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Abstract—Structured lighting is a computer vision technique
that projects illumination patterns onto the scene to facilitate
feature extraction from the captured images. The use of low-
cost cameras is avoided not only due to their low image quality
but mostly due to the lack of a synchronization mechanism
for the illuminators. In this paper we propose a method to
synchronize low-cost cameras and illuminators based on the
dynamic estimation of the camera sensor exposure and number
of lines. At the same time, the use of structured stroboscopic
lighting is used to enhance the image quality. Starting with
a coarse estimation of the sensor parameters, we developed
computer vision algorithms that detect image artifacts created by
the structured lighting when the illuminators are not correctly
synchronized with the camera frames. The detected artifacts
are used to refine the estimation of the sensor parameters and
to adjust the firing of the illuminators until a clear picture is
obtained. Our technique requires a simple external circuit to
control the firing of the illuminators, that is adjusted by software,
and allows virtually any modern digital camera to be used in
structured lighting applications. We demonstrate the use of this
technique in a fast 187 fps robust pupil detector that can be used
for gaze interaction applications.

I. INTRODUCTION

Shape reconstruction using coded structured light is con-
sidered one of the most reliable techniques to recover object
surfaces [1]. The technique projects a light pattern and captures
images from one or more cameras. The three-dimensional
information is obtained from the distortions observed from the
projected pattern. One of the most commonly used strategies
is based on temporal coding, in which a sequence of patterns
are successively projected. The codeword for a given pixel is
given by the sequence of intensities for that pixel across the
projected patterns [2].

Structured lighting have also been used for pupil and face
detection and tracking [3], photogrametry [4], and to the study
of animal behavior [5]. The use of structured lighting requires
precise synchronization between the light pattern and camera
frames, which can be achieved using specialized hardware [4],
or image processing software [6], or both [5], [7].

One way to synchronize images from different cameras is by
flashing a light pulse. The flash creates a virtual exposure time
that is shared by all cameras. The use of stroboscopic lighting
also helps to minimize some image artifacts that are created
using rolling shutter cameras, such as skew and smear. For
example, Theobalt et al. [8] have used stroboscopic lighting
to capture high speed motion of a baseball using standard still

Fig. 1. Traditional setup of a structured lighting system. Link (a) provides the
synchronization means between the camera and lighting. Note that the link
can be implemented using the computer as intermediate, which then controls
the lighting.

cameras and a high power stroboscope, and Bradley et al.
[9] have used stroboscopic light to synchronize an array of
consumer grade cameras.

When consecutive camera frames must be illuminated by
different light sources, the firing of each light must be carefully
synchronized with the beginning of each frame. Such time
multiplexed illumination have been used for multispectral
imaging [10], object relighting [11], and pupil detection [3]
using a technique called differential lighting (DL).

In a traditional structured lighting system, the camera
provides the synchronization signal to fire the light sources.
Figure 1 shows a block diagram of a typical system. The
structured lighting can be generated by an image projector,
in shape reconstruction systems, or spatially arranged infrared
LEDs in a DL pupil detector.

We propose to replace the global shutter, synching-capable
specialized camera by a low cost one. Low cost digital
cameras typically employ rolling shutters and constitute the
great majority of cameras being used, employed on notebooks,
cellphones, tablets, and so on. Figure 2 shows a block dia-
gram of our proposed method, called Stroboscopic Differential
Lighting (SDL), that uses an external timing source controlled
by an image processing software.

When lighting is not properly synchronized with the camera
frames, a dark stripe artifact is create in the image, i.e., a region
characterized by scanlines progressively dark until a minimum
followed by lines progressively bright. The height (number of
scanlines) and position of the stripe must be such that, when
in sync, just a few scanlines from the top and bottom of the
frame are dark, leaving the image mostly unaffected.

Our technique estimates the sensor internal parameters
which allows the automatic camera configuration. The exact



Fig. 2. Proposed setup. An external timing source replaces the camera
synchronization.

pattern produced on the frames for specific exposure and
strobe durations are described, thus allowing the right exposure
value to be set automatically.

In this paper we focus on methods to estimate the number
of scanlines of the sensor and define how to set the exposure
length. These parameters are essential to achieve synchroniza-
tion between the rolling shutter camera and light sources. As a
result of our method, an increased number of applications can
be developed using practically any affordable high resolution
web camera and high frame-rate action cameras.

The rest of the paper is organized as follows. The next
section describes the camera model and how the parameters
can be estimated using image processing techniques. We also
present how an external timing source can be adjusted to
trigger illuminators in synchrony to the camera. Section III
presents a particular implementation of the technique, followed
by Section IV, that presents experimental results using a low
cost high speed camera, including a practical application.
Finally, in Section V we draw the conclusions.

II. ESTIMATING CAMERA INTERNAL PARAMETERS

Our method is able to synchronize stroboscopic lighting
to a wide range of digital cameras. The method lies in
setting the camera exposure such that the lighting produces
a distinguishable dark stripe in the frames. Such stripe can be
made invisible by moving it to a region in the sensor that is not
displayed, here called invisible scanlines. We can obtain the
number of such lines from the total number of scanlines (S)
and the actual frame height. However, the number of scanlines
is not straightforward to get, as it is related to the frame
timings, and thus, resolution-dependent. For each frame height
the camera supports, a different number is available. Such
information is generally present in the sensor’s datasheets.
However, for many cameras it is hard to figure out the actual
sensor employed without opening the camera. Querying the
sensor parameters in execution time is not possible either.
Estimating the number of scanlines allows the development
of a closed-form exposure definition.

A. Exposure, gain and strobe duration

To achieve good image quality for both dark and bright
illuminated scenes, cameras allow the control of a variety of
parameters. They include variable optical aperture, variable

gain settings, and variable integration time. In low cost cam-
eras, such control is mostly performed by software. Hereafter
we assume that the camera has no physical exposure means
and that exposure refers only to the integration time. The
exposure is represented by ∆e when given in seconds and by
E to refer to the driver specific value. Later in this paper we
will discuss a method to translate between these two values.

Exposure and gain are normally manipulated together. The
gain is used to amplify the data collected during integration,
and is normally used to control the image brightness between
two adjacent steps in exposure. Since increasing the gain of
the image data amplifies the received signal, any noise in
the original signal is also amplified upon increasing the gain.
Usually, the camera is responsible for adjusting the exposure
and gain to deliver the best quality image to the user.

In general, for constant or slow changing light sources, the
exposure affects how much light enters the camera sensor.
Associated to the gain, they control the final image brightness.
However, when pulsed or stroboscopic light is employed, an
increase in exposure not necessarily implies that more light
enters the sensor. We can break the influence of those two
light sources apart, and denote the intensity of a scanline as:

I(.) = δ′ ·∆e+ δ′′ ·∆s (1)

where I(.) is the average intensity of a scanline fully illumi-
nated by the strobe with duration ∆s, δ′ is the room intensity
multiplier, and δ′′ is the strobe intensity multiplier. Those
two variables incorporate the surface reflectance of the objects
imaged at the scanline, the camera conversion efficiency and
gain, and the irradiation coming from the ambient and from the
strobe. Note that increasing ∆e does not change the intensity if
the ambient light is null (i.e. δ′ = 0). In most CMOS sensors,
photon flux conversion to photocurrent is linear, photocurrent
is integrated into charge during exposure, and charge to voltage
conversion is performed using linear amplifiers [12], [13].
Thus, we assume that linearly reducing ∆s leads to a linearly
proportional reduction in the line intensity.

B. Rolling Shutter Camera Model with Stroboscopic Lighting

The camera model adopted is similar to the one of Bradley
et al. [9], with the added generalization of allowing vertical
blanking lines both before and after the visible scanlines,
which was introduced by Borsato et al. [14] in order to be
compliant with camera chips [15], [16] and image sensor
receivers [17].

The readout time r(j)
y of line y from frame j is given by [9]

r(j)
y = t

(j)
0 +

y

S
·∆t = t

(0)
0 +

(
j +

y

S

)
·∆t (2)

where t(j)
0 is the readout time instant of the topmost scanline

in frame j. The period of the camera frame is denoted by ∆t,
and is defined as the interval needed to read the total number
of scanlines S.

Each pixel exposure starts some fixed time before the
readout time, resulting in exposure intervals temporally offset



Fig. 3. Rolling shutter camera model subject to stroboscopic lighting (Adapted
from [14]).

for each scanline. The moment a line y begins to be exposed
for frame j is given by

e(j)
y = r(j)

y −∆e (3)

where ∆e is the frame exposure interval, and is upper bounded
to ∆t.

Figure 3 presents the capture model of a rolling shutter
camera subject to stroboscopic illumination. Typically, such
cameras have optical black and/or dummy lines (named D0)
before the visible scanlines (N in the model). They can also
have invisible lines after the image (named DZ in the model).
The invisible scanlines are not output, but count on the total
frame time as any ordinary image line, so they are important
for our formulations.

In the model, s(j) denotes the moment the strobe is triggered
for a given frame j, ∆s give the strobe duration, and ∆clk is
the interval between two consecutive strobes. Due to the time
shift of the exposure interval of adjacent lines, the stroboscopic
light might affect them distinctly. While regions A and D from
Figure 3 present outputs as defined in (1), regions B and C
form a sort of dark stripe. If we take the intensities along a
vertical line of the frame, we would obtain what we call a
stripe profile (better characterized if one takes the average of
all columns). The stripe profile and size hs are dependent on
∆s, ∆t, ∆e, and S, while the stripe vertical position, given
by Ds(j), is a function of the phase difference between the
camera clock and the lighting.

In the following sections, we exploit the interaction among
the camera parameters and lighting configurations in the
formation of stripes. We developed image processing algo-
rithms that detect the stripes and estimate the total number
of scanlines S. These parameters are then used to control the
firing of the lights to move the stripes to the dummy lines,
thus removing the artifacts from the images.

C. Estimating the total scanlines (S)

Consider s(j) = r
(j)
k , i.e. the strobe is fired when line k

begins to be read in frame j. Thus e(j)

k̂
= s(j) + ∆s, where k̂

is the last line to receive the strobe light. Using (3) we have
r

(j)

k̂
−∆e = s(j) +∆s, and accordingly r(j)

k̂
= s(j) +∆s+∆e.
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Fig. 4. Ideal intensity profile of a column of a frame captured under
stroboscopic lighting for ∆e < ∆t− ∆s.

From the difference between the readout of line k̂ and k, we
obtain r(j)

k̂
− r(j)

k = ∆s+ ∆e. Using (2) we have

t
(j)
0 +

k̂

S
·∆t− t(j)

0 −
k

S
·∆t =

k̂ − k
S
·∆t = ∆s+ ∆e (4)

Let us define hs = k̂ − k as the stripe height, so the total
number of scanlines can be determined as follows:

S =
∆t · hs

∆e+ ∆s
(5)

where ∆t, ∆e and ∆s are given in seconds and, S and hs
are given in scanlines. Figure 4 exemplifies a frame column
profile that could be used for estimating S.

While ∆t and ∆s can be easily computed, the same might
not be true for ∆e. As we assume no prior knowledge about
the exposure unit, granularity, and minimum value, setting it
to the lowest does not imply it will be close to zero. Thus,
we estimate a device and resolution dependent constant β̂, as
an approximation to β, such that given some E and ∆e, it
holds that E ≈ ∆e/β̂ (with E = ∆e/β). This approximation
is computed by iterating E from its minimum to a value κ
that leads to hs = N/2. The pairs (E, hs) are used to fit a
model of the form hs = a · E + b using linear regression,
where b gives an approximation to S ·∆s/∆t, and a can be
used to estimate β, such that β̂ = a ·∆t/S. Note that this step
can be skipped if the user provides the true β. For instance,
in a Linux or MacOs system with an UVC compliant driver,
β = 0.1 · 10−3 [18].

D. Estimating S for cameras on auto-exposure (AE)

When auto-exposure is enabled in low light conditions,
the camera exposure time rises to its maximum. To estimate
S in this case, observe that the time to integrate a line
corresponds to the shift in the exposure window of the given
line. This shift is a function of S and ∆t. When the strobe
is triggered, some scanlines are already integrating, receiving
its full length. Some start integrating while the strobe is
on, receiving light proportional to the exposure time. And
some will start integration after the strobe is already off. This
sequence is represented in Figure 5. Note that the ramp (linear
slope of region B) might also be inverted, depending on the
phase difference between the timing source and the start of
the frame.



Fig. 5. Intensity profiles of a column of a frame captured under a pulse of
light with ∆e ≈ ∆t.

Assuming line k is being read at time s(j), and k′ is being
read at time s(j) +∆s, r(j)

k = s(j) and r(j)
k′ = s(j) +∆s. Thus,

r
(j)
k′ − r

(j)
k = ∆s. From (2), we have k′

S ·∆t−
k
S ·∆t = ∆s.

Let h∗s be k′ − k, then the total number of scanlines S is

S =
(∆t · h∗s)

∆s
(6)

As the exposure will be close to ∆t, to produce a distinct
stripe in the image, the strobe must be triggered on interleaved
frames. Note that this method can be employed to compute
S for a camera on manual exposure as well, by adjusting
its exposure to maximum (close to ∆t). Note that β is not
required in this method.

E. Automatically adjusting the exposure

We propose a procedure to adjust the exposure automati-
cally, such that a particular stripe is created. The total number
of scanlines S is assumed to be known from the application
of the methods described in Section II-C. We also assume that
β, a mapping coefficient from the driver exposure to seconds,
is also known (it is approximated by β̂).

Assuming s(j−1) = e
(j)
k , i.e, the strobe is set when the

exposure of line k begins, the last line to receive light from the
strobe is k′ = k+ S·∆s

∆t . To obtain a line with no illumination,
the next strobe must illuminate line k′ + 1. Using (3), r(j)

k −
ejk = ∆e for any given k, and by (2), r(j)

k′+1−e
j
k′ = ∆e+ 1

S ·∆t.
Line k′ + 1 is readout at rjk′+1, and we want it to coincide

with the next strobe s(j) = s(j−1) + ∆clk. Thus,

s(j−1) + ∆clk − ejk′ = ∆e+
1

S
·∆t. (7)

Replacing s(j−1) by e
(j)
k , and then e

(j)
k − e

(j)
k′ by −∆s in

(7), we have

∆e = ∆clk −∆s− 1

S
·∆t. (8)

With such exposure, stripes with one scanline not illu-
minated by any strobe are expected. The stripe height is
hs = 1 + 2·S·∆s

∆t .

F. Adjusting the timing source period and phase

Previous software synchronization methods focused on the
detection of a stripe induced on the image due to a par-
ticular combination of the camera and stroboscopic lighting
parameters [14]. In [14], the stripe is detected as the strongest
response of a gradient operator, orthogonal to the stripes.
By tracking the stripe over time, the method is capable of
adjusting the timing source to minimize the stripe translation
(i.e. achieve synchronization). One limitation of this approach
is the use of a fixed size kernel, which produces noisy stripe
localizations depending on the camera frequency. Another
limitation is the adjustment of the timing source using fixed
steps, limiting the resolution of the synchrony achieved.

Our method resolves these limitations by first estimating the
optimal gradient filter size for any setup (camera, resolution,
sampling frequency), improving the stripe detection. We then
iterate the timing source adjustment using variable steps pro-
portional to the drift in phase in the given interval, increasing
the resolution of the synchrony to the one of the timing source.

G. Using rolling shutter cameras with structured lighting
systems

To use a low-cost rolling shutter camera in structured
lighting applications, we must configure the camera frequency,
exposure and gain, as would be normally necessary for any
camera model. The exposure is set according to (8) for the
subsequent adjustment of the timing source (Section II-F).

If the camera model is unknown, the driver is checked
for UVC compliance. If compliant, β does not need to be
calculated, as it is standardized. Then, the total number of
lines for the particular frame height is estimated by either the
procedure described in Section II-C or II-D. If the camera
supports only auto exposure, estimating S is limited to the
procedure described in Section II-D. Note that when estimating
S for a camera in AE mode, the ambient light must be
as such as to keep the exposure at maximum. This implies
in low lighting levels, as required by the structured lighting
application, as most of the light captured is meant to come
from the pulsed source.

Once the timing source is adjusted, the structured lighting
application is allowed to run as if a true synchronization from
the camera is available. As the clocks are subject to small
deviations in frequency over time and also due to the limited
resolution of the timing source, drift corrections might be
necessary from time to time.

III. IMPLEMENTATION

To estimate the stripe height (hs) we compute the distance
between consecutive edges on the average column image.
We assume the intensity profile of an average column image
containing a stripe consist of an almost uniform segment.
The column image consists of a sequence of intensities
α0, α1, ..., αN−1. The piecewise profile is defined by the k+1
edges which segment data with differing behaviors, where
z0, z1, ...zk are the lines on the original image corresponding
to the edge positions, with z0 = 0 and zk = N−1. The edges
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Fig. 6. Average column intensity of a frame captured from a PS3 Eye Camera
at 187fps, minimum exposure and using a strobe with length ∆s = 800µs.

define intervals m1, ...,mk, such that mi = [zi−1, zi) follows
a linear model Mi.

The goal is to approximate the intensity profile with k
piecewise linear functions Mi(x). Assuming k is known, each
line segment can be defined as follows:

Mi(x) =
αzi − αzi−1

zi − zi−1
(x−zi−1)+αzi−1

for zi−1 ≤ x ≤ zi
(9)

where i = 1, . . . , k.
The following equation is used to compute the position of

the edge points z1, . . . , zk−1, such that the overall squared
error e is minimized:

min
z1,...,zk−1

{
e =

N−1∑
x=0

[αx −Mi(x)]2

}
(10)

Figure 6 shows the intensity profile of a frame with min-
imum exposure subject to stroboscopic illumination. Spikes
around the bright scanlines are evidenced, result of the camera
post processing to increase sharpness. We will assume every
camera employs such a filter, with varying levels of intensity.

To reduce the artifacts introduced by the camera, we use a
non-continuous piecewise segmentation technique in which the
optimum number of edges is estimated from the data. Using
the dynamic programming method from Lemire [19], the edges
are estimated with O(N2k) computational complexity. The
method uses a mixed model (piecewise linear and constant)
which was shown to reduce the fitting error [19].

We considered the camera clock and the timing source to
have slightly different periods. This means that the difference
t
(j)
0 −s(j) changes with j. Therefore, the stripe produced seems

to move top-down or bottom-up. A frame is useful for the
estimation of S only if the whole stripe profile is on the visible
scanlines. The adaptive segmentation can then be used on the
average column image to estimate the edges that separate the
segments, and the polynomial degree of each slice can be used
to identify the relevant sections to detect the stripe height.
Linear regression is used on a particular segment if it does
not agree with the model.

IV. EXPERIMENTAL RESULTS

We used a Sony PS3 Eye [20] camera in our experiments.
It is a low cost and high speed camera capable of capturing

Fig. 7. Setup to assess the estimation methods.

frames with 240 lines at 187 fps. While higher resolutions are
possible at lower speeds, we favored speed against resolution
as the synchronization becomes more challenging as the frame
period is reduced. The timing source was implemented using
an Arduino board [21], a low cost micro-controller board
which provided a timer resolution of 62.5 ns adjustable by
software.

The results are organized in four parts. The first is related
to the estimation of the camera parameters, necessary for the
software synchronization. The second assess the accuracy of
the stripe estimated using a simple filter given the parameters
estimated in the first part. The third assess the synchroniza-
tion, given the camera parameters are known. Lastly, a pupil
detection application using structured lighting is presented.
Discussions are drawn in each section on the strengths and
weakness of the methods.

A. Camera parameters estimation

The PS3 Eye camera provides ground truth for most of its
parameters, such as S, D0 and Dz . However, as it is not UVC
compliant, the β is unknown and varies with both the frame
rate and frame height.

To avoid taking the camera apart, visible stroboscopic light
was used. Two LED lights were arranged on opposite sides
of a polystyrene enclosure as seen in Figure 7. The material
was used to reflect the light and provide an even illumination.
The camera was positioned at an aperture on the enclosure,
with the lens facing a wall illuminated from two directions
simultaneously.

The procedure from Section II-G was followed to estimate
S and β. For the camera at 30 fps and using ∆s = 5 ms, the
estimated S = 270.78 ± 1.00 scanlines and β = 2.44e−5 ±
1.32e−7. At 187 fps and ∆s = 2.5 ms, the estimated S =
273.54 ± 1.34 scanlines and β = 0.29e−5 ± 2.46e−7. For
the tested resolution, S = 278 scanlines, and thus, the results
represent a deviation from ground truth of 2.59% and 1.60%,
respectively. Figure 8 shows the complete results for varying
∆s.

Note that independent of the strobe length and frame rate,
our implementation seems to underestimate S. To investigate
this possible bias of the method, we computed ∆s using
different exposures, as shown in Figure 9a. The y-intercept of
the first order regression on ∆s allows the estimation of the
scanline period (and then S), while the slope corresponds to β.
Note in Figure 9b that the stripe height estimated using E = 0
is more accurate. The underestimation bias seen in Figure 8
can be explained by the non-linearity of the stripe when
captured by the host computer, as can be seen in Figure 10.
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Fig. 8. Estimated total scanlines and β in function of strobe length ∆s using the method described in Section II-C. Five trials per ∆s.

Figure 10 shows a series of stripe profiles obtained with
the gain at minimum, where the points represent the edges
that define the line segments as computed by the piecewise
segmentation. Note the stripes differ from Figure 5 in which
a single non-zero slope segment is expected. As this violates
our initial assumption, the method from Lemire produced non-
optimal results, affecting the placement of the edges, which in
turn are responsible for the bias observed in Figure 8.

The method described in Section II-D was also tested. It
allows the estimation of the scanlines in cameras with the
limitation of supporting only auto exposure. For the camera
at 30 Hz and ∆s = 2.8 ms, the computed hs after 50 trials
was 21.12±1.36 scanlines, resulting in S = 251.4 scanlines.
At 187 Hz and ∆s = 1.6 ms, the estimated hs was 80.63±5.5
scanlines, resulting in S = 268.9 scanlines. These results
represent a deviation from ground truth of 9.5% and 3.2%,
respectively. Note that if we assume a similar error to the one
reported in Figure 9b of 2.5 scanlines, the estimated S rises
to 277.23, reducing the error down to 0.27%.

B. Stripe detection accuracy

A rolling shutter camera with the exposure configured as
in (8) imaging a scene illuminated with stroboscopic lighting
produces images with a dark stripe that translates horizontally
according to the phase difference between the camera clock
and the timing source, that feeds the lighting. Its detection is
necessary for the timing source adjustment (Section II-F), as
the phase difference is computed from the stripe translation
over time. A robust detection method is to convolve the
image orthogonally to the stripe orientation with a gradient
operator [14]. Moreover, as we are able to predict the stripe
height, a custom filter can be exploited to improve the results
according to the camera and resolution in use.

To assess the improvements in the position detection accu-
racy of the stripe, we compared the detected stripe position
against ground truth using 704 images of a robust structured
lighting pupil detector [14]. The experiment comprehends
convolving the images with different kernels, including a fixed
size one (an approximation of a derivative of Gaussian of size

15 [14]), and a first order function with unitary slope, defined
as follows:

kernel(i) = i− bhs/2c (11)

where ||kernel|| = 2 · bhs/2c+ 1.
The convolutions were performed using the average column

images, and the boxplots from Figure 11 show the position
of the stripes detected as the strongest sign change of the
convolution with respect to the ground truth, except for the
kernel of size 15, in which the peak was selected. We call this
difference ∆Ds. In Figure 11, the kernel sizes of 85 and 83,
correspond, respectively, to the expected stripe height using the
true number of scanlines (S = 278) and the number estimated
using the procedure from Section II-C with ∆s = 2 ms,
according to (11).

With the fixed-size kernel, we obtained ∆Ds = −9.69 ±
19.7 lines, while for the kernels with size 85 and 83, we
obtained ∆Ds = −0.55±2.58 and ∆Ds = −0.50±2.50 lines,
respectively. The results indicate that despite the biased esti-
mation of S, the stripe position estimation using convolution is
little affected. The adequate spatial support improves the result
with respect to a smaller fixed kernel, as expected. Though the
use of large kernels might be computationally expensive, for
our particular images, using a kernel with only two non-zero
values provided similar results (∆Ds = −0.08± 0.69 lines).

C. Software synchronization

Our method proposes to replace the synchronization signal
from a high-end camera by a signal generated by an external
clock adjusted by software we call timing source. To evaluate
the adjustment, we performed an experiment that consists of
adjusting the timing source as described in Section II-F, and
then monitor the phase difference over time.

Three volunteers were asked to wear a head-mount pupil
detector [14] while the timing source was adjusted. The
device employs asynchronous infrared stroboscopic lighting
to capture eye images at 187 Hz using a low cost PS3
Eye camera [20]. In total, the experiment was repeated one
hundred times. The timing source was initialized with a coarse
estimation of the camera period based on the delivery rate
to the computer in every trial. Then, the timing source were
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adjusted by tracking the stripe position. The stop criterion
employed was to wait the equivalent in time to 200 frames (a
little more than one second at 187 Hz) for one line of stripe
translation. Figure 12 shows the results for both the coarse
estimation and the adjusted period.

To assess the resulting synchronization, we measured the
movement of the stripe produced on the frames over time.
On each trial, after adjusting the timing source, we tracked
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Fig. 12. Adjustment of the timing source on repeated trials for the PS3 Eye
camera at 187 Hz.

the stripe translation for the equivalent of at least 10 lines,
which resulted in about 11 seconds of video data per trial. With
respect to the processing time, the stripe detection took on
average 405±35.7µs. Note that as the stripe translates slowly
after the timing source adjustment, the stripe can be detected
in intervals of more than one second to reduce computations.

The results of this experiment indicate that, despite the
initial biased stripe estimation, the timing source can be
accurately synchronized at a low computational load. The slow
drifts can be corrected by software adjustments, scheduled to
run on large intervals of more than 10 seconds for a camera
at 187 Hz.

D. Structured lighting pupil detection

To test the performance of the technique with a real applica-
tion, we have used our method to build a robust pupil detector.
The timing source is responsible for triggering two groups
of infrared LEDs that are alternately activated. One group is
arranged on-axis with respect to the camera to produce bright
pupil images and the other off-axis, to produce dark pupil
images, similar to the method presented in [3]. The pupil is
detected by determining the high contrast pixels between the
dark and bright pupil images.

Short pulses of light are used to improve the image quality
as well as to allow only one frame to be illuminated when syn-



a) b) c) d) e)
Fig. 13. Images of a volunteer using a head-mounted camera with attached structured lighting. a) Image with stripe due to a phase difference between the
camera clock and timing source. b-e) Images captured in sequence with the lighting synchronized by software using our method.

chronized with the camera. Before adjusting the timing source,
most images look like Figure 13a. After the adjustment, the
difference of adjacent frames is used as an estimation of the
pupil after thresholding. Note the dark lines at the top of the
images in Figures 13b to e, that correspond to part of the
stripe. These lines do not compromise the application.

V. CONCLUSIONS

In this paper we have shown how to build multiplexed
structured lighting computer vision systems using low cost
digital cameras based on rolling shutters and with no external
synchronization mechanism. The proposed technique uses
short light pulses that are, most likely, captured during a
single frame. The pulses are triggered by a software-controlled
timing source, which when combined with a particular camera
exposure, produces a visible dark stripe in the frames. Our
method detects the stripe and uses it to adjust the timing
source. Because the synchronization is made by software,
one advantage of our technique is that it can be used with
most modern off-the-shelf digital cameras that do not offer
external synchronization mechanisms. Another advantage of
our technique is the reduction of motion blur due to the use
of short ligh pulses.

In an experiment using a low cost PS3 Eye Camera at
187 Hz, the stroboscopic lighting was successfully adjusted
to the camera frame rate. The phase difference between the
camera and the timing source was responsible for no more
than two lines of stripe movement per second in frames with
240 lines, i.e., less than 1% drift per second.

We have demonstrated the use of the technique in an
active lighting pupil detector application that requires explicit
synchronization of two light sources and the camera frames.
The use of active lighting in this case greatly simplifies the
image processing task.

ACKNOWLEDGEMENTS

This research was supported by Fundação Araucária (DIN-
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