
Single Image Super-Resolution Using
Multiple Extreme Learning Machine Regressors

Daniel Luis Cosmo
Laboratório de Computação

e Sistemas Neurais,
Universidade Federal do Espı́rito

Santo, Vitória, Espı́rito Santo.
Email: daniel.cosmo@aluno.ufes.br

Fernando Kentaro Inaba
Laboratório de Computação

e Sistemas Neurais,
Universidade Federal do Espı́rito

Santo, Vitória, Espı́rito Santo.
Email: kentaro@ele.ufes.br

Evandro Ottoni Teatini Salles
Laboratório de Computação

e Sistemas Neurais,
Universidade Federal do Espı́rito

Santo, Vitória, Espı́rito Santo.
Email: evandro@ele.ufes.br

Abstract—This paper presents a new technique to solve the
single image super resolution reconstruction problem based
on multiple extreme learning machine regressors, called here
MELM. The MELM employs a feature space of low resolution
images, divided in subspaces, and one regressor is trained for
each one. In the training task, we employ a color dataset
containing 91 images, with approximately 5.3 million pixels, and
PSNR and SSIM as metric evaluation. For the experiments we
use two datasets, Set 5 and Set 14, to evaluate the results. We
observe MELM improves reconstruction quality in about 0.44
dB PSNR in average for Set 5, when compared with a global
ELM regressor (GELM), trained for the entire feature space. The
proposed method almost reaches deep learning reconstruction
quality, without depending on large datasets and long training
times, giving a competitive trade off between performance and
computational costs.

I. INTRODUCTION

The purpose of Super-Resolution (SR) algorithms is to
estimate a high resolution (HR) image corresponding to a
given low resolution (LR) input image. We can estimate a
HR image from a set of LR images with sub-pixels shifts or
from one unique LR image. The former is known as Multi
Frame Super-Resolution and the latter as Single Image Super-
Resolution.

The LR image Y is generated from the HR image X using
the model

Y = (B ∗X) ↓ s, (1)

where B denotes a blurring filter to prevent aliasing, ↓ is a
downsampling operator with downsampling factor s, and the
operator ∗ represents convolution. Recovering X from Y is a
ill posed inverse problem, and some sort of regularization is
commonly used to solve equation (1).

SR reconstruction algorithms are needed due to hardware
limitations on imaging acquisition devices, like the presence
of optical distortion, lens and motion blur, and insufficient
sensor sampling and aliasing. Image quality on the output of
those devices is usually bellow desired, and hardware solutions
are impractical. To circumvent this problem, SR reconstruction
algorithms are used as software solutions implemented on the
imaging systems.

SR reconstruction techniques are present in several fields:
medical imaging applications, where results of low density

radiation scans are reconstructed using SR techniques to
improve image quality without raising the exposure of patients
to radiation [1]; Surveillance applications, when applying SR
reconstruction in photos or videos, improving image quality in
areas of interest, like faces and car plates [2]; Remote Sensing,
where one or multiple satellite images with low quality are
used to estimate a HR image [3].

The simplest techniques available to provide super-
resolution are based on interpolation, which relies on filtering
operations between the image and a linear kernel. These
approaches are simple and computationally efficient, but the
resized output image lacks high frequency information due to
low pass behavior of interpolation filters.

Multi frame techniques uses information contained in multi-
ple LR images of the same scene to estimate a HR image. The
LR images must have subpixel shifts between each other to
offer extra information of the scene, and a registration method
is applied to estimate these displacements. Multi frame SR can
be broadly categorized in frequency domain [4], non uniform
interpolation [5] and Bayesian inference [6], [7] approaches.

Another group of SR techniques are example-based ap-
proaches. These techniques use a training set consisting of
LR and HR image pairs to learn a model or mapping between
them. This model or mapping is used on a desired LR
image to estimate the HR image or hallucinate their missing
high frequency components. The interest of example based
approaches roses with the work [8], where they conducted a
per-patch nearest neighbor search in the dataset to find the
lost high frequency components of the interpolated LR input
image.

Others example-based approaches are: Neighbor Embedding
[9]–[12], where reconstruction weights are calculated, based
on training samples, for the LR input patch and used to
estimate the corresponding HR output patch; Sparse Coding
[13]–[16], where an LR and HR dictionaries are jointly trained
based on the training samples, and used to estimate the HR
patch based on sparse coefficients calculated from the LR
patch; Deep Learning [17]–[20], where convolutional neural
networks are used to model the mapping between LR an HR
patches.

In this paper, we use the example-based approach, proposing



a SR reconstruction algorithm using several single-hidden-
layer feed-forward networks (SLFNs) trained with Extreme
Learning Machine (ELM) method. Each SLFN is trained
using a set of LR and HR example pairs from a dataset,
grouped based on the similarity between their feature vectors.
We use k-means to create clusters in the feature space, and
a single SLFN is trained for each cluster. Recent research
[21]–[23] show that training local regressors instead of one
global regressor for the entire feature space gives better SR
reconstruction. We believe that training a regressor for each
cluster makes it more specific for that region of the feature
space, estimating a better mapping of the LR e HR patches in
that region.

We started this work with the initial idea of a ELM global
regressor of [24]. The main contributions of this paper are:

• Adapting the global regressor of [24] to a more refined
state, consistent with state of the art SR reconstruction
algorithms;

• Training multiple ELM regressors, considering that ELM
training is much faster than back-propagation and gives
good generalization when used with a regularization term.

The remainder of the paper is organized as follows: in
section II we take a look on how ELM works; in section
III we explain the global ELM algorithm, in section IV we
present our proposed algorithm, in section V we give details
of the experiment, in section VI we compare the results of our
algorithm with state of the art SR reconstruction methods and
in section VII we draw conclusions about this work.

II. EXTREME LEARNING MACHINE

Extreme Learning Machine is characterized by being a
extremely fast learning algorithm for the single-hidden-layer
feed-forward networks [25]–[27]. One of the features of ELM
is that the hidden layer need not be tuned, and the calculation
of the output layer is a closed form solution.

The output function for one node of ELM, for generalized
SLFNs, is

f(x) =

L∑
i=1

βihi(x) = h(x)β. (2)

where L is the number of neurons on the hidden layer, β =
[β1, . . . , βL]T is the vector of output weights between the hid-
den layer and the output node and h(x) = [h1(x), . . . , hL(x)]
is the output row vector of the hidden layer with respect to
the input x.

The goal of ELM learning is to reach not only the smallest
training error but also the smallest norm of output weights.
According to [28], as the norm of output weights gets smaller,
the generalization of the network gets better. The function
ELM minimizes is

arg min
β

= ‖Hβ −Yt‖2 + C ‖β‖2 , (3)

where Yt is the output matrix of target values, C is a
regularization parameter and H is the hidden layer output
matrix given by

H =

h(x1)
...

h(xN )

 =

h1(x1) . . . hL(x1)
...

...
...

h1(xN ) . . . hL(xN )

 . (4)

The solution of the optimization problem in equation (3),
for the case where the number of training samples is bigger
than the number of hidden neurons, is

β =

(
I

C
+ HTH

)−1

HTYt. (5)

After obtaining β in (5), the output function of ELM regressor
is

f(x) = h(x)β = h(x)

(
I

C
+ HTH

)−1

HTYt. (6)

To reach this result, first we have to calculate the hidden
layer output matrix

H(x) = [G(a1, b1,x), . . . , G(aL, bL,x)], (7)

where ai are the weights between the input layer and the
hidden layer, bi are the biases of the hidden layer and G(·)
is the activation function of the hidden neurons. The weights
and bias are randomly generated according to any continuous
probability distribution and the activation function can be
any nonlinear piecewise continuous function satisfying ELM
universal approximation capability theorem [29].

III. GLOBAL ELM REGRESSOR FOR SR RECONSTRUCTION

The global ELM regressor [24] uses the same idea used
by most exampled-based algorithms, that is, using the training
dataset to estimate missing high frequency information from
an interpolated LR image that we want to reconstruct. The
algorithm can be separated in two steps: training and SR
reconstruction.

In the training step, a training dataset consisting of HR
images IHR is used. From IHR images, low resolution images
ILR are generated by convolving IHR with a blur kernel and
downsampling, as in equation (1), creating a training dataset
corresponding to pairs of LR and HR images. For each LR
image, some basic interpolation method is used, forming a
initially upscaled LR image I0, with the same size as IHR.
The high frequency components image IHF can be calculated
as

IHF = IHR − I0. (8)

The goal of ELM regressor is to learn the mapping between
the initially upscaled image I0 and its missing high frequency
components IHF . This mapping is done per patch, instead of
per image, because it is easier to map small local regions with
similar geometry an texture than a full image.

To create the sample vectors x, the input for the SLFN,
the image I0 is transversed in a raster-scan order, and a
local neighborhood (m×m) is selected centered at the pixel



location. Features are extracted from the patches (normally
based on the local gradients) and ordered lexicographically,
forming the matrix of input vectors X. The target matrix Yt
is formed by the value of pixels in IHF , so for each input
patch there is a output pixel. The matrix X and Yt are used
to train the ELM regressor.

The SR reconstruction step begins by using the same
initial interpolation in the desired image ILR that we want to
reconstruct, forming I0. After obtaining I0, the same features
are extracted and fed to the trained ELM regressor, in the
same raster scan order. The outputs of the trained ELM are
the pixels containing high frequency information, forming the
image IHF when combined. The high resolution image IHR
can be calculated as

IHR = I0 + IHF . (9)

More detailed information about values and parameters used
in the global ELM regressor can be seen in section V.

IV. MULTIPLE ELM REGRESSORS FOR SR
RECONSTRUCTION

Our proposed SR reconstruction algorithm is based on the
idea of multiple linear maps presented in [21], [23]. The idea
to use ELM regressors comes from the fact that a SLFN
regressor can be more robust than simple linear mappings, like
the ones adopted in [21], [23]. Also, training multiple SLFN
regressors using the ELM methodology is not computationally
demanding, given that the training is not iterative and has a
closed form solution.

The core idea of multiple maps is to divide the LR feature
space and HR space in groups or subspaces, based on a
similarity measure, and use one regressor to learn the map
for each of these subspaces. This way, each regressor will be
more specialized to map samples from the subspace they were
trained, in contrast to a global regressor, who maps the entire
feature space.

The proposed algorithm can be divided again in two phases:
training and SR reconstruction.

A. Training phase

Suppose we have a dataset of LR-HR patch pairs, created
from some HR images in the same way explained in section III
and shown in Figure 1. Let Xs = {xis}Ni=1 be the LR training
patches and Ys = {yis}Ni=1 be the HF training patches, where
N is the number of samples.

In order to divide this dataset in subsets, we apply k-
means clustering in the training samples Xs. This leads to
K clusters or subsets of Xs and K centroids {ck}Kk=1. Let
Xk
s = {xis}i∈Ωk

be the k subset of Xs, where Ωk are the
indexes of samples belonging to cluster k. We use these same
indexes to cluster the HF training samples, creating the subsets
Yk
s = {yis}i∈Ωk

. At the end, we have K coupled subsets of
LR-HF samples, {Xk

s ,Y
k
s}. We use each coupled subset to

learn K models for ELM regressors. The training process can
be seen in Figure 2.

B. SR reconstruction phase

Beginning with a LR image that we wish to reconstruct, a
series of operations are made: initial upscaling to make the
LR image have the same size as the HR target image, feature
extraction to better represent the image and a raster-scan sweep
to extract a feature patch centered at each pixel of the image.
At the end, we have a set os LR patches X = {xi}Ni

i=1, where
Ni is the number of pixels in the initially upscaled image I0.

After extracting the patches from the LR image, we measure
the similarity metric (same used in k-means) between each
patch xi and the set of centroids {ck} found in the training
phase. Each patch is then associated to the nearest cluster,
and the ELM regressor trained for this specific cluster is used
to reconstruct the patch, generating a high frequency patch
yi. After reconstruction and rearranging all patches {yi}Ni

i=1,
we have the HF image IHF , which we sum with the initially
upscaled image I0 to obtain the HR output image IHR. The
SR reconstruction process can be seen in Figure 3.

V. EXPERIMENT

In this section we detail the settings and parameters used
in our Multiple ELM algorithm, and compare some changes
we made from the work of L. An and B. Bhanu [24], for the
global ELM regressor.

A. Color space

The color space we use in our algorithm is YCbCR, and
the SR reconstruction was only applied in the Y (luminance)
channel. In the last years, the majority of SR works [11],
[12], [14], [17], [23], [24] used this same setup, once the
human visual system is much more sensitive to high frequency
intensity changes than high frequency color changes. To re-
construct RGB images, first we transform the color space to
YCbCr, them we apply the SR reconstruction algorithm on the
Y channel, while in the other two channels we apply bicubic

Fig. 1. Flowchart explaining the steps used to construct a dataset of coupled low resolution and high frequency patches.



Fig. 2. Flowchart explaining the steps used to learn multiple ELM models form a dataset of coupled LR-HF samples.

interpolation. The final HR image is obtained by transforming
back the YCbCr image to RGB space.

B. Features

The features used in [24] are pixel intensity values from
local image patches and 1st and 2nd order derivative magni-
tudes. At each pixel (i, j) of the initial interpolated image
I0, the feature vector is formed by a local patch of pixel
intensities centered at pixel (i, j) and five derivative values(
∂I0
∂x ,

∂I0
∂y ,

∂I0
∂x2 ,

∂I0
∂y2 ,

∂I0
∂xy

)
calculated at position (i, j).

In our work, we use the same features, but instead of
using the derivative values calculated only at the central
pixel, we use the values calculated in a patch centered at
the central pixel. This neighborhood information gives better
characterization to the patch, once natural images have similar
neighborhood structure. The derivatives are calculated using
the filters developed in [30].

We use a patch of size 5 × 5, extracting 25 values of
pixel intensities and 125 derivative values (25 values for each
partial derivative). All information extracted from the patch are
arranged in a vector of dimension 150. We use PCA to reduce
the feature vector to dimension 50, while maintaining 99.9%
variance of the features. In our test, this dimensionality reduc-
tion don’t affect the reconstruction quality. All feature vectors

extracted from the training dataset are globally normalized to
[−1, 1] before being inputed to the ELM regressor for training.

C. HF output
In [24], the ELM output for an input patch centered at

pixel (i, j) is a pixel of the HF image, located at the same
(i, j) position. In our work, instead of a output pixel, we have
an output patch centered at pixel (i, j), creating overlapping
patches in the HR grid. The pixels final values are the average
of all contributions given by the patches overlapping that
pixel. This way, input pixels located at the neighborhood of
position (i, j) contributes to the final value of HF pixel at
(i, j). According to empirical results, we chose a 5× 5 patch
output.

D. Algorithm parameters
Two parameters in the ELM regressor are user specified:

number of hidden neurons (L) and regularization weight (C).
Performance of ELM is not very sensitive to these parameters,
as can be seen in [27], and good results can be achieved as
long as L is large enough. In our algorithm, we set L = 1, 000
and C = 256. Sigmoid function is used as activation function
of the hidden neurons.

The number of clusters (K) generated by k-means is another
specified parameter. When K grows, two situations occur.

Fig. 3. Flowchart explaining the steps used to SR reconstruct a LR input image.



First, the number of subsets grow, leading to an increase in
numbers of more specialized ELM regressors. Second, the
number of samples in each subset diminishes, leading to less
samples to train each ELM. At the end, K must be chosen in
order to maximize the number of cluster without leaving them
with a little quantity of samples. In our tests, K = 50 gave
good results.

E. Training dataset

The dataset we use for training the ELM regressors is the
same used in [17], containing 91 images. This dataset contains
approximately 5.3 million pixels, leading to the same amount
of samples, considering that each pixel leads to a feature
vector. Due to memory limitations, we don’t use all samples to
calculate the clusters with k-means. Instead, 8,000 samples are
randomly extracted from each image, after feature calculation,
composing a LR-HF dataset with around 728,000 samples
(some images are shorter than 8,000 pixels, so the number
of samples is a little shorter than 728,000). The choice to
use this dataset, instead of a smaller one, as used in [24]
(with 5 images), resides in the fact that with more images
we can capture samples with more variability, giving better
generalization to the trained regressors.

Another memory limitation occurs when we train a ELM
regressor for a cluster with too many samples. To alleviate this
problem, we set a maximum number of samples per cluster
equal to 300,000.

After applying k-means clustering, we associate the remain-
ing samples, that were not used for clustering, to the closest
clusters that are not full, using the distance between samples
and cluster centroids. After all samples are associated, the
regressors are trained.

VI. RESULTS AND ANALYSIS

In this section, we compare our work with 3 state of the art
methods:
• SC - Sparse Coding super resolution method [14],
• ANR - Anchored Neighborhood Regression method [11],
• CNN - Convolutional Neural Network super resolution

method [17],
along with bicubic interpolation as a baseline.

The implementations of all methods above are publicly
available, and all algorithms runs in the same computer, with
an i5 2500 processor and 8 GB of RAM memory. We use
the same bicubic kernel to downsample the HR images. For
all algorithms, except SC, we use the models trained by the
authors. We train a model for SC because the model available
was trained using a gaussian kernel to downsample the images.
We train this model using the same proposed parameters
reported by the authors. We don’t compare directly with [24]
because we couldn’t find any publicly algorithm available from
the authors.

We use two datasets to compare all methods:
• Set 5 [10], with 5 images,
• Set 14 [15], with 14 images.

We run all methods in 3 upscales, ×2, ×3 and ×4. Set 5
is used to validate our algorithm parameters with ×2 upscale.
The metrics used to compare results are PSNR and SSIM [31].
Those metrics are used in almost all recent super-resolution
works, and are calculated using only the luminance channel.
Reconstruction time is also reported for each method. We don’t
cut borders of the reconstructed images before calculating the
metrics, thus some results can be slight different from the
original papers.

We use two versions of our algorithm. In the first version,
denominated GELM (Global ELM), we train only one ELM
regressor for the entirety of the feature space. This version is
In the second approach, denominated MELM (Multiple ELM),
we first apply k-means and them train one ELM regressor for
each subspace. A comparison of all the results can be seen in
in Tables I and II. All results are average values across the
specified dataset. Figures 4 and 5 shows some reconstructed
images of set 14 for all methods, except GELM, with ×4
upscale.

Results show that the GELM method is comparable with
SC and ANR, but its reconstruction quality is below CNN.
MELM methods improve PSNR and SSIM when compared
to GELM, almost reaching the results given by CNN method,
without increasing reconstruction time. This happens because
the same amount of patches needs to be reconstructed in both
GELM and MELM, not depending on the quantity of ELM
regressors used.

MELM results stays somewhat below deep learning results,
but the former don’t need huge training datasets and don’t
need much time to train. As was stated in [17], the CNN
model used was trained using a dataset with 395,909 images
and took 8×108 back-propagations to train (training time was
not stated in the paper). Our MELM method uses a dataset
with 91 images and take less than 10 minutes to train.

VII. CONCLUSION

In this paper we proposed a learning based method to
single image super resolution. The proposed method uses a
efficient and fast training method for single-hidden-layer feed-
forward networks called extreme learning machine, to learn the
mapping between low resolution and high frequency regions
of images. Super-resolution reconstruction quality is further
improved by dividing the feature space of the training samples
in clusters, with k-means, and training one extreme learning
machine regressor for each cluster. Results show that the
proposed method almost reaches deep learning reconstruction
quality, without the need of large image datasets or long
training times.

For future works, there are some proposals that we believe
will improve the reconstruction quality: joining the clustering
and regressor optimization in one global optimization, using
different features to represent low resolution patches, and
using trained dictionaries instead of sample patches to train
the regressors are among them.



TABLE I
COMPARISON OF RESULTS ON DATASET SET 5

Bicubic SC ANR CNN GELM MELM

× 2
PSNR (dB) 33.6972 35.9873 35.7799 36.5991 35.9938 36.5550

SSIM 0.9309 0.9508 0.9499 0.9546 0.9508 0.9540
Time (s) 0.0018 89.0814 0.4695 3.6304 3.5966 3.9855

× 3
PSNR (dB) 30.4114 31.8228 31.8519 32.6897 32.1538 32.5872

SSIM 0.8684 0.8953 0.8950 0.9080 0.8992 0.9075
Time (s) 0.0010 84.3665 0.2927 3.5168 3.0982 3.1835

× 4
PSNR (dB) 28.4407 29.5502 29.6206 30.3873 29.8957 30.2126

SSIM 0.8102 0.8375 0.8391 0.8604 0.8479 0.8589
Time (s) 0.0013 81.9554 0.2223 3.5321 3.0772 3.1272

TABLE II
COMPARISON OF RESULTS ON DATASET SET 14

Bicubic SC ANR CNN GELM MELM

× 2
PSNR (dB) 30.0205 31.6203 31.4647 32.0584 31.6311 31.9289

SSIM 0.8694 0.9022 0.9000 0.9065 0.9006 0.9043
Time (s) 0.0020 170.9709 0.9445 9.5251 6.2078 6.2968

× 3
PSNR (dB) 27.3418 28.3030 28.3367 28.8890 28.5087 28.7421

SSIM 0.7745 0.8094 0.8085 0.8211 0.8098 0.8170
Time (s) 0.0017 160.4415 0.5986 8.8116 6.1859 6.2486

× 4
PSNR (dB) 25.7979 26.5139 26.5514 27.0500 26.7305 26.9339

SSIM 0.7025 0.7331 0.7337 0.7499 0.7372 0.7463
Time (s) 0.0016 156.4214 0.4685 9.0958 6.2102 6.2592

(a) Bicubic (b) SC (c) ANR

(d) CNN (e) MELM (f) Ground truth

Fig. 4. Visual comparison on image ’zebra’ from set 14, with ×4 upscale.



(a) Bicubic (b) SC (c) ANR

(d) CNN (e) MELM (f) Ground truth

Fig. 5. Visual comparison on image ’monarch’ from set 14, with ×4 upscale.

ACKNOWLEDGMENT

The authors would like to thanks CAPES for financial
support during their research.

REFERENCES

[1] Dinh-Hoan Trinh, M. Luong, F. Dibos, J.-m. Rocchisani, Canh-Duong
Pham, and T. Q. Nguyen, “Novel Example-Based Method for Super-
Resolution and Denoising of Medical Images,” IEEE Transactions on
Image Processing, vol. 23, no. 4, pp. 1882–1895, apr 2014.

[2] A. R. Pais, J. D’Souza, and R. M. Reddy, “Super-resolution video
generation algorithm for surveillance applications,” The Imaging
Science Journal, vol. 62, no. 3, pp. 139–148, mar 2014.

[3] F. Li, X. Jia, and D. Fraser, “Universal HMT based super resolution for
remote sensing images,” in 2008 15th IEEE International Conference
on Image Processing. IEEE, 2008, pp. 333–336.

[4] H. Demirel and G. Anbarjafari, “IMAGE Resolution Enhancement
by Using Discrete and Stationary Wavelet Decomposition,” IEEE
Transactions on Image Processing, vol. 20, no. 5, pp. 1458–1460, may
2011.

[5] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel Regression for
Image Processing and Reconstruction,” IEEE Transactions on Image
Processing, vol. 16, no. 2, pp. 349–366, feb 2007.

[6] M. Protter and M. Elad, “Super Resolution With Probabilistic Motion
Estimation,” IEEE Transactions on Image Processing, vol. 18, no. 8,
pp. 1899–1904, aug 2009.

[7] R. C. Hardie, K. J. Barnard, and E. E. Armstrong, “Joint MAP
Registration and High Resolution Image Estimation Using a Sequence
of Undersampled Images 1 List of Figures,” Image (Rochester, N.Y.),
vol. 12, no. 12, pp. 1621–1633, 1997.

[8] W. Freeman, T. Jones, and E. Pasztor, “Example-based super-
resolution,” IEEE Computer Graphics and Applications, vol. 22, no. 2,
pp. 56–65, 2002.

[9] Hong Chang, Dit-Yan Yeung, and Yimin Xiong, “Super-resolution
through neighbor embedding,” in Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, 2004. CVPR 2004., vol. 1. IEEE, 2004, pp. 275–282.

[10] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L. A. Morel, “Low-
Complexity Single-Image Super-Resolution based on Nonnegative
Neighbor Embedding,” in Procedings of the British Machine Vision
Conference 2012, no. Ml. British Machine Vision Association, 2012,
pp. 135.1–135.10.

[11] R. Timofte, V. De, and L. V. Gool, “Anchored Neighborhood
Regression for Fast Example-Based Super-Resolution,” in 2013 IEEE
International Conference on Computer Vision. IEEE, dec 2013, pp.
1920–1927.

[12] R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted Anchored
Neighborhood Regression for Fast Super-Resolution,” in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9006, pp.
111–126.

[13] Jianchao Yang, J. Wright, T. Huang, and Yi Ma, “Image super-
resolution as sparse representation of raw image patches,” in 2008
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
jun 2008, pp. 1–8.

[14] Jianchao Yang, J. Wright, T. S. Huang, and Yi Ma, “Image Super-
Resolution Via Sparse Representation,” IEEE Transactions on Image
Processing, vol. 19, no. 11, pp. 2861–2873, nov 2010.

[15] R. Zeyde, M. Elad, and M. Protter, “On Single Image Scale-Up Using
Sparse-Representations,” 2012, vol. 1, no. 1, pp. 711–730.

[16] Jianchao Yang, Zhaowen Wang, Zhe Lin, S. Cohen, and T. Huang,
“Coupled Dictionary Training for Image Super-Resolution,” IEEE
Transactions on Image Processing, vol. 21, no. 8, pp. 3467–3478, aug
2012.

[17] C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution
Using Deep Convolutional Networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 38, no. 2, pp. 295–307, feb
2016.

[18] D. Liu, Z. Wang, B. Wen, J. Yang, W. Han, and T. S. Huang, “Robust
Single Image Super-Resolution via Deep Networks With Sparse Prior,”
IEEE Transactions on Image Processing, vol. 25, no. 7, pp. 3194–3207,
jul 2016.

[19] J. Kim, J. K. Lee, and K. M. Lee, “Accurate Image Super-Resolution
Using Very Deep Convolutional Networks,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 38, no. 2.
IEEE, jun 2016, pp. 1646–1654.



[20] Z. Huang, L. Wang, Y. Gong, and C. Pan, “Ensemble Based Deep
Networks for Image Super-Resolution,” Pattern Recognition, mar 2017.

[21] Kaibing Zhang, Dacheng Tao, Xinbo Gao, Xuelong Li, and Zenggang
Xiong, “Learning Multiple Linear Mappings for Efficient Single Image
Super-Resolution,” IEEE Transactions on Image Processing, vol. 24,
no. 3, pp. 846–861, mar 2015.

[22] K. Zhang, B. Wang, W. Zuo, H. Zhang, and L. Zhang, “Joint Learning
of Multiple Regressors for Single Image Super-Resolution,” IEEE
Signal Processing Letters, vol. 23, no. 1, pp. 102–106, jan 2016.

[23] Y. Romano, J. Isidoro, and P. Milanfar, “RAISR: Rapid and Accurate
Image Super Resolution,” IEEE Transactions on Computational
Imaging, vol. 1606.01299, pp. 1–1, jun 2017.

[24] L. An and B. Bhanu, “Image super-resolution by extreme learning
machine,” in 2012 19th IEEE International Conference on Image
Processing, vol. 1, no. 1. IEEE, sep 2012, pp. 2209–2212.

[25] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, “Extreme
learning machine: a new learning scheme of feedforward neural
networks,” in 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No.04CH37541), vol. 2. IEEE, 2004, pp.
985–990.

[26] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp.
489–501, dec 2006.

[27] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui
Zhang, “Extreme Learning Machine for Regression and Multiclass
Classification,” IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, apr 2012.

[28] P. Bartlett, “The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the
network,” IEEE Transactions on Information Theory, vol. 44, no. 2,
pp. 525–536, mar 1998.

[29] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal Approximation
Using Incremental Constructive Feedforward Networks With Random
Hidden Nodes,” IEEE Transactions on Neural Networks, vol. 17, no. 4,
pp. 879–892, jul 2006.

[30] H. Farid and E. Simoncelli, “Differentiation of Discrete
Multidimensional Signals,” IEEE Transactions on Image Processing,
vol. 13, no. 4, pp. 496–508, apr 2004.

[31] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality
Assessment: From Error Visibility to Structural Similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, apr
2004.


