas the dot on top of the character i is not,
since it does not convey meaning by itself. For a particular
glyph, we can have many different graphical representations.
The input glyphs are real handwritten text, and the candidates
are from families of handwritten-like fonts freely available to
the public. We define a two-step metric to compare glyphs,
comparing first their shapes followed by how similar they are
considering line thickness. From the selected glyphs we build
the sentences and paragraphs using concatenation. In Fig. 1
we illustrate one result from our technique. We used as input
the real handwriting of Brazilian writer Mário de Andrade to
synthesize a similar output.

Although human writing is individual and can be traced to a
particular person [6], we claim that the large number of fonts
used as input for synthesis provides a degree of variability
which allows renderings that look like were handwritten by
a particular person, without the expensive cost of previous
approaches. Our central insight is the use of a large number
of publicly available fonts to find the best match to a particular
person’s handwriting.



II. RELATED WORK

There are many websites [7]–[9] that generate a font family
from a user’s handwriting. The user writes the alphabet of
characters, one by one, on a given template grid which is later
digitized and used as input for computing the family font.
However attractive, these approaches suffer from the fact that
the writing of individual characters makes the process artificial
and the results often look unnatural. Closely related to our
work is the website WhatTheFont [27]. From an image of a
particular character, they provide 10 suggestions of similarly
looking characters. However interesting, many suggestions do
not provide good matches. Besides, it is a black box without
any information on how exactly the matches are computed, and
apparently only suggests families from their own web service.
Later, in the results, we show how our solution compares with
one computed using the output from this website.

On more scientific approaches, the recent survey by Elarian
and colleagues [10] provides a useful starting point. At the
highest level, the methods are classified as either top-down
or bottom-up. In the top-down approach, the solution tries to
simulate the actual neuromuscular movements of the human
arm and hand to produce the results. Bottom-up approaches
also known as shape simulation, on the other hand, model
the shape of individual units to obtain the result. The shape
simulation category is further subdivided into generation and
concatenation. Since our solution uses a concatenation ap-
proach, we, therefore, review here only these approaches.

Historically, many handwriting synthesis research was de-
veloped to help research on handwritten character recognition.
The work by Rao [2] is one example of this approach. He
synthesized characters as a collection of straight line segments
approximated from a sample of a real written character. This
representation could thus be used to recognize handwriting
text. Guyon [11] introduced in 1996 a simple technique to
render handwritten texts assembling glyphs from samples
collected from the end user. The synthesis results look nice,
but the technique needs as input a long list of 100 3-letter
entries, called lexicon to be handwritten by the user. Also,
the lexicon was targeted for English, and it is not clear how it
would work with other languages. At least new sets of 3-letter
entries would have to be built for the technique to work.

Wang et al. [12] presented a two-step learning model on the
points describing a B-spline curve for each sampled character.
They explored the idea of tri-units considering that each
character, in general, is surrounded left and right by neighbors
that affect how the cursive writing flows. Helmers and Bunke
defined three different methods for synthesis of handwritten
text [13] to be used in the context of handwriting recognition.
They show that the recognizer usually performs equal to or
slightly better than using only real handwriting. A learning
approach combining shape models and physical models was
presented by Wang and colleagues [14]. They used input text
written on a tablet. As with many of the other approaches here
revised, the validation is only subjective, by visual comparison
between input and output. Lin and Wan collected features

about a particular handwriting and used these to synthesize
new text in a hierarchical fashion [15]. Variation is introduced
at the character level, and the sampling of input text uses
a specially designed interface. In the context of CAPTCHA
generation, Thomas, Rusu, and Govindarauj [4] introduced
artificial CAPTCHAS that look like they were handwritten
but without being writer-specific. Their generated CAPTCHAS
performed better against automated bots.

The following methods are also categorized as concatena-
tion using a shape simulation approach. However, we do not
review them here since they target either Arabic [16]–[18],
Indian [19], or Japanese [20] glyphs.

Although there is more research on top-down approaches
[10], the current state-of-the-art is a shape simulation algo-
rithm recently proposed by Haines and colleagues [3]. They
present a complex pipeline of manual and automatic steps
to render high-quality images of handwritten text. From an
annotated sample of the desired handwriting, their solution
performs a semi-automatic analysis step followed by the
synthesis. The synthesis step is formulated as an optimization
problem where selection and spacing among glyphs are used in
the cost function. The last step is color matching and texturing
of the output.

Even though we present a simpler solution, ours is the
first to explore the high availability and visual improvement
of families of fonts designed to look like handwriting. We
believe our handwriting synthesis useful for applications that
do not demand full similarity and could be used in artistic
or commercial applications. In Sec. IV we show how our
renderings compare with the ones from [3], applied to the
same input sample.

III. HANDWRITTEN SYNTHESIS

In this section, we present our technique for handwriting
synthesis using public fonts. Given a handwritten text and
families of fonts as input, our aim is to match, for each real
input glyph, the best one from the families of fonts. Once
we have the collection of best matches, we can render any
string similarly to the real input handwriting. Our inputs are
the sample of handwritten text that we want to replicate, plus
a collection of families of fonts that are publicly available.
There are many possible options to capture a person’s written
text to use as input. Input samples captured with pen or pencil
on paper are sometimes preferable to use as input since this
mode better captures hand flow, but need to be digitized later.
Samples collected from direct writing on tablets are already
digitized but are usually less natural. Therefore, we used as
input some of the samples written on paper available from [3],
among others.

As our second input and source for the public fonts, we
collected 120 families of fonts that are carefully designed to
be similar to handwriting. Of these, 87 families are available
as Google fonts (https://fonts.google.com/) and the remaining
33 families are available from the web portal Free Calligraphy
Wedding [21] (18 families) and from the web portal 1001 fonts
[22]. From this last portal, we used 15 families arbitrarily



Fig. 2: Overview of our technique. Input: sample of handwritten text and families of handwritten-like fonts. Preprocessing
(Sec. III-A): process the images representing the glyphs to extract information needed for the shape matching step. Shape and
thickness matching (Sec. III-B): compares each glyph from the user input with all the font database glyphs in order to find
the best match. Synthesis (Sec. III-C): concatenate the best glyphs to simulate the text input positions.

Fig. 3: Glyph ‘a’ for all 120 families of fonts used as input.

selected from the most popular ones. In Fig. 2 (Input) we
illustrate three of the Google families and in Fig. 3 we show
the glyph ‘a’ for all 120 families.

Given the sample of handwritten text, we first manually
segment each glyph from the input sentence, generating an
image for each. Then, we execute the next steps in order
to select the best glyph among the same type from the font
families. For instance, an ‘a’ glyph will only be compared
with other a’s. Our main technique is divided into three steps:
preprocessing, shape matching and synthesis, detailed below.
The synthesis part is user-assisted whereas the shape matching
and preprocessing are automated, although some parameters
can still be calibrated to control the results. In Fig. 2 we
present the overall process.

A. Preprocessing

Our preprocessing perform operations on the inputs to ex-
tract the necessary characteristics for the comparison described
in Sec. III-B (Shape and Thickness Matching). We apply
simple image processing operations on the inputs, followed by
a specific thinning strategy to capture specific features from
the images. Fig. 4 illustrates all the preprocessing operations
using a simple drawing of an ‘i’ glyph that has some specific
characteristics and triggers all the six steps described below.

1. Basic operations on the sample input: since we do not use
the pen texture, we start by converting the color image into
a gray level one. Digitized natural handwritten text presents
small variations intrinsic to the writing process which appear
as noise at the border of the characters. We apply a Gaussian
filter to remove this noise, which helps compute the glyph
skeleton in the next step. We also binarize the image according
to a threshold to separate the background (black) from the
foreground (white). Next, we crop each image to adapt to its
bounding box plus 1 pixel in each dimension to avoid future
problems with the thinning algorithm. Fig. 4-a to 4-e illustrate
these steps.

2. Size normalization: in this step we generate, for each
glyph from each font family, an image that matches approx-
imately in size the resolution of the corresponding sample
input. Since the designed glyphs have very different aspect
ratios, we need a criterion for normalization. For instance,
if three occurrences of glyph ‘a’ are found in an input text,
and the largest one has width of 90 pixels, the glyph ‘a’ for
all families of fonts will have this same width but different
heights, according to its original design and maintaining its
aspect ratio. In this step, we also repeat all the basic operations
described in step (1) above for the resized font images, except
the Gaussian filter. Considering that the fonts usually do not
have noise, we thought that it could erroneously mask some
intended artistic effects created by the font’s authors.



Fig. 4: Preprocessing pipeline for the glyph ‘i’ . (a) original
image; (b) image a) converted to gray level; (c) image b)
with gaussian filter; (d) image c) binarized; (e) image d)
with bounding box + 1 pixel; (f) distance transform applied
to image e); (g) image e) after thinning; (h) image g) after
disconnected paths removal; (i) image h) after the small
ramifications removal.

3. Distance transform: in this step, we compute the distance
transform [23] for both the input text and the font images. We
use it later in our thickness metric. Fig. 4-f shows a represen-
tation of the distance transform: the bigger the numbers, the
stronger (black) the pixels.

4. Skeletonization: we apply the thinning approach by
Zhang and Suen [24] to compute the skeleton of the glyphs.
After computing the skeletons, we still need to perform two
operations on the pixels describing the skeleton preparing them
to apply our distance metric. First, we convert the skeleton
into a one-pixel wide one through the algorithm described
in [25]. This is important because our distance metric needs
a continuous set of points, which is detailed in the next
subsection. Second, we compute the skeleton’s end and branch
pixels, which will have an important role in the next steps.
End pixels are all the pixels that have only one neighbor,
whereas branch pixels are all the pixels that have three or more
neighbors, both considering an 8-connected neighborhood.
Fig. 4-g presents the skeletonization obtained from Fig. 4-e.

5. Disconnected paths removal: this operation consists in
removing all the disconnected pixel paths except for the largest
one, which will be considered the main skeleton. We start from
an endpoint and count the number of pixels found, erasing
them until they have all been processed. If an image has no
end points, we start with the bottom-most left pixel of the
skeleton by default. When a branch pixel is found, we store
it for a later check when a path is over. When a path is over,

we store its number of pixels and start all over again while
the number of visited pixels is different from the total of the
skeleton pixels. The biggest path is preserved as an image,
and the other ones are erased. Fig. 4-h illustrates this step.
The algorithm finds two disconnected segments and removes
the upper line which had fewer pixels than the body of the ‘i’
glyph. As a side note, in English the majority of handwritten
characters do not have disconnected parts, since English does
not have accents.

6. Small ramifications removal: here we remove small pixel
ramifications that could be considered as noise produced by the
thinning algorithm. A ramification occurs when a pixel path
starts on an end pixel and goes through a branch pixel or vice-
versa. We defined as noise ramification all the ramifications
that have at least 10% of the total number of skeleton pixels,
not counting the branch points. We chose this percentage
through simple experiments. Then, all noise ramifications are
removed from the path. These paths are easily detected using
a variation of the algorithm described in the last step. Fig. 4-i
shows the upper right ramification removal, which in this case
helps to improve the skeleton result considering the shape of
glyph ‘i’.

We now have the final skeleton of all the images to compare
each glyph from the input text with the glyphs from the fonts.
The next subsection describes the algorithm to compare the
shape and thickness among glyphs.

B. Shape and Thickness Matching

For each glyph in the input text we have to find, among
all available public fonts, the best match. For this task we
define a metric that first compares the glyph shapes followed
by a comparison of their line thickness. Our shape metric
requires as input one-to-one point correspondences between
the two shapes. This means finding an ordered list with the
same amount of points for both glyph skeletons. We compute
this list from the pixels that define the skeletons. We divided
this process into five steps, detailed below.

1. Defining the starting pixels: since we will create an
ordered list of pixels for each skeleton, our first task is to
choose the most similar starting pixel for both skeletons. We
accomplish this by using a simple Euclidian distance through
all the end pixels respecting the size normalization of both
images. As described in Sec. III-A step 5, if an image has no
end pixels, we start with the bottom-most left pixel by default.
The pair chosen is the one that has the least distance found
among all the comparisons. Fig. 5-b illustrates the starting
point found for both example images in 5-a.

2. Ordered pixel list creation: starting from the initial pixels
found in the previous step, we need to go through both
skeletons capturing all the pixels along the way. For each pixel
from the starting one, we decide the next 8-neighbor according
to the following priority: branch point, then clockwise order
starting from the bottom pixel, as illustrated in Fig. 6 for a
sequence of pixels. We mark each visited pixel and every time
a pixel has no new neighbors we backtrack through all the
pixels already visited, beginning with the branch points in their



visited order until there is no one left. Since all the pixels are
guaranteed to be connected because of our preprocessing phase
(step 5), the algorithm will surely end at some pixel. The use
of this simple rule makes sure we are moving through the
same path when creating the list of pixels for both skeletons.
Not only that, but we also guarantee a consistent path even
for considerably different skeletons. Fig. 5-c shows the list of
pixels and their direction on the list. At the end of this step,
we have an ordered list of pixels for each skeleton.

3. Point list creation: since the shape matching requires two
sets of the same quantity of ordered points, we need to sample
both sets of ordered pixels such that they have exactly the
same amount of points. We used a linear approach which given
the number of points to be sampled returns points equally
spaced along the pixel list. If one ordered list of pixels has
fewer points than asked, we sample everything possible and
just repeat the last value till it reaches the given number. Even
though this parameter can be changed, we opted to fix it to
20 points through all the experiments, since it presented good
results overall. Fig. 5-d illustrates the final points chosen.

4. Shape matching: the shape comparison uses the Pro-
crustes distance applied to the list of points obtained in
the previous step. Given two shapes with one-to-one point
correspondences, we compute the distance between them as
the sum of the squared distances between equivalent points,
known as Procrustes method [26] and usually used in shape
analysis. We used Procrustes since it is simple and deals with
eventual translations, rotations and scales. We use the return
value d ∈ [0, 1] to measure how similar the shapes are. The
closer to zero, the more similar the shapes are. On a small

Fig. 5: Pipeline for computing an ordered pixel list for the
skeletons of two characters representing numbers. (a) input
images of a ‘1’ and a ‘7’. (b) result of the preprocessing
phase for both images in a) and their respective starting pixels
selected. (c) ordered list of pixels and their direction on the
list. (d) points from c) after linear sampling for 20 points.

Fig. 6: Ordered pixel list creation. P represents the current
pixel and the numbers 1 to 8 express the priority to visit the
next pixel. Example of three iterations to show the pixel to
be chosen. The white pixels are already visited, the blue ones
still need to be visited and the red is the chosen one to be
visited next.

Fig. 7: Shape and thickness results. (a) glyph ‘w’ handwritten.
(b) best three ‘w’ computed using only the shape comparison.
(c) best three ‘w’ of our shape metric ordered by the thickness
algorithm.

subset of the best matches found using the Procrustes distance,
we apply a second metric that compares the thickness of the
characters, described in the next step.

5. Thickness matching: our line thickness comparison pro-
cess independently of the shape matching and consists in
comparing the points using the distance transform previously
calculated. For each sampled point on the list, we get its
value in the distance transform matrix for both images. We
calculate the absolute difference for each pair of values and
keep on summing them all until no pair is left. At the end we
obtain a value t ≥ 0 representing the thickness. Just as with
the distance metric, the closer to zero, the better the result.
Since the points shall have a one-to-one correspondence, our
approach captures the difference of thickness between the
characters. In Fig. 7 we illustrate a glyph and the results of first
applying the shape metric followed by the thickness metric.
We can see the reordering of the best matches according to
the thickness criterion.

C. Synthesis

This is the last and simplest step. Once we have the glyphs
that minimize the distance between the input and the available



public fonts, we are ready to write the output as a collection of
glyphs that will be placed side by side such that they look like
they were written as a unique text. When available, we tried
to manually mimic the same vertical and horizontal spacing
of the original whenever possible.

IV. RESULTS

Here we present the main results of our method. We
implemented our prototype using Processing and Matlab. We
computed our results in an i5 3.50GHz. First, we present
example of possible uses for our results, followed by the
results we collected from a user study.

In Fig. 1 we show a synthesis result from an excerpt of a
letter from Mário de Andrade, an important Brazilian writer.
We can see that even without the ligatures among glyphs
typical of cursive writing, the overall result is still similar
to the input. This result took 306 milliseconds in total to
compute: 146ms for generating all the font images for all the
glyphs and 160ms for computing the matching among glyphs.
The largest bounding box of all the input was for the glyph
‘f’ with 42 x 43 pixels.

We also present other examples of applications of our
approach in different contexts. For input, we used the sample
handwriting from subjects 2 (S02), 3 (S03), 4 (S04), 6 (S06)
and 9 (S09) from [3]. These samples provide variability among
individuals as well as variability with respect to the sentences
and writing tool used. S02, S03 and S06 used a fine liner pen;
S04 used a fountain pen, and finally, S09 used a gel pen. Fig.
8 (a) presents a message created using the best matched fonts
for S02 in a flower card, (b) S03 writing in an e-mail, (c) S06
in a medical prescription, and (d) an artificial CAPTCHA. For
the artificial CAPTCHA we used the glyphs combination that
was considered the worst in the study we performed to assess
our results, described next.

We compared our results directly with [3] through a para-
graph wrote by Sir Arthur Conan Doyle’s real handwriting.
We synthesized the sentence ”Elementary my dear Watson”,
presented in Fig. 9. We extracted the samples from the same
paragraph used in [3], although in our case we do not have
individual variation for glyphs of the same letter. Even though
our solution is simpler than [3], our synthesis still provides
satisfactory results for many applications that do not demand
full similarity. Further, we compared our results with the
website WhatTheFont [27] in Fig. 10. We used as input a
sentence from user S09. The website generated the top 10 best
matches. We selected the first of each and placed them side
by side. Even though a few characters are visually similar,
in general, for real handwriting samples, WhatTheFont has
difficulties in providing adequate suggestions.

A. Validation

We designed an experiment to assess how similar to the
human input our results are. For input, we used the same
as before, that is, the handwriting from S02, S03, S04, S06
and S09 from [3]. Fig. 11 shows four out of five results we

obtained by running our algorithm. The original sentences are
highlighted in a red box and our results highlighted in blue.

Since handwriting is usually seen on paper, we provided
printed copies of the real handwriting input, printed at the top
of the page, together with 5 of our results randomly positioned
below the original handwriting. We ordered the results initially
by the shape metric and then, only for the first three best
matches, we ordered again by using the thickness metric. We
provided 3 of our best matches along with the “best” results in
positions 40th and 100th. We asked the subjects to grade each
result on a scale of 0 (zero) to 10 (ten) assessing how similar
they considered each result when compared to the original
handwriting. Twelve subjects took part in the experiment, with
an average age of 25 years, all Computer Science students.
We had two different test versions in which we shuffled the
answers and the subjects order.

Table I presents the average of grades for all cases. For the
first three subjects, the results of our technique received the
highest grades, as expected. For all subjects, the best grades
were consistently assigned for the best three synthesized
sentences. Further, we obtained an overall average grade of
7.1 considering only the highest scores for each result.

S02 S03 S04 S06 S09
1st sentence (best) 6.42 8.17 7.33 5.58 6.33

2nd sentence 6.42 6.33 6,25 6.75 6.75
3rd sentence 5.17 5,17 4.42 5.00 6.92
40th sentence 3.08 3,42 2.75 3.58 4.25

100th sentence 1.33 2.08 3.17 2.58 1.83

TABLE I: Results containing the average scores of our exper-
iment. In bold, the highest grades for each subject.

V. CONCLUSIONS

We have presented a technique for the synthesis of text that
looks like it has been handwritten according to a particular
style from a person. Given a user text sample and some
families of fonts, our approach finds the fonts that best match
the user calligraphy. Each person may have it’s own font
family created by the concatenation of the best samples from
several families. We accomplish this by a preprocessing step
followed by a matching and thickness step, applied to indi-
vidual characters. We tested our approach with low resolution
glyphs extracted from a real letter and achieved visually simi-
lar results. Besides, we conducted a user validation study that
presented positive results overall. Our technique has several
uses, which we demonstrated through some simple examples
from artistic applications to CAPTCHA generation.

Our technique has few limitations. Both the text segmen-
tation and the glyph concatenation uses manual work. This
requires some effort to position the glyphs correctly so that
they resemble the original. The thinning strategy can ignore
some important features of the glyphs and the branch removal
sometimes may delete an important part of a letter. For future
work we aim to work on the above limitations and expand
our inputs to deal with accents and other languages besides
English. Furthermore, we intend to explore new matching



Fig. 8: Examples of synthesized applications using the best match from three different subjects from [3] and the 100th match
from the first subject. (a) birthday card (S02). (b) E-mail (S03). (c) medical prescription (S06). (d) artificial CAPTCHA (S02).

Fig. 9: Comparison between results from [3] and ours for a letter wrote by Sir Arthur Connan Doyle. (a) Sampled paragraph
of the original letter. (b) Result synthesized by [3] on the top and our synthesis result below.

Fig. 10: Comparison between results from the website WhatTheFont [27] and ours using a sample of S09 [3]. (a) Original
sample. (b) Our best result. (c) WhatTheFont first result.

techniques, such as Iterative Closest Point and Hausdorf
Distance. It would be very nice to also replicate the texture
of the original handwriting, when available, as done in [3].
We also intend to increment the number of families of fonts,
support online input handwriting (from a tablet, for instance)
and synthesize the ligatures among glyphs of different families
of fonts. This possibility would increase the visual similarity.

ACKNOWLEDGMENTS

We gratefully acknowledge the scholarship funding from
CAPES for the first author.

REFERENCES

[1] “The indian handwritten letter co.” http://www.tihlc.com, accessed:
2017-05-30.

[2] P. Rao, “Shape vectors: an efficient parametric representation for the
synthesis and recognition of hand script characters,” Sadhana, vol. 18,
no. 1, pp. 1–15, 1993.



Fig. 11: Four out of five synthesis results used in our experiment. All the sentences are ordered from top to bottom: original
(highlighted in red), 1st, 2nd, 3rd, 40th and 100th (highlighted in blue). (a) S02. (b) S03. (c) S04. (d) S06.

[3] T. S. Haines, O. Mac Aodha, and G. J. Brostow, “My text in your
handwriting,” ACM Transactions on Graphics (TOG), vol. 35, no. 3,
p. 26, 2016.

[4] A. O. Thomas, A. Rusu, and V. Govindaraju, “Synthetic handwritten
captchas,” Pattern Recognition, vol. 42, no. 12, pp. 3365–3373, 2009.

[5] A. Rusu, A. Thomas, and V. Govindaraju, “Generation and use of
handwritten captchas,” International Journal on Document Analysis and
Recognition, vol. 13, no. 1, pp. 49–64, 2010.

[6] S. N. Srihari, S.-H. Cha, H. Arora, and S. Lee, “Individuality of
handwriting,” Journal of forensic science, vol. 47, no. 4, pp. 1–17, 2002.

[7] “Calligraphr,” https://www.calligraphr.com/, accessed: 2017-05-30.
[8] “Myscriptfont,” http://www.myscriptfont.com/, accessed: 2017-05-30.
[9] “Yourfonts,” http://www.yourfonts.com/, accessed: 2017-05-30.

[10] Y. Elarian, R. Abdel-Aal, I. Ahmad, M. T. Parvez, and A. Zidouri,
“Handwriting synthesis: classifications and techniques,” International
Journal on Document Analysis and Recognition (IJDAR), vol. 17, no. 4,
pp. 455–469, 2014.

[11] I. Guyon, “Handwriting synthesis from handwritten glyphs,” in Proceed-
ings of the Fifth International Workshop on Frontiers of Handwriting
Recognition. Citeseer, 1996, pp. 140–153.

[12] J. Wang, C. Wu, Y.-Q. Xu, H.-Y. Shum, and L. Ji, “Learning-based
cursive handwriting synthesis,” in Frontiers in Handwriting Recognition,
2002. Proceedings. Eighth International Workshop on. IEEE, 2002, pp.
157–162.

[13] M. Helmers and H. Bunke, “Generation and use of synthetic training
data in cursive handwriting recognition,” Pattern Recognition and Image
Analysis, pp. 336–345, 2003.

[14] J. Wang, C. Wu, Y.-Q. Xu, and H.-Y. Shum, “Combining shape and
physical models for online cursive handwriting synthesis,” International
Journal of Document Analysis and Recognition (IJDAR), vol. 7, no. 4,
pp. 219–227, 2005.

[15] Z. Lin and L. Wan, “Style-preserving english handwriting synthesis,”
Pattern Recognition, vol. 40, no. 7, pp. 2097–2109, 2007.

[16] R. Saabni and J. El-Sana, “Efficient generation of comprehensive
database for online arabic script recognition,” in Document Analysis
and Recognition, 2009. ICDAR’09. 10th International Conference on.
IEEE, 2009, pp. 1231–1235.

[17] R. M. Saabni and J. A. El-Sana, “Comprehensive synthetic arabic
database for on/off-line script recognition research,” International Jour-
nal on Document Analysis and Recognition (IJDAR), vol. 16, no. 3, pp.
285–294, 2013.

[18] Y. Elarian, I. Ahmad, S. Awaida, W. G. Al-Khatib, and A. Zidouri,
“An arabic handwriting synthesis system,” Pattern Recognition, vol. 48,
no. 3, pp. 849–861, 2015.

[19] C. Jawahar and A. Balasubramanian, “Synthesis of online handwriting
in indian languages,” in Tenth International Workshop on Frontiers in
Handwriting Recognition. Suvisoft, 2006.

[20] H. Fujioka, H. Kano, H. Nakata, and H. Shinoda, “Constructing and
reconstructing characters, words, and sentences by synthesizing writing
motions,” IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 36, no. 4, pp. 661–670, 2006.

[21] “34 free calligraphy script fonts for wedding
invitations,” http://www.prettyweddingpaper.com/
34-free-calligraphy-script-fonts-for-wedding-invitations, accessed:
2017-05-30.

[22] “1001 fonts,” http://www.1001fonts.com/handwritten+
handwriting-fonts.html, accessed: 2017-05-30.

[23] R. Fabbri, L. D. F. Costa, J. C. Torelli, and O. M. Bruno, “2d euclidean
distance transform algorithms: A comparative survey,” ACM Computing
Surveys (CSUR), vol. 40, no. 1, p. 2, 2008.

[24] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239,
1984.

[25] L. Lam, S.-W. Lee, and C. Y. Suen, “Thinning methodologies-a com-
prehensive survey,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 14, no. 9, pp. 869–885, 1992.

[26] M. B. Stegmann and D. D. Gomez, “A brief introduction to statistical
shape analysis,” Informatics and mathematical modelling, Technical
University of Denmark, DTU, vol. 15, no. 11, 2002.

[27] “Whatthefont,” https://www.myfonts.com/WhatTheFont/, accessed:
2017-08-16.


