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Abstract—Chess game has been used as a rich environment to
study human cognition and several works in the neuroscientific
domain have been done using different brain mapping techniques
for this purpose. Here we have processed the electroencephalo-
graphical signal to create spatial cognitive brain mappings using
entropy, multivariate statistics and Loreta sources. The goal
is to disclose the possible differences in the cortical organi-
sation of individuals with different proficiencies during chess
problems solving. Volunteers were grouped into two different
stages according to their performances, classified as beginners or
experienced players. Our experimental results on brain mappings
have suggested that both groups recruit visual areas to process
the spatial informational of the chess board but beginners may
rely more on the linguistic information presented whereas the
experienced group seems to count on the executive functions.

I. INTRODUCTION

A chess game involves several cognitive neural computa-
tions: object recognition (knowledge of the piece format);
spatial movement control according to specific rules (move-
ment permissions of each piece); combination of goal-directed
movements (in order to capture a piece); strategy of sequential
movement planning (to achieve a check or checkmate); and
decision making (to decide for the best move or strategy).
Therefore, its a rich environment to study neurophysiological
dynamics of the neural tissue during complex mental pro-
cesses. Besides that, chess players achieve different proficiency
levels. This allows neuroscientists to investigate not only the
neural organisation involved in different cognitive processes
but also to understand how the neural network creates news
graph topologies as people evolve in the expertise of some
mental domain. In neurophysiology, we need a tool that
permits volunteers to be comfortably seated in a chess game
natural environment to investigate such processes. In this way,
electroencephalogram (EEG) may be a good option to acquire
brain signals that may be processed and associated to the neu-
ral network modulation during the many cognitive processes
involved in such game. However, EEG has been neglected to
investigate neural spatial organization and functional Magnetic
Resonance Imaging (fMRI) has been the preferential tool to
explore spatial brain activation.

Now, to override the EEG poor spatial resolution and use
it for brain mapping purposes, we propose here to use a well-
known technique to disclose the spatial sources of the recorded
signal, named Low Resolution Tomography (LORETA) [1].

LORETA uses mean values of EEG or magnetoencephalogra-
phy (MEG) raw data from several decision makings or events
to topologically find the sources of such signals but does not
infer any relationship between the located sources. For that,
we propose to use a brain mapping technique that involves
correlation between electrodes data and entropy calculation
to summarize the electroencephalogram signal information
recorded by all the electrodes into a single variable for each
electrode [2] [3]. With this information - a single entropy
value for each electrode - we propose to run factor analysis
to disclose the possible covariation between the measured
entropy of the electrodes. Finally, by plotting in the same graph
both the factor loadings of each extracted factor variables
(electrode) and LORETA xyz coordinates, we create the brain
mappings showing the possible organisation of the LORETA
located sources into neural circuits [2] [3]. The objective here
using these techniques is to disclose the possible differences in
the cortical organisation of these neural circuits in individuals
with different proficiencies during chess problems solving.

The remainder of this paper is described as follows. In
the next section, we present a summarized bibliographical
review about brain mapping and chess problems solving, using
different types of brain signal acquisitions and data processing
techniques. In section 3, we present the materials and methods,
including the data sample, the protocol, the software created to
present the tasks and register the data, and the aforementioned
technique to both process the EEG signals and create the brain
mappings. Section 4 shows the results of LORETA analysis
and the brain mapping technique used here. Section 5 presents
the discussion of such results and, finally, in section 6 we give
conclusions and future works.

II. PREVIOUS WORK

To the best of our knowledge, there are only three published
works using EEG to investigate the neurophysiology of chess
game. In 2002, Volke et al. [4] used electroencephalogram and
topologically found that the relevant cortical areas of experts
during chess problem solving were located rather posterior
and more in the right hemisphere if compared with those of
the novices. Using event-related potential (ERP), Wright et
al. [5] investigated expert’s versus novice’s ERP responses
during check situations and piece recognition. It was found
that experts showed an enhanced negative ERP component



about 200ms (N2), around FCz and PCz electrodes, with
check targets in relation to novices. It infers that larger N2
components reflect matching of current perceptual input to
memory, and thus are sensitive to experts’ superior pattern
recognition and memory retrieval of chunks. Stepien et al. [6]
using nonlinear method, called Higuchi Fractal Dimension,
found higher values during the thinking over chess moves
than in the players resting state. These works revealed some
important facts about the EEG responses to chess reasoning
but did not investigate the complexity of cortical organisation
in different chess game situations.

On the other hand, using Positron Emission Tomography
(PET)-Scan, Nichelli et al. in 1994 [7] were the first ones to
describe possible neural circuits involved in different chess
problem situations. They calculated the difference in brain
activity during 3 different tasks: a spatial localisation task
revealed activation on the dorsal occipito-parietal pathway; a
piece move identification task revealed activation on lateral,
medial and inferior regions of the temporal lobe; a checkmate
recognition task revealed activation of the parieto-occipital
junction, the left orbito-frontal and right pre-frontal lobe. This
work found three equivalences between chess reasoning and
already known specific cortical areas functions (i.e. parietal
areas and viso-spatial processing; temporal lobe and movement
perception; pre-frontal lobe and executive planning).

To investigate the neural differences between groups of
individuals that have different chess performances, Amidzic
et al. [8], [9] used magnetic imaging (MEG) to compare
focal bursts of gamma-band activity. They found that this
activity, in amateur chess players, was most evident in the
medial temporal lobe, in the region of the perirhinal and
entorhinal cortex, hippocampus and related structures. On
the other hand, chess grandmasters had more gamma-bursts
in the frontal and parietal cortices. This fact led authors to
suggest that amateurs may use medial areas to create new
memories, whereas experts may use frontal neurons to retrieve
information about chunk of pieces stored and analysed by
parietal regions. More recently, Bilalic et al. [10] using fMRI
showed on experts the enrollment of homologous areas of
the right hemisphere during object recognition, besides the
common involvement of the left temporal and parietal lateral
areas. It inferred that expertise may be the result of a broader
network on the brain, involving areas of both hemispheres
to process the information about the specific domain of this
expertise.

By using fMRI during a resting state, Duan et al. in 2012
[11] found enhanced integration between the caudate nuclei
and the default mode network (DMN) in the brain of experts.
Next [12], they revealed a broader deactivation of DMN on
GM/Ms during chess problem-solving tasks. Together, these
findings led the authors to conclude that long-term learning
and practice in cognitive expertise may influence large-scale
brain networks. DMN deactivation and enhanced functional
integration of DMN-caudate circuitry are important neural
modulations for a better expert performance. In 2014, Duan et
al. [13] examined the overall organisation of brain networks

TABLE I
QUESTIONS CATEGORISATION.

Category Description
C1 Object recognition [4]
C2 Check [4]
C3 Checkmate [4]
C4 Checkmate in one move [4]
C5 Piece movement [7]

by means of resting-state functional connectivity and graph
theoretical analysis. It showed this connectivity was increased
in GM/Ms among basal ganglia, thalamus, hippocampus, and
several parietal and temporal areas.

From the MEG and fMRI results, we may suppose that
experts may use a broader and more specialized neural net-
work to deal with more complex cognitive computations, such
as strategy and decision making instead of object recognition.
Even when experts have to deal with chess pieces recognition,
it seems that they use a occipito-temporal circuit, which has
been appointed as a region of expertise in object recognition
[14]. It is also a goal of our work to allow such studies of
neural organisation by means of EEG signals.

III. MATERIALS AND METHODS

A. Materials

1) The chess software - ChessLab: A software written on
C# was created and used to present different chess problem
situations on a chessboard, by means of Yes/No questions
(Figure 1), which were categorised on 4 types following Volke
[4] and 1 type following Nichelli [7] (Table 1). For each
category we created and presented to volunteers 10 questions,
thus totalizing 50 questions. All the questions were randomly
grouped and presented to each volunteer one at a time, for as
long as they required to read them. They were also informed
that after the chessboard was presented they could not read the
questions anymore. They pressed the space key after reading
each question and next a chessboard having different pieces in
different positions was presented. Again, unlimited time was
given for volunteers to answer, but now they were advised
to be as fast and accurate as they could in order to improve
their rating till the end of the test. They gave their answers
by pressing S (for yes) or N (for no) keys and the software
presented the next question automatically. It also recorded the
response time for each question relating to the beginning of
the task.

2) Data sample and Experimental Protocol: We collected
data from 28 volunteers but our final data sample was com-
posed of 14 males (only the first and last quartiles) aging
between 24 and 56 years old. The EEG signal was registered
using 20 electrodes placed according to the 10/20 protocol
[15]; impedance below 10 Kohm; band-stop filter 60Hz;
sampling frequency of 256 Hz and 16 bits of resolution.
Task presentation and EEG recording were synchronized so
we could use EEG data from the 2 seconds just before each
decision making. We suppose that during these two seconds,
volunteers brains were organized to compute the problem and



Fig. 1. Software used to present the questions to volunteers. For each
question, two screens were presented. The first brings the written question
and the second brings the chessboard. After the decision, the next question is
automatically presented and volunteers continue to answer all the 50 questions.

give the answer. All volunteers were students or lecturers from
our University.

3) Chess Proficiency: None of our volunteers had the
Elo rating [16] (professional ranking system on chess tour-
naments created by the hungarian Arpad Elo), so we used
a performance function defined by Volke [4] to measure
each volunteer’s performance. We have chosen this function
because it considers not only individual accuracy but also
response time of the entire group, balancing this way the final
individual rating in relation to the local sample. Additionally,
if volunteers answer all the questions with the same choice,
attempting to achieve 50% of hits in the least possible time,
actually they would score 0. This function is calculated for
each volunteer as follows:

Hs = (Ncorrect −N/2) ∗RTm/RTs (1)

where Hs = Honorarium (rating), Ncorrect = total amount of
correct answers, N = total amount of questions (50), RTm =
mean response time of all the volunteers in all questions, RTs
= mean response time of the volunteer.

B. Methods

Entropy has been used to process and analyse neurophys-
iological signals from EEG in different domains. One of
its uses is to help in diagnosing and characterising neural
disorders. It was used to better understand the neural dynamics
associated to Alzheimer‘s disease [17]. By using it to extract
features for a later learning machine classification, it resulted
in a good discrimination method for epilepsy [18]. It is also

suggested as a useful and discriminative tool to investigate
the neuro-dynamic properties of the brain in patients with
major depressive disorder during emotional stimulation [19].
Multiscale entropy (MSE) has been used to measure dynamical
complexity in physiological systems over a range of temporal
scales [20]. Using EEG and MSE, scientists have shown
correlation between complexity and creativity among elderly
subjects [21].

1) EEG Summarization: Here, we propose the use of
entropy, as calculated by Shannon [22], to compute the infor-
mation provided by each electrode about its conectivity with
other ones. Therefore we propose to investigate the covariation
among electrode’s entropy value using Factor Analysis. The
rationale follows the technique presented by Rocha et al. [23]
[24] and used in different cognitive domains such as arithmetic
solving and reading process.

EEG records the electrical field potentials generated by the
activation of sets of neurons or source signals sl located in
several distinct cortical areas. The EEG data di(t) recorded
at a single electrode ei represents a weighted linear sum of
underlying source signals over time t, that is:

di(t) =

k∑
l=1

wlsl(t). (2)

The weights wl are determined by the distance of the
cortical source domains sl from the electrode pair, the ori-
entation of the cortical patch relative to the electrode pair
locations, and the electrical properties of intervening tissues.
The number k and connectivity configuration of active sources
are determined by the task being currently processed by the
brain.

In order to investigate the possible associations ocurring
among cortical sources during a specific task, we may use
multivariate statistical methods, based on the assumption that
these associations may be decoded from the EEG signal
recorded during the task solution. But, for that we may
summarize the information provided by each electrode ei, over
this time (here it is assumed a time window of two seconds
before pressing the Y or N buttons, thus signalizing decision-
making), about all sources sl into a single variable.

Since EEG data are assumed to be a weighted sum of the
electrical activity from different sources, correlation analysis
of the EEG activity di(t) recorded by the different electrodes
ei may be used to calculate the entropy information h(ei)
provided by each electrode ei about all k involved sources sl
into a single variable [2], [3].

This process can be briefly explained as follows. Given
that data di(t) and dj(t), furnished by two electrodes ei and
ej , provide equivalent information about sources sl then the
absolute value of correlation coefficient ci,j calculated for
di(t) and dj(t) will approach |1|, otherwise it will approach
0. The highest uncertainty about the information equivalence
provided by ei and ej occurs when the correlation strength
ci,j approaches |0.5|.



Therefore, in the same line of reasoning used by Shannon
[22] to define the amount of information provided by a random
variable, it is proposed that the informational equivalence
h(ci,j) of di(t) and dj(t) furnished by ei and ej is the
expected value E(I(ci,j)) of the information I(ci,j) provided
by ci,j [2], [3], [25]. Since ci,j may theoretically assume
values between zero and one, we used the h(ci,j) estimate
as calculated by [26]:

h(ci,j) = −[ci,j log2(ci,j) + (1− ci,j)log2(1− ci,j)]. (3)

Now, given q electrodes and the average correlation coeffi-
cient

ci =

∑q−1
j=1 ci,j

q − 1
, (4)

the informational equivalence measured by ci can be written
by the following formula

h(ci) = −[cilog2(ci)− (1− ci)log2(1− ci)], (5)

which calculates the information provided by di(t) concerning
that provided by all other dj(t). Thus,

h(ei) =

q−1∑
j=1

abs(h(c̄i)− h(ci,j)) (6)

computes the information provided by di(t) recorded by ei
about the sources. In short, in a cognitive task solving, we
shall expect:

• if ci,j = 1 for all ej then ci = 1, h(ci,j) = h(ci) for all
ej , and consequently h(ei) = 0. This indicates that di(t)
and the corresponding ei do not provide any additional
information about the sources sl;

• if ci,j = 0 for half of ej and ci,j = 1 for the other
half, then ci = 0.5, h(ci) = 1, h(ci,j) = 0 for all ej ,
and consequently h(ei) is maximum and equal to 1. This
indicates that di(t) and the corresponding ei discriminate
two different groups of electrodes providing information
about distinct groups of sources sl, and

• for all other conditions, i.e. 0 < h(ei) < 1, h(ei)
quantifies the information provided by di(t) about the
sources sl.

Figure 2 shows an illustrative example of an EEG summari-
sation calculated in the experiments for the C3 electrode.

2) Factor Analysis: We have used Factor Analysis (FA), a
well-known multivariate statistical technique, to describe the
association among the entropy values of each electrode in
a non-supervised and multivariate way [23]. The main idea
behind FA is to disclose the correlation relationships among
the original variables using a few unobservable random ones,
called common factors, to properly represent the data [27].

In particular, let an N × n data matrix X be composed of
N input signals (or trials) with n variables (or electrodes).
This means that each column of matrix X represents the EEG
summarisation of a particular electrode observed all over the

Fig. 2. An illustrative example of an EEG summarisation calculated in the
experiments for the C3 electrode. All the calculations have been made using
2 seconds immediately before the decision making.

N trials. Let this data matrix X have sample correlation matrix
R with respectively P and Λ eigenvector and eigenvalue
matrices, that is,

PTRP = Λ. (7)

It is a proven result that the set of m (m ≤ n) eigenvectors
of R, which corresponds to the m largest eigenvalues, mini-
mizes the mean square reconstruction error over all choices of
m orthonormal basis vectors [28]. Such a set of eigenvectors
scaled by the square root of the corresponding eigenvalues
[27] and calculated as

L̂ = [
√
λ1p1,

√
λ2p2, ...,

√
λmpm] (8)

is known as the factor loadings of the data matrix X estimated
by the principal component method.

The estimated factor loadings L̂ of X can be rotated in
order to improve the understanding of the factors, specially if
R deviates significantly from a diagonal matrix. If L̂ is the
n×m matrix of estimated factor loadings then

F̂ = L̂T (9)

is a n×m matrix of rotated estimated factor loadings, where
T is assumed to be an orthonormal m × m rotation matrix,
that is, TTT = TTT = I .

Ideally, we would like to see a pattern of loadings where
each subset of electrodes is highly represented by a single
factor and has negligible coefficients on the remaining ones,
allowing an interpretation of the EEG brain mappings with
no overlappings. Thus, our natural choice of the orthonormal
matrix T has been based on the varimax criterion proposed
by Kaiser [29].

Therefore, those F̂ = [f̂1, f̂2, ..., f̂m] can then replace the
initial n variables on m rotated common factor loadings.



Fig. 3. Electrodes positions in the EEG setup according to the 10/20 system.

These factor loadings would be most expressive in terms of
variance information and moreover, the brain mappings would
be the most independent ones due to the perpendicular rotation
T of the initial factor loadings estimated by the principal
components method.

We run factor analysis looking for 3 factors with eigenvalues
higher than 1. By plotting the factor loadings (values between
0 and 1) of each variable (EEG channels) using a different
color scale for each factor (F1: green to dark blue; F2: yellow
to orange; F3: pink to dark red), we create the brain mappings
illustrating those channels that may compose possible neural
circuits. Then we add the xyz location of the LORETA sources
to the same map. This superposition integrates the spatial
information from LORETA about the possible sources gen-
erating the electroencephalographic signal with the possible
association between electrode’s activity as calculated by the
entropy/factor analyses technique

3) LORETA: LORETA (Low Resolution Tomography) uses
measurements of scalp electric potential differences (EEG) or
extracranial magnetic fields (MEG) to find the 3D distribution
of the generating electric neuronal activity with exact zero
error localization to point-test sources [1]. LORETA has
the capability of identifying 6,430 voxels at 5 mm spatial
resolution in cortical gray matter and hippocampus.

IV. RESULTS

A. Behavioural Data

We have calculated our volunteers performance using
Volke’s equation 1 [4]. Using the quartile calculation we have
grouped them as beginners (7 volunteers, ranging from 24
and 39, mean age 30) with rating <10 (first quartile), and
experienced players (7 volunteers, ranging from 24 and 56,
mean age 31) with rating >20 (fourth quartile). The other 18
volunteers were grouped in the second and third quartiles.

B. Brain Mapping - Factor Analysis

The entropy calculation was performed for each volunteer
and each decision making. Factor analysis has been carried
out by grouping all decision makings depending on volunteer’s
proficiency and each one of the five question categories (see
section III-A1). Therefore, we generated five brain mappings
for each one of the two defined experimental groups (begin-
ner and experienced). Figure 3 illustrates the 20 electrodes
positions used in this experiment.

Electrodes P3, Pz and P4 have the highest loadings (dark
blue) in Factor F1 computed for both experimental groups

Fig. 4. Beginner Brain Mappings - Factor Analysis. F1 - Factor 1; F2 - Factor
2; F3 - Factor 3; C1 - Category 1: Piece recognition; C2 - Category 2: Check;
C3 - Category 3: Checkmate; C4 - Category 4: Checkmate in one move; C5 -
Category 5: Piece movement. We run factor analysis looking for 3 factors with
eigenvalues higher than 1. By plotting the factor loadings (values between 0
and 1) of each variable (EEG channels) using a different color scale for each
factor (F1: green to dark blue; F2: yellow to orange; F3: pink to dark red),
we create the brain mappings illustrating those channels that may compose
possible neural circuits. For each factor and category we have a coronal, a
left and a right view of the brain cortex.

Fig. 5. Experienced Brain Mappings - Factor Analysis. F1 - Factor 1; F2 -
Factor 2; F3 - Factor 3; C1 - Category 1: Piece recognition; C2 - Category
2: Check; C3 - Category 3: Checkmate; C4 - Category 4: Checkmate in one
move; C5 - Category 5: Piece movement. We run factor analysis looking for 3
factors with eigenvalues higher than 1. By plotting the factor loadings (values
between 0 and 1) of each variable (EEG channels) using a different color
scale for each factor (F1: green to dark blue; F2: yellow to orange; F3: pink
to dark red), we create the brain mappings illustrating those channels that
may compose possible neural circuits. For each factor and category we have
a coronal, a left and a right view of the brain cortex.

(Figure 4 and Figure 5). Electrodes C3, Cz and C4 loadings
on F1 are greater for the experienced group (E) in comparison
to the beginner group (B).

Electrodes F7, F3, Fz and Fp2 have the highest loadings
(orange) in Factor F2 computed for group E, whereas loadings
of electrodes F4 and F8 are higher in group B if compared
to group E. Electrode Fp1 has an important loading for both
experimental groups in most of question categories.

The best distinction among experimental groups is provided
by Factor F3 (red). It is composed of electrodes F7, T3, T5,
O1, O2 and T6 in case of group B. In contrast, electrodes T5,
O2 and Oz are the only electrodes loading in Factor F3 for
almost all tests in case of group E.

No significant brain mapping differences were found among
questions categories for both groups.

C. Brain Mapping - Loreta Sources

Sources located bilaterally at Brodmann Areas (BA) (Figure
6) 7, 19, 39 and 40 are those found nearest to electrodes
composing Factor F1 computed for both experimental groups
(Figure 7 and Figure 8).



Fig. 6. Brodmann cortical areas in human beings.

Fig. 7. Beginner Brain Mappings and Loreta Sources. The same factorial
brain mappings described above are disclosed here again but now associated
to LORETA sources. Each point depicted in the maps represents one xyz
location calculated by LORETA software. This superposition integrates the
spatial information from LORETA about the possible sources generating
the electroencephalographic signal with the possible association between
electrode’s activity as calculated by the entropy/factor analyses technique.

Sources located bilaterally at BA 8, 9, 10 and 11 are found
near the electrodes composing Factor F2 for both experimental
groups B and E, whereas those located at BA 44, 45 and 46
are associated to Factor F1 more frequently in case of the
experienced group E than beginner group B.

Sources located at left BA 22, 37, 38 and 43 are near to
Factor F1 electrodes in case of experimental group E, but near
to Factor F3 electrodes in case of the experimental group B.

V. DISCUSSION

Factor Analysis is a tool to summarize information about
large number of variables associated to a process. The present
results clearly show that each multivariate statistical factor
Fi - calculated for each experimental group and question
category - summarizes information about different sets of
sources identified by LORETA analysis. Factor Analysis does

Fig. 8. Experienced Brain Mappings and Loreta Sources. The same factorial
brain mappings described above are disclosed here again but now associated
to LORETA sources. Each point depicted in the maps represents one xyz
location calculated by LORETA software. This superposition integrates the
spatial information from LORETA about the possible sources generating
the electroencephalographic signal with the possible association between
electrode’s activity as calculated by the entropy/factor analyses technique.

not address spatial source location, but it is used here to
disclose covariation of source activation that may disclose
functional source coupling. In this context Factor Analysis
helps to identify those networks recruited to solve a cognitive
task.

We have not found any significant brain mapping difference
among the questions of different categories as Nichelli et al.
(1994) [7] have done. The main reason may be that questions
were randomised and mixed and volunteers were not advised
about the different kinds of questions. Because of that, their
cortical activity may have stablished a common pattern during
the entire task to solve each question. We have not found
similarity with the results from Volke et al. (2002) [4] either.
But, as Wright et al. (2013) [5] our results allow us to
propose that experts superior pattern recognition is related to
the matching of current perceptual input to memory retrieval
of chunks.

The most discriminant factor, among those 3 with the
highest eigenvalues, is Factor F3. In beginners’ Factor 3 we
may observe an occipito-temporal association involving areas
around T3, T5 and O1 electrodes (Figure 4), summarizing
information from sources mostly located at the left temporal
lobe. At the same time it is composed of few electrodes in the
case of the experienced group.

Our experimental protocol consisted of a two-moment user



attention, where volunteers firstly read a question about one of
the five categories, such as ”May the white queen checkmate
the black king in one move?” (C4, ”checkmate in one move”
category). In the second moment, a chess board was presented
to volunteers and they had to answer the question using ”S”
key for yes or ”N” key for no. The brain mapping was
calculated considering a two-second EEG window just before
decision making.

According to neuro-linguistic studies realised by Coltheart
et al. [30], these areas may correspond to the lexical reading
circuit, by which we decode the word’s letter combination to
retrieve its meaning, in opposition to the phoneme-grapheme
conversion operated by the phonological reading circuit. Our
result might indicate that these volunteers were rehearsing
the text read in the first moment of the task, even while
analysing the chess board configuration during the decision
making process.

Neurons located at BA 22, 37 and 43 are also reported
to be associated with visual analysis of small objects [31].
It is interesting to remark that these same neurons that are
associated with beginner F3 (red regions on Figure 7) are
associated with experienced F1 (green and blue regions on
Figure 8). In addition, it has to be said that neurons in left BA
38 are related to beginner F3 and expert F1.

As found by Bilalic et al. in 2010 [32], activation of
the occipto-temporal junction may also be involved in the
chess-specific object recognition. Differently from Bilalic et
al. (2011) [10], we have not found any bilateral activation
prevalence on experts over beginners.

The majority of the electrodes composing Factor F1 is com-
mon to both experimental groups and seems to predominantly
summarize information about activation of sources located at
BA 7, 39 and 40. Neurons located in these areas are reported
in the literature to be involved in spatial analysis [33] and
episodic memory [34].

In beginners, Factor F1 may thus be reflecting a visuo-
spatial processing through the involvement of bilateral centro-
parietal areas into another neural circuit [35] [36], attempting
to assign the linguistic meaning of the text (Factor F3) to the
pieces disposition in the chess board.

On the other hand, Factor F1 in the experienced group
may represent the cortical areas involved in the visuo-spatial
information analysis [36], which are to be used to confirm
or not the action plan defined by the frontal areas of the
brain, disclosed by Factor 2. The involvement of the medial
electrode Pz in this circuit may be the result of decision
making computation by medial regions of both hemispheres
[37].

On Factor F2, the mappings of the experienced group (Fig-
ure 5) disclose an association among bilateral frontal area. As
we see, on Factor F1, the experienced group establish a centro-
parietal circuit. These findings are in consonance with those
of Amidzic [8] [9] where a frontal/parietal communication
was interpreted as the retrieval, by frontal neurons, about
chunk of pieces memorised on parietal regions. Here our
findings indicate that the frontal neurons may be associated

to the strategic planning, once the linguistic information was
already converted to a visual information of the possible piece
positions in the first moment of the task.

The majority of electrodes composing Factor F2 is common
to both experimental groups too. However, LORETA sources
located near Factor F2 electrodes differ between them. Sources
located at BA 8, 9, 10 and 11 are found to be associated with
Factor F2 for both experimental groups. Neurons at these areas
are reported in the literature to be associated with value, benefit
and risk evaluation (BAs 10 and 11) [38]; to be related to
uncertainty estimation (BA 8) [39] and to working memory
(BAs 9 and 10) [40].

In contrast to the above, sources located at BA 44, 45 and
46 are associated with Factor F2 predominantly in the case
of the experienced group. These areas may be considered as
part of the executive module of working memory [41] [42],
our ability to manage different information at the same time,
relating them to each other and seeking for the best possible
association for decision making.

VI. CONCLUSION

The present work has proposed and implemented a compu-
tational framework to acquire and process electroencephalo-
graphic signals associated to chess game, using entropy and
statistical methods based on neuroscience and multivariate
analysis of data, as well as LORETA sources. We conclude that
these results point to an issue already noted in past research
on children’s linguistic and mathematic literacy [3] [24]. By
using oral or written verbal language to (de)code information
about some task, which should be solved mainly by circuits not
related to verbal language, such as quantification or calculus,
we may hamper the neural circuits establishment that could
better solve the task.

Since chess is a cognitive task that involves visuo-spatial
processes and time restricted strategic analysis, we may as-
sume that the best neural circuits for its solution should
promote a procedural, more implicit, process of information.
In fact, the explicit knowledge related to chess, as well as to
mathematics, should be presented posterior to visual and motor
practice, meanwhile teachers observe student’s evolution in a
set of tasks that require as few as possible verbal language for
its presentation and answering, emphasizing a learning strategy
of pattern recognition.

Historically chess game has been taught empirically, but
lacking scientific basis. A better understanding about experi-
enced and non-experienced cortical organisation during chess
problems solving may help the development of better teaching
methods. We believe that longitudinal brain mapping studies
are fundamental to reveal the implicit process by which better
players base their reasoning during different moments of their
training.
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