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Abstract—Monocular Visual Odometry (MVO) estimates the
camera position and orientation, based on images generated
by a single camera. In this paper a new sparse MVO system
for camera equipped vehicles is proposed. Three view cyclic
Perspective-n-Point with adaptive threshold is used for camera
pose estimation, perspective image transformations are used to
improve tracking, and a multi-attribute cost function selects
ground features for scale recovery. Results using the KITTI
dataset show that the proposed system achieves 1.29% average
translation error and average rotation precision of 0.0029 degrees
per meter.

I. INTRODUCTION

Monocular Visual Odometry (MVO) or camera tracking is
the problem of estimating the camera position and orientation
for each provided image. This is an area of paramount im-
portance in computer vision with applications in autonomous
vehicle navigation, camera equipped drone control, driver
assistance, augmented reality systems and special effects for
movie industry among others.

Camera pose estimation is tightly coupled to the perceived
scene structure. Sparse systems select discrete image regions,
named features, search those regions in subsequent images,
and use relative image displacement to estimate the 3D posi-
tions for those features. Camera positions and orientations are
calculated to match the estimated feature 3D positions, to the
found pixel coordinates on each image plane.

The scale of both scene structure and camera translation is
an inherently absent information in MVO systems. Scene scale
must be recovered using specific methods such as previously
known image characteristics (absolute size or distance of rec-
ognizable items) or external sensors (GPS, Li-Dar, odometer,
IMU etc).

This paper proposes a new sparse MVO system that is
divided in three main modules: graphical, geometric and scale
recovery. The proposed system introduces modified algorithms
for feature tracking, camera pose estimation and scale adjust-
ment.

The image processing unit uses Shi-Tomasi [1] and Lukas-
Kanade [2] algorithms to detect and track features with the use
of perspective image projections to improve feature tracking
on the ground plane, and avoid feature tracking errors along
epipolar lines.

The geometric module uses the features matched in the
last three images, to perform a local bundle-adjustment. Two
view triangulation is used to determine features distance to the

camera, and Perspective-n-Point (PnP) used to refine camera
pose. The module uses a cyclic algorithm to select pairs of
reference images in an alternating order, and calculate relative
pose and feature depth, until reprojection error falls below an
adaptive threshold.

Finally scale is inferred from the known camera distance
to the pitch corrected ground plane. The method used selects
a single ground feature in each image, based on the feature
position, image gradient along the epipolar line, and depth
difference from the estimated ground position.

The main contributions of this work are:
• The use of perspective image transformations to improve

tracking, and avoid mismatch due to similar features
along epipolar lines.

• Camera pose estimation through a Cyclic 3-view Bun-
dle Adjustment method with variable re-projection error
threshold.

• Scale estimation based on multi-attribute ground point
selection, and pitch-sensitive ground plane.

Results on the KITTI dataset [3] show average transla-
tion errors of 1.29% and rotation errors of 0.0029 degrees
per meter, outperforming state-of-the-art published monocular
odometry systems. This paper is outlined as follows: section
II makes a brief review of related works, notation is defined
on section III the system is explained in section IV, results
using the KITTI dataset [3] are summarized in section V and
discussed in section VI and finally section VII concludes this
work.

II. RELATED WORK

This section makes a brief overview of important works
in this area. One of the first successful monocular localiza-
tion and mapping techniques is MonoSLAM [4], where an
extended Kalman filter is used to update a probabilistic 3D
scene map. Filtering approach was a popular technique at the
time, shared by other implementations [5], [6]. The milestone
work PTAM from Klein and Murray [7] was the first work
to split image tracking and geometrical pose estimation in
separate threads and implement a keyframe based framework
that influenced many solutions [8], [9] and is still a reference
for present implementations [10], [11].

Dense or semi-dense propositions [12] use the whole image,
acting directly on pixel intensities warping the image to



produce a dense 3D structure of the scene. Those methods
are very interesting to build a detailed scene map, as depth is
estimated for every pixel presenting relevant image gradient,
when used for camera tracking however, tend to be more
susceptible to outliers in non-static scenes.

Sparse systems on the other hand, must select traceable
image regions with methods such as Shi-Tomasi [1] or FAST
[13] corner detectors, and use either direct pixel gradients in
Lucas-Kanade [14] variations, or feature descriptors like SIFT
[15], and ORB [16], that try to cope with scale and perspective
variation.

A common approach in sparse systems [7], [10], [17] is the
use of keyframes, where new features are only detected in a
subset of frames used as reference for pose prediction.

Camera pose can be directly estimated by reprojection error
minimization in PNP based algorithms [18], [19] or extracted
from fundamental matrix [20] [21].

Full Bundle Adjustment (BA) refines simultaneously the
camera pose and feature positions, while structure only BA and
motion only BA, limit the objective to either feature depth or
camera pose respectively. As full BA for a large set of images
is computationally demanding, most solutions tend to use a
subset of the images in what is called local BA. ORB-SLAM
[22] from Artal Et al. use a covisibility graph to select frames
for local BA, while the most common approach is to use the
last frames as used by [9] and [23], and this work.

Two recent monocular works achieved notable results when
tested with the database used in this work. The work pro-
posed in [10], used a local bundle adjustment with the last
10 frames, and scale recovered from multiple cues (ground
plane and recognizable objects) to build a system with great
accuracy. The work [23] used the five point algorithm [21] for
essential matrix estimation, and a probabilistic multiple view
triangulation for scene structure calculation. This work, instead
of using several frames for pose estimation or triangulation,
uses only the last three frames.

The interesting work of Fanani [24], jointly minimizes im-
age disparity (i.e. pixel intensity discrepancy) and geometrical
reprojection error to refine camera pose estimation.

The KITTI dataset [3] is used to evaluate the proposed
system. A collection of 22 image sequences, made by a camera
equipped vehicle in trajectories recorded by a high precision
GPS. Images are recorded at 10 frames per second, and car
speed varies from 0 to about 90 Km/h. Steep turns, high inter-
frame displacement in non-static scenes (where cars, bicycles
and trees move), make this a highly challenging application.

III. NOTATION

In this work the notation used in Forster et. al [8] will
be adopted. A point in the kth frame, p = (x, y, z)T is
mapped to an image coordinate u = (u, v)T by the camera
projection model π : IR3 7→ IR2 by u = π(kp). The point’s
3D position can be recovered from the projected position and
the associated depth du with kp = π−1(u, du). The set of all
point coordinates in the image k, is noted as Uk.

The projection model π is dependent of the intrinsic camera
parameters, determined from calibration. The camera pose
is a 3x4 matrix characterizing the rigid-body transformation
Tk,w ∈ SE(3). A point from world coordinate frame is
mapped to the camera frame of reference by kp = Tk,w .wp.
Projection error minimization for pose estimation is a trans-
formation Tk,w that minimizes the difference between viewed
features, and the calculated projection on the image plane as
shown in equation 1.

Tk,w = arg min
T(k,w)

∑
i

||ui − π(T(k,w) . wpi)||2 (1)

IV. SYSTEM ARCHITECTURE

In this section the architecture of a new sparse MVO
system is described. The system is composed by three main
modules: graphical unit, geometrical unit and scale unit, as
shown in figure 1. The modules are described in the following
subsections.

Fig. 1. System architecture

A. Graphical Unit

The graphical unit detects new traceable image regions, and
locates them in subsequent frames. Tracking is performed with
Shi-Tomasi [1] feature detector, and Lucas-Kanade [2] is used
to search for correspondences.

The module receives three images and the last relative
camera displacement Tk,k−1 as input. Corners are vectors of
(u, y) image coordinates, detected in the central frame and
tracked in the previous and next frames, denoted by subscripts
k, k-1 and k+1, features detected in the past are not used. The
output of the module is the set of all pixel coordinates of
tracked features in the three images, grouped into the matrix
Uk−1,k,k+1.

Features on the ground are especially important for scale es-
timation, and especially difficult to track due to low gradients
on asphalt and high pixel wise distance for high speeds. The
ground plane however, remains in a virtually constant position
and can be foreseen as shown in figures 2a, 2b and 2c, where
the box show a feature on the ground.

Four constant image coordinate pairs, in the bottom-center
image area, are projected in the previous frame, using the rel-
ative camera displacement Tk,k−1 and depth from the constant
estimated ground plane. No pixel intensities are used in this
operation, only geometric point projection. With the initial
coordinates and the projections, a perspective transformation
is calculated and applied to the second image as shown in



(a) img 0

(b) img1

(c) img 0 warped to match ground

(d) img 0 warped to match close features

Fig. 2. Perspective warping of figures: figs (a) and (b) show the original
images, fig (c) is figure (a) warped for ground matching (as shown by the
box) and fig (d) is fig (a) for close object matching (as shown by the circle)

figure 2c. It is possible to note that pixels on the ground from
the warped image 0 (fig 2c) are similar to the ground pixels
on image 1 (fig 2b). Features are tracked in the warped image,
and then back in the original to avoid outliers.

A problem that occurs especially when the car drives in
higher speeds, are similar patterns along epipolar lines. On
figure 2a the guard rails on both sides of the road are very
similar and thus difficult to differentiate for correct matching.
In stereo cases, the stereo calculated depth can be used to help
choosing the correct match, but on monocular situations, the
correct correspondence is very difficult to find, as different
estimated depths provide different matches with equivalent
reprojection errors.

To mitigate this problem, in a similar way to ground plane
estimation, four constant seed points, but this time around the
image center are assigned a constant depth not too large (in
the present case 15 meters), and projection is calculated. The
image is warped simulating a situation in which every pixel
had the same depth, as if belonging to a plane parallel to the
image plane, as can be seen on figures 2a and 2d. We can
see that close objects, as marked by the circle in fig 2d, are
projected to their location on image 1 (fig 2b), while points
distant to the camera bear larger discrepancy. By tracking

function CYC BA(Tk,k−1, Uk−1,k,k+1)
num cyc ← 0,
rep ← max rep
threshold ← init threshold
Tk−1,k ← Invert(Tk,k−1)
while rep>threshold & num cyc<max cyc do

dk−1 ← triangulate(Tk−1,k, Uk, Uk−1)
Tk+1,k−1 ← SolvePnP (Uk−1, dk−1, Uk+1)
dk+1 ← triangulate(Tk+1,k−1, Uk−1, Uk+1)
Tk,k+1 ← SolvePnP (Uk+1, dk+1, Uk)
dk ← triangulate(Tk,k+1, Uk+1, Uk)
Tk−1,k ← SolvePnP (Uk, dk, Uk−1)
rep← GetReproj(Uk−1, Uk, dk, Tk−1,k)
num cyc, threshold ← num cyc+1, threshold + δ

end while
return Invert(Tk,k+1)

end function

Fig. 3. Cyclic BA algorithm

features in two images, projected with different depths on the
seed points, the guard-rails on the road will be matched to
different positions, and can be classified as dubious matches
and be discarded.

B. Geometric Unit

This section describes the method used to estimate the
new camera position, using point correspondences in the last
three images. The module receives as inputs the (u, v) image
coordinates of corresponding matched image regions, and uses
last camera displacement Tk,k−1 and current speed as shown
in fig 1 to calculate the new camera displacement Tk+1,k.
The method is outlined in algorithm of figure 3 and explained
below.

In the algorithm of figure 3, features in pairs of images
are used in a cyclic way, i.e. first correspondences in images
k, k − 1 are used, then k − 1, k + 1 and finally k + 1, k.
Triangulation [25] is used to calculate depth, - distance from
the feature to the camera. Perspective-n-Point is used for rela-
tive pose estimation. SolvePnP uses Levenberg-Marquardt [26]
nonlinear optimization in a RANSAC approach to estimate
camera displacement. At each iteration a subset of features is
randomly selected and camera pose is estimated based on the
subset. The median error is calculated for all features and the
solution with the lowest error is elected.

Small errors in camera pose estimation, cause larger repro-
jection errors in close features due to large displacement along
an incorrect epipolar line, and RANSAC can select only far
points which are less sensitive to camera translation. To avoid
this situation, the system divides the points in two sets with the
same number of points, based on their distance to the camera.
The median is calculated for close points and far points and the
average of medians is used as the fit criterion for RANSAC.

When system is initialized the first relative camera pose
estimation must be performed without previous knowledge of
motion. Three initial guesses of forward motion are made, with



three different speeds. The solution with lowest reprojection
error is selected and scale of camera translation is set to the
first recovered depth to ground estimation, with the method
outlined in the next section, and used as a first approximation
of translation scale.

C. Scale Extraction

For the current application of a camera equipped vehicle,
the camera distance to the ground is nearly constant, and can
be used to estimate the scene scale as will be discussed in this
section.

The absolute distance of a point on the ground can be
calculated by triangle similarity, ignoring usually negligible
rotations around optical axis, as shown in figure 4 and equation
2, and by comparing the depth from triangulation and the
expected ground depth, the whole scene scale can be approx-
imated. In the figure, f is the focal length, Vh is the position
of the horizon in the image, vo is the vertical position of the
feature, and h is the constant camera height.

Fig. 4. Absolute scale

du =
fh

vh − vo
(2)

A good ground point, should be in the center bottom area
of the image (see the line in figure 2a), should present a good
image gradient along the epipolar line to enhance matching
precision and is expected to be close to the estimated ground.

A multi-objective cost function based on these three char-
acteristics, is applied to the tracked points and the point with
lowest score is selected. The positional cost penalizes points
far from the bottom center of the image with the equation
3 where qu parameter is used to widen the ground area and
(gndv, gndu) is a constant point in the center lower area of
the image.

li =
√
(v − gndv)2 + (u− gndu)2/qu (3)

Traceability quality is measured by averaging the pixel
intensity difference in two image areas dislocated along the
epipolar lines. The first image area is a box centered in the
projected feature location. The second box center is calculated
by applying a δz to the feature depth, projecting the feature
and normalizing the vector from the first box position to
the new projection, in order to have an Euclidean distance
of one pixel. Both positions present sub-pixel accuracy and
interpolation is used to find pixel intensities.

Finally features above the ground are avoided by setting
a higher cost to feature with calculated depths far from the
expected ground distance.

A smooth transition function of the form of equation 4
is used to scale and smooth the costs of points. Costs are
bounded in the [0, 1] interval and a smooth threshold is used
to distinguish good ground point from low confidence ones,
by adjusting parameters m the mean and a the aperture, as
shown in figure 5.

s =
1

1 + e
x−m

a

(4)

Fig. 5. Sigmoid function

Camera is not perfectly horizontally oriented, and different
trajectories may present a slightly different pitch angle (camera
angle with respect to the ground plane). The average pitch
angle is estimated by the ratio of the forward translation and
vertical translation as shown in equation 5, where f is the
focal length, ty and tz are up and forward translation, cy is
the vertical camera center, λ is a smooth parameter and vh is
the vertical position of the horizon. If the camera is pointed
slightly upward, vertical translation will be negative in aver-
age, while for the opposite case positive vertical translation is
expected.

vh = λv.(
fty
tz

+ cy) + (1− λv)vh (5)

Next section presents the results of the proposed system.

V. RESULTS

The system was implemented in Python, using SciPy [27]
and OpenCV [28], and tested on the KITTI database [3]. This
section presents the achieved results.

The following parameters were used: Minimum feature
distance used was 15 pixels, Lucas-Kanade used 3 pyramid
levels. The localization step used subsets of 10 features, and
55 repetitions. The median re-projection error is on the order
of 0.15 pixels, and feature set ranges between 150 and 300
features per image set. The used camera height was 1.65m,
provided by the database developers. Initial threshold for
cyclic estimation was set to 0.125 pixels and δ = 0.05.
Parameters m and a used were: positional cost 80 and 40;
tracking quality 8 and 4 after normalization by dividing SAD
by the number of pixels in the patch; speed 0.4 and 0.2 meters
per frame.

The single thread implementation was executed in an Intel
i7-3770K CPU @ 3.5GHz with an average time per frame of
approximately 0.17 seconds. To meet real time requirement,



(a) seq 00 (b) seq 01 (c) seq 07

Fig. 6. Estimated trajectories

TABLE I
PER TRAJECTORY TRANSLATION ERRORS IN [%] AND ROTATION ERRORS

IN [DEG/M]

seq num frames translation [%] rotation [deg/m]

00 4540 1.03 0.0030
01 1100 1.37 0.0023
02 4660 1.33 0.0038
03 800 0.87 0.0022
04 270 0.86 0.0024
05 2760 0.99 0.0037
06 1100 0.73 0.0026
07 1100 1.12 0.0057
08 4070 1.23 0.0028
09 1590 1.54 0.0028
10 1200 1.02 0.0024

Avg 1.23 0.0028

the worst case allowable time per frame should be below 0.1
second for the used frame rate of 10 images per second. A low
level multi-threaded C/C++ implementation, aimed at meeting
real time requirements for that platform is left as a future work.

The metrics used to evaluate the system proposed by the
database developers are degrees per meter and translation
percentage error. Trajectories are split in segments of 100
to 800 meters, and errors are averaged over all trajectory
segments. Table I shows the results for the first 11 routes.

Figure 6 shows the car path in meters for sequences 0, 1
and 7, estimated path in black and ground truth in green, for
a qualitative idea of estimation precision.

VI. ANALYSIS AND COMPARISON

This section carries out a brief analysis of the presented
results and compares the proposed system to other implemen-
tations.

The database developers do not provide ground truth data
for trajectories 11 to 21. Estimations can be uploaded to their
web-site [29] and results can be compared. Table II compares
the proposed system’s results to be best qualified Monocular
Visual Odometry published works.

TABLE II
RESULTS COMPARISON FOR TRAJECTORIES 11-22

Work Transl [%] Rot [deg/m]

VISO2-M [30] 11.9 0.0234
MLM-SFM [10] 2.54 0.0057
FTMVO [23] 2.24 0.0049
FVO [this work] 1.29 0.0031

Fig. 7. Rotation Error × Distance

Figures 7 and 8 compare rotation errors for different traveled
distances, and translation errors for different car speeds.

It is particularly interesting to analyze the translation error
behavior with respect to car speed, as shown in figure 8. For
lower speeds all three algorithms provide similar results, which
is already interesting, considering that [10] uses multiple
frames for pose estimation and [23] use multiple frames
for depth calculation, while the proposed cyclic BA method
uses only the three last images. Most of the average result
improvement however, comes from the higher speed scenarios.
In those cases, most solutions face the problems discussed in
section IV-A, especially bad tracking due to similar matches
along epipolar lines, and few correctly matched points on



Fig. 8. Translation Error × Speed

the ground. The perspective image warping performed by
the graphical unit is especially important in steep turns and
high speed sequences both to accurately locate features on
the ground and to eliminate possible track failures, improving
robustness for those cases.

VII. CONCLUSION

This paper presented a monocular visual odometry system
for camera equipped vehicles. The system used perspective
image transformation to improve Lukas-Kanade tracking, and
remove outliers. A cyclic PnP algorithm, with variable repro-
jection threshold was used to calculate camera pose with the
three last images. Scale was recovered with a multi-attribute
ground feature selector.

A python and OpenCV implementation tested on the KITTI
dataset, achieved rotation and translation precision superior to
other published works.
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